
(2(Γ−γ(δτ0(x)α+δτ0(x)) if |Γ| ≤ 2γ[δτ0(x)α+δτ0(x)]
Γif Γ>2γ[δτ0(x)α+δτ0(x)]
3Γif Γ<−2γ[δτ0(x)α+δτ0(x)]
where Γ:=τ(x)−τ(x0)and γ:=2kL +1.
References:
[1] B. Franchi, R. Serapioni, and F. Serra Cassano,
Rectifiability and perimeter in the Heisenberg
group, Math. Ann. 321, 479 (2001).
[2] B. Franchi, R. Serapioni, and F. Serra Cassano,
On the structure of finite perimeter sets in step 2
Carnot groups, The Journal of Geometric Analy-
sis 13, 421 (2003).
[3] B. Franchi, R. Serapioni, and F. Serra Cas-
sano, Regular hypersurfaces, intrinsic perimeter
and implicit function theorem in Carnot groups,
Comm. Anal. Geom. 11, 909 (2003).
[4] F. Serra Cassano, Some topics of geometric mea-
sure theory in Carnot groups, in Geometry, analy-
sis and dynamics on sub-Riemannian manifolds.
Vol. 1, EMS Ser. Lect. Math. (Eur. Math. Soc.,
Z¨
urich, 2016) pp. 1–121.
[5] B. Franchi and R. P. Serapioni, Intrinsic Lipschitz
graphs within Carnot groups, J. Geom. Anal. 26,
1946 (2016).
[6] D. Di Donato and E. Le Donne, Intrinsically Lip-
schitz sections and applications to metric groups,
accepted to Communications in Contemporary
Mathematics (2024).
[7] A. Agrachev, D. Barilari, and U. Boscain, A com-
prehensive introduction to sub-Riemannian ge-
ometry, Cambridge Studies in Advanced Math-
ematics, Cambridge Univ. Press 181, 762 (2019).
[8] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni,
Stratified Lie groups and potential theory for their
sub-Laplacians, Springer Monographs in Mathe-
matics (Springer, Berlin, 2007) pp. xxvi+800.
[9] L. Capogna, D. Danielli, S. D. Pauls, and J. T.
Tyson, An introduction to the Heisenberg group
and the sub- Riemannian isoperimetric problem,
Progress in Mathematics, Vol. 259 (Birkh¨
auser
Verlag, Basel, 2007) pp. xvi+223.
[10] L. Ambrosio and B. Kirchheim, Rectifiable sets
in metric and Banach spaces, Math. Ann. 318,
527 (2000).
[11] V. Magnani, Unrectifiability and rigidity in
stratified groups, Arch. Math. 83(6), 568 (2004).
[12] H. Federer, Geometric measure theory,
Die Grundlehren der mathematischen Wis-
senschaften, Band 153 (Springer- Verlag New
York Inc., New York, 1969) pp. xiv+676.
[13] S. Pauls, A notion of rectifiability modeled on
Carnot groups, Indiana Univ. Math. J. 53, 49
(2004).
[14] D. Cole and S. Pauls, C1hypersurfaces of the
Heisenberg group are N-rectifiable, Houston J.
Math. 32, 713 (2006).
[15] D. Bate, Characterising rectifiable metric spaces
using tangent spaces, Accepted Invent. math.
(2021).
[16] G. Antonelli and A. Merlo, On rectifiable mea-
sures in Carnot groups: existence of density, Ac-
cepted in Journal of Geometric Analysis (2022).
[17] G. Antonelli and A. Merlo, On rectifiable mea-
sures in Carnot groups: Marstrand–Mattila recti-
fiability criterion, Accepted in Journal of Func-
tional Analysis (2022).
[18] P. Mattila, Geometry of sets and measures in Eu-
clidean spaces, Cambridge Studies in Advanced
Mathematics, vol. 44, p. 343. Cambridge Univer-
sity Press, Cambridge (1995).
[19] J. Marstrand, Hausdorff two-dimensional mea-
sure in 3- space, Proc. London Math. Soc. (3) 11,
91–108 (1961).
[20] P. Mattila, Hausdorff m regular and rectifiable
sets in n-space, Trans. Amer. Math. Soc. 205,
263–274 (1975).
[21] A. Naor and R. Young, Vertical perimeter versus
horizontal perimeter, Ann. of Math., (2) 188 , 171
(2018).
[22] G. David and S. Semmes, Singular integrals and
rectifiable sets in Rn: Beyond lipschitz graphs,
ast´
erisque, , 171 (1991).
[23] G. David and S. Semmes, Analysis of and on
uniformly rectifiable sets, Mathematical Surveys
and Monographs 38 (1993).
[24] S. Bates, W. B. Johnson, J. Lindenstrauss, D.
Preiss, and G. Schechtman, Affine approximation
of Lipschitz functions and nonlinear quotients,
Geom. Funct. Anal. 9, 1092 (1999).
[25] V. N. Berestovskii, Homogeneous manifolds
with intrinsic metric, Sib Math J I, 887 (1988).
[26] J. Cheeger, Differentiability of Lipschitz func-
tions on metric measure spaces, Geom. Funct.
Anal. 9 , 428 (1999).
Acknowledgment:
We would like to thank Davide Vittone for helpful
suggestions and Giorgio Stefani for the reference
[28].
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.74