Riemann-Liouville Generalized Fractional Integral Inequalities
SÜMEYYE ERMEYDAN ÇİRİŞ, HÜSEYİN YILDIRIM
Department of Mathematics,
University of Kahramanmaraş Sütçü İmam,
Kahramanmaraş, 46100,
TURKEY
Abstract: In this paper, we define Riemann-Liouville generalized fractional integral. Moreover, we obtained
some significant inequalities for Riemann-Liouville generalized fractional integrals.
Key-Words: Fractional integrals; Generalized fractional integrals; Inequalities; Riemann-liouville fractional
integrals; Chebyshev function; Integral inequalities 1
Received: June 19, 2024. Revised: November 2, 2024. Accepted: November 25, 2024. Published: December 30, 2024.
1 Introduction
Fractional integrals are a generalization of the con-
cept of integration to non-integer orders. In particu-
lar, fractional integrals extend the idea of differentia-
tion to non-integer orders, which means they provide
a way to define integrals of functions to fractional
powers,[1],[2],[3].
Let’s start with the Riemann-Liouville fractional
integral . Given a function f(x)defined on an inter-
val [a, b],and a real number α > 0,the Riemann-
Liouville fractional integral of order αof f(x), de-
noted by Iαf(x),is defined as:
Iαf(x) = 1
Γ (α)x
a
(xt)α1f(t)dt. (1)
Where Γ (α)is the gamma function. This definition
can be extended to other types of integrals, such as
the Caputo fractional integral, which is often used in
fractional calculus.
Definition 1. [4,5]Let h(τ)be an increasing and
positive monotone function on [0,). Further-
more, we’ll consider has a monotonically increasing
and positive function defined on the interval [0,),
with its derivative hbeing continuous and γ(0) =
0. The space Xd
h(0,)is the following form for
(1 d < ),
fXd
h=
0|f(θ)|dh(τ)1
d<(2)
and if we choose d=,
fX
h=ess sup
1θ<f(θ)h(τ).(3)
Additionally, if we take h(τ) = τ(1 d < )
the space Xd
h(0,),then we have the
Ld[0,)space. Moreover, if we take h(τ) = τk+1
k+1
(1 d < , k 0) the space Xd
h(0,),then we
have the Ld,k[0,)space [6].
Senouci and Khirani obtained newly the following
definition of fractional integral [7].
Definition 2. Let fL1([a, b]) , a < b, α > 0,
k > 0.Then, we have
Iα
0,kf(t) = 1
kΓk(α)t
a
(tx)α
k1f(x)dx. (4)
Where
Γk(α) =
0
tα1exp tk
kdt, k > 0.(5)
Furthermore, we generalized this definition ob-
tained by Abdelkader and Mohammed as the follow-
ing
Definition 3. Let fL1([a, b]) , a < b, α > 0,
k > 0.Suppose that h(x)be an increasing and posi-
tive monotone function on [0,). Furthermore, we’ll
consider has a monotonically increasing and posi-
tive function defined on the interval [0,), with its
derivative hbeing continuous and γ(0) = 0. Then,
Iα
k,hf(t)
=1
kΓk(α)t
a(h(t)h(x))α
k1f(x)h(x)dx.
(6)
Where
Γk(α) =
0
tα1exp tk
kdt, k > 0.(7)
The Chebyshev fractional for two integrable
functions fve gwhich are synchronous (i,e
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
920
Volume 23, 2024
(f(x)f(y)) (g(x)g(y)) 0) for any x, y
[a, b],is defined as follows
T(f, g) = 1
bab
af(x)g(x)dx
1
bab
af(x)dx 1
bab
ag(x)dx. (8)
Chebyshev fractional holds a significant position
not only in mathematics but also in statistics, finding
wide-ranging applications across various disciplines.
Thereby, there are a lot of investigation on its. ( See
[8] ,[9] and [10]). Let give some definitions asso-
ciated with the fractional integration in the sense of
Riemann-Liouville.
2 Main Results
Lemma 1. Let fL1([0,)) and t > 0, α > 0,
k > 0.Suppose that h(x)be an increasing and posi-
tive monotone function on [0,). Furthermore, we’ll
consider has a monotonically increasing and posi-
tive function defined on the interval [0,), with its
derivative hbeing continuous and γ(0) = 0. Then
Iα
k,hf(t) = 1
kΓk(α)Γα
kIα
kf(t).(9)
Proof. For all fL1([0,)) and t > 0, α > 0,
k > 0,we have
Iα
kf(t)
=1
Γ(α
k)t
0(h(t)h(x))α
k1h(x)f(x)dx,
(10)
and
Iα
k,hf(t)
=1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(x)dx.
