
[13] S.P Nikitenkova, Yu.A Stepanyants, and L.M
Chikhladze. Solutions of the modified ostrovskii
equation with cubic non-linearity. Journal of
Applied Mathematics and Mechanics,
64(2):267–274, January 2000.
[14] Dmitry Pelinovsky and Guido Schneider.
Rigorous justification of the short-pulse
equation. NoDEA, Nonlinear Differ. Equ. Appl.,
20(3):1277–1294, 2013.
[15] Corrado Lattanzio and Pierangelo Marcati.
Global well-posedness and relaxation limits of a
model for radiating gas. J. Differ. Equations,
190(2):439–465, 2003.
[16] Denis Serre. L1-stability of constants in a
model for radiating gases. Commun. Math. Sci.,
1(1):197–205, 2003.
[17] Edward D. Farnum and J. Nathan Kutz. Master
mode-locking theory for few-femtosecond
pulses. Opt. Lett., 35(18):3033–3035, Sep 2010.
[18] Edward D. Farnum and J. Nathan Kutz.
Short-pulse perturbation theory. J. Opt. Soc. Am.
B, 30(8):2191–2198, Aug 2013.
[19] Edward D. Farnum and J. Nathan Kutz.
Dynamics of a low-dimensional model for short
pulse mode locking. Photonics, 2(3):865–882,
2015.
[20] Melissa Davidson. Continuity properties of the
solution map for the generalized reduced
Ostrovsky equation. J. Differ. Equations,
252(6):3797–3815, 2012.
[21] Dmitry Pelinovsky and Anton Sakovich.
Global well-posedness of the short-pulse and
sine-Gordon equations in energy space.
Commun. Partial Differ. Equations,
35(4):613–629, 2010.
[22] Atanas Stefanov, Yannan Shen, and P. G.
Kevrekidis. Well-posedness and small data
scattering for the generalized Ostrovsky
equation. J. Differ. Equations,
249(10):2600–2617, 2010.
[23] Giuseppe Maria Coclite and Lorenzo di Ruvo.
Well-posedness results for the short pulse
equation. Z. Angew. Math. Phys.,
66(4):1529–1557, 2015.
[24] Giuseppe Maria Coclite and Lorenzo di Ruvo.
Well-posedness and dispersive/diffusive limit of
a generalized Ostrovsky-Hunter equation. Milan
J. Math., 86(1):31–51, 2018.
[25] Lorenzo di Ruvo. Discontinuous solutions for
the Ostrovsky–Hunter equation and two phase
flows. PhD thesis, University of Bari Bari, Italy,
2013.
[26] J. Ridder and A. M. Ruf. A convergent finite
difference scheme for the Ostrovsky-Hunter
equation with Dirichlet boundary conditions.
BIT, 59(3):775–796, 2019.
[27] G. M. Coclite, J. Ridder, and N. H. Risebro. A
convergent finite difference scheme for the
Ostrovsky-Hunter equation on a bounded
domain. BIT, 57(1):93–122, 2017.
[28] Aekta Aggarwal, Rinaldo M. Colombo, and
Paola Goatin. Nonlocal systems of conservation
laws in several space dimensions. SIAM J.
Numer. Anal., 53(2):963–983, 2015.
[29] Sebastien Blandin and Paola Goatin.
Well-posedness of a conservation law with
non-local flux arising in traffic flow modeling.
Numer. Math., 132(2):217–241, 2016.
[30] Rinaldo M. Colombo and Magali
Lécureux-Mercier. Nonlocal crowd dynamics
models for several populations. Acta Math. Sci.,
Ser. B, Engl. Ed., 32(1):177–196, 2012.
[31] Rinaldo M. Colombo, Mauro Garavello, and
Magali Lécureux-Mercier. A class of nonlocal
models for pedestrian traffic. Math. Models
Methods Appl. Sci., 22(4):1150023, 34, 2012.
[32] F. Betancourt, R. Bürger, K. H. Karlsen, and
E. M. Tory. On nonlocal conservation laws
modelling sedimentation. Nonlinearity,
24(3):855–885, 2011.
[33] Debora Amadori and Wen Shen. An
integro-differential conservation law arising in a
model of granular flow. J. Hyperbolic Differ.
Equ., 9(1):105–131, 2012.
[34] Wen Shen and Tianyou Zhang. Erosion profile
by a global model for granular flow. Arch.
Ration. Mech. Anal., 204(3):837–879, 2012.
[35] Giuseppe Maria Coclite and Lorenzo di Ruvo.
A non-local elliptic-hyperbolic system related to
the short pulse equation. Nonlinear Anal.,
Theory Methods Appl., Ser. A, Theory Methods,
190:28, 2020. Id/No 111606.
[36] Y.A. Shpolyanskiy, D.L. Belov, M.A. Bakhtin,
and S.A. Kozlov. Analytic study of continuum
spectrum pulse dynamics in optical waveguides.
Applied Physics B, 77(2–3):349–355, August
2003.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.81
Giuseppe Maria Coclite, Lorenzo Di Ruvo