Birnbaum-Saunders distribution with an
unknown shift parameter, Journal of Applied
Statistics, Vol. 38, No. 12, 2011, pp. 2819-
2838. DOI: 10.1080/02664763.2011.570319.
[11] Mathew, S., and Jansen, B., Wind Energy,
Springer Berlin, Heidelberg, 2006.
[12] Birnbaum, Z.W., and Saunders, S.C.,
Estimation for a Family of Life Distributions
with Applications to Fatigue, Journal of
Applied Probability, Vol. 6, No. 2, 1969, pp.
328-347. DOI: 10.2307/3212004.
[13] Engelhardt, M., Bain, L.J., and Wright, F.T.,
Inferences on the Parameters of the
Birnbaum-Saunders Fatigue Life Distribution
Based on Maximum Likelihood Estimation,
Technometrics, Vol. 23, No. 3, 1981, pp. 251-
256. DOI: 10.2307/1267788.
[14] Ng, H., Kundu, D., and Balakrishnan, N.,
Modified moment estimation for the two-
parameter Birnbaum-Saunders distribution,
Computational Statistics Data Analysis, Vol.
43, No. 3, 2003, pp. 283–298. DOI:
10.1016/S0167-9473(02)00254-2.
[15] Thonglim, P., Budsaba, K., and Volodin, A.I.,
Asymptotic confidence ellipses of parameters
for the Birnbaum-Saunders distribution,
Thailand Statistician, Vol. 12, No. 2, 2015,
pp. 207-222.
[16] Jantakoon, N., and Volodin, A., Interval
estimation for the shape and scale parameters
of the Birnbaum-Saunders distribution,
Lobachevskii J Math, Vol. 40, 2019, pp. 1164-
1177. DOI: 10.1134/S1995080219080110.
[17] Lu, M.-C., and Shang Chang, D., Bootstrap
prediction intervals for the Birnbaum-
Saunders distribution, Microelectronics
Reliability, Vol. 37, No. 8, 1997, pp. 1213-
1216. DOI: 10.1016/S0026-2714(96)00296-
X.
[18] Tosasukul, J., Budsaba, K., and Volodin, A.,
Dependent Bootstrap Confidence Intervals for
a Population Mean, Thailand Statistician, Vol.
7, No. 1, 2015, pp. 43-51.
[19] Wu, J., and Wong, A., Improved interval
estimation for the two-parameter Birnbaum-
Saunders distribution, Computational
Statistics Data Analysis, Vol. 47, No. 4, 2004,
pp. 809-821. DOI:
10.1016/j.csda.2003.11.018.
[20] Wang, B.X., Generalized interval estimation
for the Birnbaum-Saunders distribution,
Computational Statistics Data Analysis, Vol.
56, No. 12, 2012, pp. 4320-4326. DOI:
10.1016/j.csda.2012.03.023.
[21] Wang, M., Sun, X., and Park, C., Bayesian
analysis of Birnbaum-Saunders distribution
via the generalized ratio-of-uniforms method,
Comput Stat, Vol. 31, 2016, pp. 207–225.
DOI: 10.1007/s00180-015-0629-z.
[22] Puggard, W., Niwitpong, S.-A., and
Niwitpong, S., Confidence intervals for the
variance and difference of variances of
Birnbaum-Saunders distributions, Journal of
Statistical Computation and Simulation, Vol.
92, No. 13, 2022, pp. 2829-2845. DOI:
10.1080/00949655.2022.2050231.
[23] Puggard, W., Niwitpong, S.-A., and
Niwitpong, S., Bayesian Estimation for the
Coefficients of Variation of Birnbaum-
Saunders Distributions, Symmetry, Vol. 13,
No. 11, 2021, pp. 2130. DOI:
10.3390/sym13112130.
[24] Vilca, F., Zeller, C.B., and Balakrishnan, N.,
Multivariate Birnbaum-Saunders distribution
based on a skewed distribution and associated
EM-estimation. Brazilian Journal of
Probability and Statistics, Vol. 37, No. 1,
2023, pp. 26-54. DOI: 10.1214/22-BJPS559.
[25] Bebu, I., and Mathew, T., Comparing the
means and variances of a bivariate log-normal
distribution, Stat Med, Vol. 27, No. 14, 2008,
pp. 2684-2696. DOI: 10.1002/sim.3080.
[26] Harvey, J., and Merwe, A., Bayesian
confidence intervals for means and variances
of lognormal and bivariate lognormal
distributions, Journal of Statistical Planning
and Inference, Vol. 142, No. 6, 2012, pp.
1294-1309. DOI: 10.1016/j.jspi.2011.12.006.
[27] Sangnawakij, P., Alternative confidence
interval estimation for the mean and
coefficient of variation in a two-parameter
exponential distribution, Journal of Statistical
Computation and Simulation, Vol. 93, No. 16,
2023, pp. 2936-2955. DOI:
10.1080/00949655.2023.2214658.
[28] Yan, L. Confidence interval estimation of the
common mean of several gamma populations,
PLoS One. Vol.17, No. 6, 2022, e0269971.
DOI: 10.1371/journal.pone.0294204.
[29] Sinsomboonthong, J., and Sinsomboonthong,
S., Robust Confidence Interval Estimation
Method for the Mean of Poisson Distribution
to Handle Outliers, Journal of Applied
Science and Engineering, Vol. 25, 2021, pp.
853-864. DOI:
10.6180/jase.202208_25(4).0020.
[30] Efron, B., Bootstrap Methods: Another Look
at the Jackknife, The Annals of Statistics, Vol.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.54
Natchaya Ratasukharom, Sa-Aat Niwitpong, Suparat Niwitpong