(11)
Then
t
0(h(t)h(x))α
k1h(x)f(x)dx
= Γ α
kIα
kf(t),(12)
finally
Iα
k,hf(t) = 1
kΓk(α)Γα
kIα
kf(t).(13)
The proof is done.
Theorem 1. Let the functions fand gbe two syn-
chronous functions on [0,[.Suppose that h(x)
be an increasing and positive monotone function on
[0,). Furthermore, we’ll consider has a monoton-
ically increasing and positive function defined on the
interval [0,), with its derivative hbeing continu-
ous and γ(0) = 0. Then for all t > 0, α > 0, k > 0
Iα
k,h (f g) (t)1
Iα
k,h (1) .Iα
k,hf(t).Iα
k,hg(t)(14)
Proof. The functions fand gare synchronous func-
tions on then for all x0, b 0,then
(f(x)f(b)) (g(x)g(b)) 0(15)
and
f(x)g(x) + f(b)g(b)
f(x)g(b) + f(b)g(x).(16)
We have (16) .Multiplying both hand sides of (16)
by (h(t)h(x)) α
k1
kΓk(α)h(x), x (0, t),
(h(t)h(x)) α
k1
kΓk(α)h(x)f(x)g(x)
+(h(t)h(x)) α
k1
kΓk(α)h(x)f(b)g(b)
(h(t)h(x)) α
k1
kΓk(α)h(x)f(x)g(b)
+(h(t)h(x)) α
k1
kΓk(α)h(x)f(b)g(x).
(17)
By integrating (17) from 0to t, we have
1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(x)g(x)dx
+1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(b)g(b)dx
1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(x)g(b)dx
+1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(b)g(x)dx.
(18)
In here, we can write
Iα
k,h (f g) (t)
+f(b)g(b)1
kΓk(α)t
0(h(t)h(x))α
k1h(x)dx
g(b)1
kΓk(α)t
0(h(t)h(x))α
k1h(x)f(x)dx
+f(b)1
kΓk(α)t
0(h(t)h(x))α
k1h(x)g(x)dx.
(19)
Finally, we get
Iα
k,h (f g) (t) + f(b)g(b)Iα
k,h (1)
g(b)Iα
k,hf(t) + f(b)Iα
k,hg(t).(20)
Now, multiplying both hand sides of (20) by
(h(t)h(b)) α
k1
kΓk(α)h(b), b (0, t),
(h(t)h(b)) α
k1
kΓk(α)h(b)Iα
k,h (f g) (t)
+(h(t)h(b)) α
k1
kΓk(α)h(b)f(b)g(b)Iα
k,h (1)
(h(t)h(b)) α
k1
kΓk(α)h(b)g(b)Iα
k,hf(t)
+(h(t)h(b)) α
k1
kΓk(α)h(b)f(b)Iα
k,hg(t).
(21)
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
921
Volume 23, 2024
In here, by integrating (21) from 0to t,
Iα
k,h (f g) (t)1
kΓk(α)
×t
0(h(t)h(b))α
k1h(b)db
+Iα
k,h (1) 1
kΓk(α)
×t
0(h(t)h(b))α
k1h(b)f(b)g(b)db
Iα
k,hf(t)1
kΓk(α)
×t
0(h(t)h(b))α
k1h(b)g(b)db
+Iα
k,hg(t)1
kΓk(α)
×t
0(h(t)h(b))α
k1h(b)f(b)db.(22)
We can write that
Iα
k,h (f g) (t)1
Iα
k,h (1) Iα
k,hf(t)Iα
k,hg(t).(23)
The proof is done.
