
Moreover, we find strong evidence that there exists
significant random subject effects in Ramus bone
heights data. However, [1] analyzed the dataset by
using an unsuitable one-way ANOVA model without
random effects and selected a different model. This
shows that it is necessary to consider a simultaneous
selection of fixed and random effects for longitudinal
data under order constraints.
References:
[1] Oh, M. S., Shin, D., A unified Bayesian
inference on treatment means with order
constraints, Computational Statistics, and Data
Analysis, Vol.55, 2011, pp. 924-934.
https://doi.org/10.1016/j.csda.2010.07.026.
[2] Shang, J., A Bayesian multiple comparison
procedure for simple order-restricted mixed
models with missing values, Journal of Data
Science, Vol.9, 2011, pp. 311-330.
https://doi.org/10.6339/JDS.201107_09(3).000
1.
[3] Shang, J., Cavanaugh, J. E., Wright, F. T., A
Bayesian multiple comparison procedure for
ordered-restricted mixed models. International
Statistical Review, Vol 76, 2008, pp. 268-284.
https://doi.org/10.1111/j.1751-5823.2008.0005
1.x.
[4] Bondell, H. D., Krishna, A., Ghosh, S. K., Joint
variable selection for fixed and random effects
in linear mixed-effects models, Biometrics,
Vol.66, No.4, 2020, pp. 1069–1077.
https://doi.org/10.1111/j.1541-0420.2010.0139
1.x.
[5] Du, Y., Kahlili, A., Neslehova, J. G., Steele, R.
J., Simultaneous fixed and random effects
selection in finite mixture of linear
mixed-effects models, The Canadian Journal of
Statistics, Vol.41, 2013, pp. 596-616.
https://doi.org/10.1002/cjs.11192.
[6] Peng, H., Lu, Y., Model selection in linear
mixed effect models, Journal of Multivariate
Analysis, Vol.109, 2012, pp. 109-129.
https://doi.org/10.1016/j.jmva.2012.02.005.
[7] Hui, F. K. C., Muller, S., Welsh, A. H., Joint
selection in mixed models using regularized
PQL, Journal of the American Statistical
Association, Vol.112, 2017, pp. 1323-1333.
https://doi.org/10.1080/01621459.2016.121598
9.
[8] Buscemi, S., Plaia, A., Model selection in linear
mixed-effect models, Biometrika, Vol.104,
No.4, 2020, pp. 529-575.
https://doi.org/10.1007/s10182-019-00359-z.
[9] Kuo, L., Mallick, B., Variable selection for
regression models, Sankhya,B, Vol.60, 1998,
pp. 65-81.
[10] Korobilis, D., Shimizu, K., Bayesian
approaches to shrinkage and sparse estimation,
Foundations and Trends® in Econometrics,
Vol.11, No.4, 2022, pp. 230-354.
http://dx.doi.org/10.1561/0800000041.
[11] Hara, R. B., Sillanpaa, M. J., Review of
bayesian variable selection methods: what, how
and which, Bayesian Analysis, 4, 2009, pp.
85-118. DOI: 10.1214/09-BA403.
[12] Dunson, D. B., Neelon, B., Bayesian inference
on order-constrained parameters in generalized
linear models, Biometrics, Vol.59, 2003, pp.
286-295.
https://doi.org/10.1111/1541-0420.00035.
[13] Fitzmaurice, G., Laird, N. & Ware, J., Applied
Longitudinal Analysis, New York: John Wiley
& Sons, 2004. DOI:10.1002/9781119513469.
[14] Spiegelhalter, D., Thomas, A., Best, N., Gilks,
W., Bugs 0.5: examples Vol. 2, MRC
Biostatistics Unit, 1996, [Online].
https://citeseerx.ist.psu.edu/document?repid=re
p1&type=pdf&doi=56b11079d6495501c84932
c0a7a372ca6bc370ae. The Last Accessed date is
August 14, 1996 (Accessed Date: October 1,
2024).
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.72