[2] F. Bouzeghaya, B. Merouani, Different
Boundary Problems Governed by the
Dynamic and Stationary Operator Nonlinear
Vibration of the Plates. International
Journal of Applied Mathematics,
Computational Science and Systems
Engineering, Vol. 6, 2024, 14-22,
DOI: 10.37394/232026.2024.6.2.
[3] M. Boukrouche, B. Merouani, F. Zoubai.
On a nonlinear elasticity problem with
friction and Sobolev spaces with variable
exponents, Fixed Point Theory Algorithms
Sci. Eng. vol. 14, 2022.
[4] Clàudio Roberto Ávila da Silva Júnior,
Milton Kist, and Marcelo Borges dos
Santos. Application of Galerkin Method to
Kirchhoff Plates Stochastic Bending
Problem, Hindawi Publishing Corporation.
ISRN Applied Mathematics. Vol. 2014,
Article ID 604368, 15 pages,
http://dx.doi.org/10.1155/2014/604368.
[5] F. Zoubai, B. Merouani. A nonlinear
elasticity system in Sobolev spaces with
variable exponents, Bull. Math. Soc. Sci.
Math. Roumanie, Tome 64, 112, No. 1,
2021, pp.17-33.
[6] S. Manaa, S Boulaaras, H Benseridi, M.
Dilmi, S. Alodhaibi, Analysis for flow of
an incompressible brinkman-type fluid in
thin medium with friction, Journal of
Function Spaces, 2021, 1-8.
[7] Jian Xue, Lihua Chen, Yue Sun & Wei
Zhang, Free Vibration of Stiffened Plate
with Cracked Stiffeners, Adv. Appl. Math.
Mech., 16 (2024), pp. 253-278.
[8] J. C. Cavendish, H. S. Price, Member Aime
R. S. varga, Galerkin Methods for the
Numerical Solution of Boundary Value
Problems. Gulf Research & Development
Co. Pittsburgh, PA. Case Western Reserve
U. Cleveland, Ohio. P. 204-220, June, 1969.
[9] Sliman Adjerid, Mahboub Baccouch,
Galerkin methods, Scholarpedia, [Online].
http://var.scholarpedia.org/article/Galerkin_
methods (Accessed Date: May 15, 2024).
[10] J. Necăs, Direct Methods in Theory of
Elliptic Equations, English version,
Corrected 2nd printing 2012,
DOI: 10.1007/978-3-642-10455-8,
Springer Heidelberg Dordrecht London
New York.
[11] Iman Davoodi Kermali, Hamid Reza
Mirdamadi and Mostafa Ghayour,
Nonlinear stability analysis of rotational
dynamics and transversal vibrations of
annular circular thin plates functionally
graded in radial direction by differential
quadrature. Journal of Vibration and
Control, 1-21, 2014. SAGE.
DOI: 10.1177/1077546314547530.
[12] PEISKER. On the numerical solution of the
first biharmonic equation. RAIRO –
Mathematical modeling and numerical
analysis (RAIRO – Modélisation
mathématique et analyse numérique), tome
22, n° 4 (1988), pp.655-676, [Online].
https://www.esaim-
m2an.org/articles/m2an/pdf/1988/04/m2an1
988220406551.pdf (Accessed Date: May
15, 2024).
[13] F. Bouzeghaya, Science Doctorate Thesis,
Analysis of Some Problems in Continuum
Mechanics, («Thèse de Doctorat Sciences.
Analyse de Quelques Problèmes en
Mécanique des milieux continus»),
soutenue en Nov. 2013, à l'Université F.
ABBAS de Sétif, Algérie. Thèse de doctorat
F. Bouzeghaya, Chapter IV, [Online].
http://dspace.univ-
setif.dz:8888/jspui/handle/123456789/1955
(Accessed Date: January 25, 2024).
[14] S. Agmon, A. Douglis, L. Nirenberg.
Estimates near the boundary for solutions of
elliptic partial differential equations
satisfying general boundary conditions I,
Communications on Pure & Applied Maths,
12, 1959, p.623-727.
[15] S. Agmon, A. Douglis, L. Nirenberg.
Estimates near the boundary for solutions of
elliptic partial differential equations
satisfying general boundary conditions II,
Communications on Pure & Applied Maths,
17, 1964, p.35-92.
[16] Lions, J.-L.; Magenes, E., Non-
Homogeneous Boundary value Problems
and Applications. Vol. 1 and 2, Springer;
Softcover reprint of the original 1st ed. 1972
édition (15 novembre 2011).
[17] Lions, J.-L. et J. Peetre. On a class of
interpolation spaces, Inst. Hautes Etudes
C N° 19, Paris (1964), 5-68.
[18] H. Brézis, Functional Analysis, Sobolev
Spaces and Partial Differential Equations.
DOI: 10.1007/978-0-387-70914-7.
Springer Heidelberg Dordrecht London
New York.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.39
Bouzeghaya Fouzia, Merouani Boubakeur