[15] Ghasemi, M., M. Fardi, & R. Khoshsiar
Ghaziani. (2015). Numerical solution of nonlin-
ear delay differential equations of fractional or-
der in reproducing kernel Hilbert space. Applied
Mathematics and Computation, 268, 815–831.
https://doi.org/10.1016/j.amc.2015.06.012
[16] Martín, J. A., & García, O. (2002). Vari-
able multistep methods for delay dif-
ferential equations. Mathematical and
Computer Modelling, 35(3-4), 241–257.
https://doi.org/10.1016/s0895-7177(01)00162-
5
[17] Mirzaee, F., & Latifi, L. (2011). NUMERICAL
SOLUTION OF DELAY DIFFERENTIAL
EQUATIONS BY DIFFERENTIAL TRANS-
FORM METHOD. J. Sci. I. A. U, 20, (78), 83-
88.
[18] Az-Zo’bi, E. A. (2014). On the reduced differ-
ential transform method and its application to
the generalized Burgers-Huxley equation. Ap-
plied Mathematical Sciences, 8, 8823–8831.
https://doi.org/10.12988/ams.2014.410835
[19] Chupradit, S., Tashtoush, M., Ali, M., AL-
Muttar, M., Sutarto, D., Chaudhary, P.,
Mahmudiono, T., Dwijendra, N., Alkhayyat,
A. (2022). A Multi-Objective Mathematical
Model for the Population-Based Transportation
Network Planning. Industrial Engineering
& Management Systems, 21(2), 322-331.
https://doi.org/10.7232/iems.2022.21.2.322
[20] Shiralashetti, S. C., Hoogar, B. S., & Kumbi-
narasaiah, S. (2017). Hermite wavelet based
method for the numerical solution of linear
and nonlinear delay differential equations. In-
ternational Journal of Engineering, Science and
Mathematics, 6(8),71–79, 2017.
[21] Khader, M. M. (2013). Numerical and the-
oretical treatment for solving linear and
nonlinear delay differential equations using
variational iteration method. Arab Journal
of Mathematical Sciences, 19(2), 243–256.
https://doi.org/10.1016/j.ajmsc.2012.09.004
[22] Mohyud-Din, S. T., & Yildirim, A. (2010). Vari-
ational Iteration Method for Delay Differential
Equations Using He’s Polynomials. Zeitschrift
Für Naturforschung A, 65(12), 1045–1048.
https://doi.org/10.1515/zna-2010-1204
[23] Ahmet Yıldırım, Hüseyin Koçak, & Serap
Tutkun. (2012). Reliable analysis for delay dif-
ferential equations arising in mathematical biol-
ogy. Journal of King Saud University - Science,
24(4), 359–365. https://doi.org/10.1016/j.jk-
sus.2011.08.005
[24] Kanth, A. S. V. R., & Mohan Kumar, P.
M. (2018). A Numerical Technique for
Solving Nonlinear Singularly Perturbed
Delay Differential Equations. Mathemati-
cal Modelling and Analysis, 23(1), 64–78.
https://doi.org/10.3846/mma.2018.005
[25] Aljoufi, M. (2024). Application of an Ansatz
Method on a Delay Model With a Propor-
tional Delay Parameter. International Journal
of Analysis and Applications, 22, 44–44.
https://doi.org/10.28924/2291-8639-22-2024-
44
[26] Hamood Ur Rehman, Seadawy, A. R., Raz-
zaq, S., & Syed T.R. Rizvi. (2023). Opti-
cal fiber application of the Improved Gener-
alized Riccati Equation Mapping method to
the perturbed nonlinear Chen-Lee-Liu dynam-
ical equation. Optik, 290, 171309–171309.
https://doi.org/10.1016/j.ijleo.2023.171309
[27] Chupradit, S., Tashtoush, M., Ali, M., AL-
Muttar, M., Widjaja, G., Mahendra, S.,
Aravindhan, S., Kadhim, M., Fardeeva, I.,
Firman, F. (2023). Modeling and Optimizing
the Charge of Electric Vehicles with Genetic
Algorithm in the Presence of Renewable Energy
Sources. Journal of Operation and Automa-
tion in Power Engineering, 11(1), 33-38, Iran.
https://doi.org/10.22098/JOAPE.2023.9970.1707
[28] M. Abul Kawser, M. Ali Akbar, M. Ashra-
fuzzaman Khan, & Hassan Ali Ghazwani.
(2024). Exact soliton solutions and the signif-
icance of time-dependent coefficients in the
Boussinesq equation: theory and application in
mathematical physics. Scientific Reports, 14(1).
https://doi.org/10.1038/s41598-023-50782-1
[29] Božena Dorociaková, & Olach, R. (2016). Some
notes to existence and stability of the posi-
tive periodic solutions for a delayed nonlin-
ear differential equations. Open Mathematics,
14(1), 361–369. https://doi.org/10.1515/math-
2016-0033
[30] Shen, M., Fei, W., Mao, X., & Liang, Y.
(2018). Stability of highly nonlinear neutral
stochastic differential delay equations. Sys-
tems & Control Letters (Print), 115, 1–8.
https://doi.org/10.1016/j.sysconle.2018.02.013
[31] Dix, J. G. (2005). Asymptotic behavior of so-
lutions to a first-order differential equation with
variable delays. Computers & Mathematics with
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.49
Nawal Shirawia, Ahmed Kherd,
Salim Bamsaoud, Mohammad A. Tashtoush,
Ali F. Jassar, Emad A. Az-Zo’Bi