Corollary 1. If the functions f and g are asynchronous
( i.e (f(x)f(y)) (g(x)g(y)) 0, for any
x, y [a, b]), then
Iα
k,h (f g) (t)1
Iα
k,h (1) Iα
k,hf(t)Iα
k,hg(t).(24)
Theorem 2. Let the functions fand gbe two syn-
chronous functions on [0,[.Suppose that h(x)
be an increasing and positive monotone function on
[0,). Furthermore, we’ll consider has a monoton-
ically increasing and positive function defined on the
interval [0,), with its derivative hbeing continu-
ous and γ(0) = 0. Then for all t > 0, α > 0, k > 0,
β > 0,the following inequality, we have
Iα
k,h (f g) (t)Iβ
k,h (1)
+Iα
k,h (1) Iβ
k,h (f g) (t)
Iα
k,h (f) (t)Iβ
k,h (g) (t)
+Iα
k,h (g) (t)Iβ
k,h (f) (t).
(25)
Proof. By utilizing the proof of T heorem 1,we can
write
(h(t)h(y)) β
k1
kΓk(β)h(y)Iα
k,h (f g) (t)
+(h(t)h(y)) β
k1
kΓk(β)h(y)f(y)g(y)Iα
k,h (1)
(h(t)h(y)) β
k1
kΓk(β)h(y)g(y)Iα
k,hf(t)
+(h(t)h(y)) β
k1
kΓk(β)h(y)f(y)Iα
k,hg(t).
(26)
By integrating (26) from 0to 1,we get
Iα
k,h (fg)(t)
kΓk(β)
×t
0(h(t)h(y))β
k1h(y)dy
+Iα
k,h (1)
kΓk(β)
×t
0(h(t)h(y))β
k1h(y)f(y)g(y)dy
Iα
k,h f(t)
kΓk(β)
×t
0(h(t)h(y))β
k1h(y)g(y)dy
+Iα
k,h g(t)
kΓk(β)
×t
0(h(t)h(y))β
k1h(y)f(y)dy.
(27)
Then,
Iα
k,h (f g) (t)Iβ
k,h (1)
+Iα
k,h (1) Iβ
k,h (f g) (t)
Iα
k,h (f) (t)Iβ
k,h (g) (t)
+Iα
k,h (g) (t)Iβ
k,h (f) (t).
(28)
The proof is done.
Corollary 2. If the functions f and g are asyn-
chronous, then inequality (28) holds in the reversed
direction.
Remark 1. If we choose α=βin T heorem 2,then
we obtain inequality of T heorem 1.
Theorem 3. Let (fi)i=1,...,n be npositive increas-
ing functions on [0,[.Suppose that h(x)be an in-
creasing and positive monotone function on [0,).
Furthermore, we’ll consider has a monotonically in-
creasing and positive function defined on the inter-
val [0,), with its derivative hbeing continuous and
γ(0) = 0. Then for any t > 0, α > 0, k > 0,we have
Iα
k,h (πn
i=1fi) (t)
Iα
k,h (1)1nπn
i=1Iα
k,hfi(t).(29)
Proof. By utilizing inequality in T heorem 1for n=
2,we have for α > 0and k > 0
Iα
k,h (f1f2) (t)
Iα
k,h (1)1Iα
k,hf1(t)Iα
k,hf2(t).(30)
In here, we can write as the following inequality for
t > 0
Iα
k,h (πn
i=1fi) (t)
Iα
k,h (1)2nπn1
i=1 Iα
k,hfi(t).(31)
If (fi)i=1,2,...,n are positive increasing functions, then
πn1
i=1 fi(t)is an increasing function.Moreover, we
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
922
Volume 23, 2024
can apply T heorem 1to the functions πn1
i=1 fiand
fn=f. Then,
Iα
k,h (πn
i=1fi) (t)
=Iα
k,h (f g) (t)
Iα
k,h (1)1Iα
k,h πn1
i=1 fi(t)Iα
k,hfn(t),
(32)
by using inequality in (31) ,we get
Iα
k,h (πn
i=1fi) (t)
Iα
k,h (1)1Iα
k,h (1)2n
Iα
k,h πn1
i=1 fi(t)Iα
k,hfn(t)
Iα
k,h (1)1nπn
i=1Iα
k,hfi(t).
(33)
The proof is done.
Theorem 4. Let fand gbe two functions defined on
[0,[,such that fis increasing and gis differen-
tiable and there is a real number m=inf
t>0g(t).Sup-
pose that h(x)be an increasing and positive mono-
tone function on [0,). Furthermore, we’ll consider
has a monotonically increasing and positive function
defined on the interval [0,), with its derivative h
being continuous and γ(0) = 0. Then we have as the
following inequality for t > 0, α > 0and k > 0,
Iα
k,h (f g) (t)
Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
Iα
k,hf(t)m(kh(t)+αh(0))
(α+k)+mIα
k,h (hf ) (t).
