
[5] A. F. Horadam, Pell identities, Fibonacci
Quart., Vol.9, No.3, 1971, pp. 245–263.
[6] A. F. Horadam and J. M. Mahon, Pell and
Pell-Lucas polynomials, Fibonacci Quart.,
Vol.23, No.1, 1985, pp. 7–20.
[7] T. Koshy, Fibonacci and Lucas Numbers with
Applications, 2nd, NJ: John Wiley & Sons,
2018.
[8] S. M. Stewart, Simple integral representations
for the Fibonacci and Lucas numbers, Aust. J.
Math. Anal. Appl., Vol.19, No.2, 2022, pp. 1–5.
[9] S. M. Stewart, A simple integral representation
of the Fibonacci numbers, Mathematical
Gazette, Vol.107, No.568, 2023, pp. 120–123.
[10] S. Vajda, Fibonacci and Lucas Numbers, and
the Golden Section: Theory and Applications,
Dover Press, 2008.
[11] S. Falcón and A. Plaza, On the Fibonacci
k-numbers, Chaos Solitons Fractals, Vol.32,
No.5, 2007, pp. 1615–1624.
[12] S. Falcón, On the k-Lucas numbers, Int. J.
Contemp. Math. Sci., Vol. 6, No.21, 2011, pp.
1039–1050.
[13] OEIS Foundation Inc, The on-line encyclopedia
of integer sequences, http://oeis.org, 2024.
[14] S. Falcón and A. Plaza, The k-Fibonacci
sequence and the Pascal 2-triangle, Chaos
Solitons Fractals, Vol.33, No. 1, 2007, pp.
38–49.
[15] P. Chumket, P. Singavananda, R. Chinram and
I. Thongsomnuk, On generalization k-Fibonacci
and k-Lucas numbers, ICIC Express Letters,
Vol. 18, No.5, 2024, pp. 461–468.
[16] M. Kumari, K. Prasad, B. Kuloğlu and E. Özkan,
The k-Fibonacci group and periods of the k-step
Fibonacci sequences, WSEAS Transactions on
Mathematics, vol. 21, 2022, pp. 838–843.
[17] R. Potůček, On one series of the reciprocals of
the product of two Fibonacci numbers whose
indices differ by an even number, Equations,
Vol.4, 2024, pp. 24–31.
[18] P. Puangjumpa, Some k-Fibonacci and
k-Lucas identities by a matrix approach
with applications, Thai J. Math., Vol. 20 No.1,
2022, pp. 417–423.
[19] S. E. Rihane, k-Fibonacci and k-Lucas numbers
as product of two repdigits, Results Math.,
Vol.76, 2021, Article ID. 208, 20 pp.
[20] S. E. Rihane, On k-Fibonacci and k-Lucas
numbers written as a product of two Pell
numbers, Bol. Soc. Mat. Mex., Vol.30, 2024,
Article ID. 20, 25 pp.
[21] P. Singavananda, H. Kusa-A, S. Chakapi and
A. Denphetnong, On generalized Fibonacci and
k-generalized Fibonacci numbers, ICIC Express
Letters, Vol. 18, No.8, 2024, pp. 801–809.
[22] S. Somprom, W. Nimnual and W. Hongthong,
Some identities for an alternating sum of
Fibonacci and Lucus numbers of order k,
WSEAS Transactions on Mathematics, Vol. 21,
2022, pp. 580–584.
[23] S. Somprom, P. Puangjumpa and A. Sichiangha,
On the properties of Generalized Jacobsthal
and Generalized Jacobsthal-Lucas sequences,
WSEAS Transactions on Mathematics, Vol. 22,
2023, pp. 634–640.
[24] N. Yilmaz, A. Aydoğdu and E. Özkan, Some
properties of k-generalized Fibonacci numbers,
Mathematica Montisnigri, Vol. 50, 2021, pp.
73–79.
[25] T. Dana-Picard, Sequences of definite integrals,
Internat. J. Math. Ed. Sci. Tech. Vol.38 No.3,
2007, pp. 393–401.
[26] T. Dana-Picard, Integral presentations of
Catalan numbers, Internat. J. Math. Ed. Sci.
Tech., Vol.41, No.1, 2010, pp. 63–69.
[27] T. Dana-Picard, Integral presentations of
Catalan numbers and Wallis formula, Internat.
J. Math. Ed. Sci. Tech., Vol.42, No. 1, 2011, pp.
122–129.
[28] A. Ipek, Integral representations of the
Jacobsthal and Jacobsthal-Lucas numbers, Asia
Mathematika, Vol.8, No.2, 2024, pp. 1–15.
[29] W.-H. Li, O. Kouba, I. Kaddoura and F.
Qi, A further generalization of the Catalan
numbers and its explicit formula and integral
representation, Filomat, Vol.37, No.19, 2023,
pp. 6505–6524.
[30] A. Nilsrakoo, Integral representations of the Pell
and Pell-Lucas numbers, J. Science and Science
Education, Vol. 7, No.2, 2024, pp. 272–281.
[31] K. A. Penson and J. -M. Sixdeniers, Integral
representations of Catalan and related numbers,
J. Integer Seq., Vol.4, No.2, 2001, Article
01.2.5.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.82
Weerayuth Nilsrakoo, Achariya Nilsrakoo