[20] A. Rufián-Lizana, and Y. Chalco-Cano, R.
Osuna-Gómez, G. Ruiz-Garzón, “On invex
fuzzy mappings and fuzzy variational-like
inequalities,” Fuzzy Sets Syst., vol. 200, pp.
84-98, doi.10.1016/j.fss.2012.02.001, 2012.
[21] Y. R. Syau, “Preinvex fuzzy mapping,”
Comput. Math. Appl., vol. 37, pp. 31-39,
doi.org/10.1016/S0898-1221(99)00044-9,
1999.
[22] Y. R. Syau, “Invex and generalized convex
fuzzy mappings,” Fuzzy Sets Syst., vol. 115,
pp. 455-461, doi.10.1016/S0165-
0114(98)00415-1, 2000.
[23] Y. R. Syau, “Generalization of preinvex and
B-vex fuzzy mappings,” Fuzzy Sets Syst.,
vol. 120, pp. 533-542, doi.10.1016/S0165-
0114(99)00139-6, 2001.
[24] H.-Ch. Wu, “The optimality conditions for
optimization problems with fuzzy-valued
objective functions,” Optimization, vol. 57,
pp. 473-489,
doi.10.1080/02331930601120037, 2007.
[25] T. Antczak, “Exact penalty functions method
for mathematical programming problems
involving invex functions,” European J.
Oper. Res., vol. 198, pp. 29-36,
doi.10.1016/j.ejor.2008.07.031, 2009.
[26] T. Antczak, “The exact l₁ penalty function
method for constrained nonsmooth invex
optimization problems,” in: System Modeling
and Optimization, vol. 391 of the series IFIP
Advances in Information and
Communication Technology, D. Hömberg,
F. Tröltzsch (eds.), Heidelberg, 2013, pp.
461-470.
[27] T. Antczak, “Exactness property of the exact
absolute value penalty function method for
solving convex nondifferentiable interval-
valued optimization problems,” J. Optim.
Theory. Appl., vol. 176, pp. 205-224,
doi.10.1007/978-3-642-36062-6_46, 2018.
[28] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty,
“Nonlinear Programming: Theory and
Algorithms,” New York: John Wiley and
Sons, doi.10.1002/0471787779, 1991.
[29] D. P .Bertsekas, Constrained Optimization
and Lagrange Multiplier Methods, Academic
Press, 1982.
[30] D. P .Bertsekas, and A. E. Koksal,
“Enhanced optimality conditions and exact
penalty functions,” Proceedings of the 38th
Allerton Conference on Communication,
Control, and Computing, Allerton Park,
Urbana, Illinois, September 2000.
[31] J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal,
and C. A. Sagastizábal, “Numerical
Optimization. Theoretical and Practical
Aspects,” Berlin Heidelberg New York:
Springer-Verlag, 2003.
[32] C. Charalambous, “A lower bound for the
controlling parameters of the exact penalty
functions,” Math. Program., vol. 15, pp. 278-
290, doi.10.1007/BF01609033, 1978.
[33] G. Di Pillo, and L. Grippo, “Exact penalty
functions in constrained optimization,” SIAM
J. Control Optim., vol. 27, pp. 1333-1360,
doi.10.1137/0327068, 1989.
[34] S. P. Han, and O. L. Mangasarian, “Exact
penalty functions in nonlinear
programming,” Math. Program., vol. 17,
251-269, doi.10.1007/BF01588250, 1979.
[35] S. M. H. Janesch, and L. T. Santos, “Exact
penalty methods with constrained
subproblems,” Investigatión Operativa, vol.
7, pp. 55-65, 1997.
[36] O. L. Mangasarian, “Sufficiency of exact
penalty minimization,” SIAM J. Control
Optim., vol. 23, pp. 30-37,
doi.10.1137/0323003, 1985.
[37] A. L. Peressini, F. E. Sullivan, and J. Uhl Jr.,
“The Mathematics of Nonlinear
Programming,” New York: Springer-Verlag
Inc., 1988.
[38] E. Rosenberg, “Exact penalty functions and
stability in locally Lipschitz programming,”
Math. Program., vol. 30, pp. 340-356,
doi.10.1007/BF02591938, 1984.
[39] W. Sun, and Y.-X. Yuan, “Optimization,
Theory and Methods: Nonlinear
Programming, Optimization and its
Applications,” vol. 1, Springer, 2006.
[40] T. Antczak, and M. Studniarski, “The
exactness property of the vector exact l₁
penalty function method in nondifferentiable
invex multiobjective programming,” Numer.
Funct. Anal. Optim., vol. 37 pp. 1465-1487,
doi.10.1080/01630563.2016.1233118, 2016.
[41] H.-Ch. Wu, “The Karush-Kuhn-Tucker
optimality conditions for the optimization
problem with fuzzy-valued objective
function,” Math. Methods Oper. Res., vol.
66, pp. 203-224, doi.10.1007/s00186-007-
0156-y, 2007.
[42] F. H. Clarke, “Optimization and Nonsmooth
Analysis,” A Wiley-Interscience Publication:
John Wiley&Sons, Inc., 1983.
[43] T. W. Reiland, “Nonsmooth invexity,” Bull.
Aust. Math. Soc., vol. 42, pp. 437-446,
doi.10.1017/S0004972700028604, 1990.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.44