(34)
Proof. Let H(t) := g(t)mh (t).It is clear that H
is differentiable and increasing on [0,[.Addition-
ally, Let h(t)be an increasing and positive monotone
function on [0,). Furthermore, if we consider h(t)
is continuous on [0,)and h(0) = 0.Then by means
of T heorem 1, we have
Iα
k,h ((g(t)mh (t)) (f(t)))
Iα
k,h (1)1Iα
k,hf(t)Iα
k,h (g(t)mh (t))
Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
mIα
k,h (1)1Iα
k,hf(t)Iα
k,hh(t)
Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
mIα
k(1)1Iα
k,hf(t)Iα
kh(t)
=Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
mI
α
k
k,h (1)1Iα
k,hf(t)(h(t)h(0)) α
k(kh(t)+αh(0))
Γ(α
k+1)(α+k)
=Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
mΓ(α
k+1)
(h(t)h(0)) α
kIα
k,hf(t)(h(t)h(0)) α
k(kh(t)+αh(0))
Γ(α
k+1)(α+k)
=Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
Iα
k,hf(t)m(kh(t)+αh(0))
(α+k).
Where
Iα
kh(t)
=1
Γ(α
k)t
0(h(t)h(0))α
k1h(x)h(x)dx
=1
Γ(α
k+1)
(h(t)h(0)) α
k(kh(t)+αh(0))
(α+k)
(35)
and
Iα
k(1)1=Γ(α
k+1)
(h(t)h(0)) α
k.(36)
The proof is done.
Corollary 3. Let fand gbe two functions defined
on [0,[.Suppose that h(x)be an increasing and
positive monotone function on [0,). Furthermore,
we’ll consider has a monotonically increasing and
positive function defined on the interval [0,), with
its derivative hbeing continuous and γ(0) = 0.
1. While fis decreasing, gis differentiable and
there is a real number M:= supt0g(t),then
for all t > 0, α > 0, k > 0,we acquire
Iα
k,h (f g) (t)
Iα
k,h (1)1Iα
k,hf(t)Iα
k,hg(t)
Iα
k,hf(t)M(kh(t)+αh(0))
(α+k)+MIα
k,h (hf ) (t).
(37)
2. If fand gare differentiable and we assume that
m1:= inft0f(t)and m2:= inf g(t),then
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
923
Volume 23, 2024
we obtain
Iα
k,h (f g) (t)m1Iα
k,h (gh) (t)
m2Iα
k,h (f h) (t) + m1m2Iα
k,h (hh) (t)
Iα
k,h (1)1
×Iα
k,hf(t)Iα
k,hg(t)m1Iα
k,hg(t)Iα
k,hh(t)
m2Iα
k,hf(t)Iα
k,hh(t) + m1m2Iα
k,hh(t)Iα
k,hh(t).
(38)
3. If fand gare differentiable and we assume that
M1:= sup f(t)and M2:= supt0g(t),then
we obtain
Iα
k,h (f g) (t)M1Iα
k,h (gh) (t)
M2Iα
k,h (f h) (t) + M1M2Iα
k,h (hh) (t)
Iα
k,h (1)1
×Iα
k,hf(t)Iα
k,hg(t)M1Iα
k,hg(t)Iα
k,hh(t)
M2Iα
k,hf(t)Iα
k,hh(t) + M1M2Iα
k,hh(t)Iα
k,hh(t).
(39)
Proof. 1. If we take G(t) := g(t)Mh (t),then we
obtain (38) by utilizing (14) to the decreasing func-
tions fand G.
2. If we take F(t) := f(t)m1h(t)and G(t) :=
g(t)m2h(t),then we obtain (39) by utilizing (14)
to the increasing functions Fand Gas the following
Iα
k,h ((f(t)m1h(t)) (g(t)m2h(t)))
Iα
k,h (1)1
×Iα
k,hf(t)m1Iα
k,hh(t)Iα
k,hg(t)m2Iα
k,hh(t)
Iα
k,h (1)1
×Iα
k,hf(t)Iα
k,hg(t)m1Iα
k,hg(t)Iα
k,hh(t)
m2Iα
k,hf(t)Iα
k,hh(t) + m1m2Iα
k,hh(t)Iα
k,hh(t).
(40)
which
Iα
k,h ((f(t)m1h(t)) (g(t)m2h(t)))
=Iα
k,h (f g) (t)m1Iα
k,h (gh) (t)
m2Iα
k,h (f h) (t) + m1m2Iα
k,h (hh) (t).
(41)
3. If we take F(t) := f(t)M1h(t)and G(t) :=
g(t)M2h(t),then we obtain (40) by utilizing (14)
to the decreasing functions Fand Gas the following
Iα
k,h ((f(t)M1h(t)) (g(t)M2h(t)))
Iα
k,h (1)1
×Iα
k,hf(t)M1Iα
k,hh(t)Iα
k,hg(t)M2Iα
k,hh(t)
Iα
k,h (1)1
×Iα
k,hf(t)Iα
k,hg(t)M1Iα
k,hg(t)Iα
k,hh(t)
M2Iα
k,hf(t)Iα
k,hh(t) + M1M2Iα
k,hh(t)Iα
k,hh(t).
(42)
which
Iα
k,h ((f(t)M1h(t)) (g(t)M2h(t)))
=Iα
k,h (f g) (t)M1Iα
k,h (gh) (t)
M2Iα
k,h (f h) (t) + M1M2Iα
k,h (hh) (t).
(43)
Remark 2. If we choose h(t) = tand k= 1 in Theo-
rems and Corollaries presented in this article, we ac-
quire the consequences equivalent to those found in
[6]Theorems and Corollaries. Similarly, if we take
h(t) = tin Theorems and Corollaries presented in
this article, we obtain results of Theorems and Corol-
laries in [7].
3 Conclusion
In this paper, we introduce the Riemann-Liouville
generalized fractional integral and derive several im-
portant inequalities associated with it. Additionally,
we establish key properties and bounds for Riemann-
Liouville generalized fractional integrals.
References:
[1] S.E. Çiriş and H. Yıldırım, Hermite-Hadamard
inequalities for generalized σ-conformable inte-
grals generated by co-ordinated functions, Chaos,
Solitons $ Fractals,181,(2024),114628.
[2] S.E. Çiriş and H. Yıldırım, On k-conformable
fractional operators, Journal of Univeral Mathe-
matics,7(1),(2024),12 28.
[3] S.E. Çiriş and H. Yıldırım, Minkowski inequal-
ity via Generalized KConformable Fractional
Integral Operators, Journl of Contemporary Ap-
plied Mathematics,14(1),(2024).
[4] H. Yıldırım and Z. Kırtay, Ostrowski Inequal-
ity for Generalized Fractional Integral and Re-
lated Inequalities, Malaya Journal of Matematik
Malaya Journal, 2(3), (2014),322 329.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
924
Volume 23, 2024
[5] E. Kaçar, Z. Kaçar and H. Yıldırım, Integral In-
equalities for Riemann-Liouville Fractional Inte-
gral of a Function with Respect to Another Func-
tion, Iran J. Math Sci Inform.,(2018),13 : 113.
[6] S. Belarbi and Z. Dahmani, On some new frac-
tional integral inequalities, Int. Journal of Math.
Analysis, vol 4, no 2,(2010) ,185 191.
[7] S. Abdelkader and K. Mohamed, Some General-
izations of Fractional Integral Inequalities, Mod-
els & Optimisation and Mathematical Analysis
Journal , vol 11, no 1,(2023) ,610.
[8] P. Cerone and S. S. Dragomir, Some new
Ostrowski-type bounds for the Chebyshev func-
tional and applications, J. Math. Inequal.,8
(2014) ,159 170.
[9] G. Rahman., Z. Ullah, A. Khan, E. Set and K.
S. Nisar, Certain Chybeshev-type Inequalities In-
volving Fractional Conformable Integral Opera-
tors, Mathematics,(2019) ,7,364.
[10] F. Gorenflo and F. Maindari, Fractional cal-
culus : Integral and Differential Equations Frac-
tional Order, Springer Verlag, Wien, (1997) ,
223 276.
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.
Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.95
Sümeyye Ermeydan Çi
ri
ş, Hüseyi
n Yildirim
E-ISSN: 2224-2880
925
Volume 23, 2024