differential equations, Int. J. Mod. Math. Sci.,
8, 2013, 102-110.
[16] S. C. Shiralashetti, B. C. Hoogar, S.
Kumbinarasaiah, Hermite wavelets based
method for the numerical solution of linear
and nonlinear delay differential equations,
Int. J. Engg. Sci. Math., 6, 2017, 71-79.
[17] S. Gümgüm, D. E. Özdek, G. Özaltun, and
N. Bildik, Legendre wavelet solution of
neutral differential equations with
proportional delays, J Appl Math Comput,
61, 2019, 389-404.
[18] M. G. Sakar, Numerical solution of neutral
functional-differential equations with
proportional delays. Int. J. Optim. Control
Theor. Appl., 7(2), 2017, 186–194.
[19] D.J. Evans, K.R. Raslan, The Adomian
decomposition method for solving delay
differential equation, Int. J. Comput. Math.,
82 (1), 2005, 49–54.
[20] G. Derfel, N. Dyn, D. Levin, Generalized
refinement equation and subdivision process,
J. Approx. Theory, 80, 1995, 272–297.
[21] M. Shadia, Numerical Solution of Delay
Differential and Neutral Differential
Equations Using Spline Methods, PhD thesis,
Assuit University, 1992.
[22] A. El-Safty, M.S. Salim, M.A. El-Khatib,
Convergence of the spline function for delay
dynamic system, Int. J. Comput. Math., 80
(4), 2003, pp.509-518.
[23] X. Chen, L. Wang, The variational iteration
method for solving a neutral functional-
differential equation with proportional
delays, Computers & Mathematics with
Applications, vol. 59, 2010, pp.2696-2702.
[24] J. Biazar, B. Ghanbari, The homotopy
perturbation method for solving neutral
functional–differential equations with
proportional delays, Journal of King Saud
University-Science, vol.24, 2012, pp.33-37.
[25] A. Bellen, M. Zennaro, Numerical methods
for delay differential equations, in Numerical
Mathematics and Scientific Computation,
The Clarendon Press Oxford University
Press, New York, 2003.
[26] W.S. Wang, S.F. Li, On the one-leg θ-
methods for solving nonlinear neutral
functional differential equations, Appl. Math.
Comput., vol.193, 2007, pp.285–301.
[27] W.S. Wang, T. Qin, S.F. Li, Stability of one-
leg θ-methods for nonlinear neutral
differential equations with proportional
delay, Appl. Math. Comput., 213, 2009,
pp.177–183.
[28] J.H. He, Homotopy perturbation technique,
Comput. Methods Appl. Mech. Eng., 178,
1999, 257–262.
[29] J.H. He, Homotopy perturbation method: A
new nonlinear analytical technique. Appl.
Math. Comput., 135, 2003, 73–79.
[30] J. H. He, and Y. O. El-Dib, and A. A. Mady,
Homotopy perturbation method for the
fractal toda oscillator, Fractal and
Fractional, 5, 3, 2021, 93.
[31] T. Liu, Porosity reconstruction based on Biot
elastic model of porous media by homotopy
perturbation method, Chaos, Solitons &
Fractals, 158, 2022, 112007.
[32] J. H. He, and Y. O. El-Dib, Homotopy
perturbation method for Fangzhu oscillator,
Journal of Mathematical Chemistry, 58,
2020, 2245-2253.
[33] M. I. Liaqat, and A. Ali, A novel approach
for solving linear and nonlinear time-
fractional Schrödinger equations, Chaos,
Solitons & Fractals, 162, 2022, 112487.
[34] M.M.A. Mahgoub, The new integral
transform ''Sawi Transform'', Advances in
Theoretical and Applied Mathematics, 14,
2019, 81-87.
[35] M. Nadeem, S. A. Edalatpanah, I. Mahariq,
W. H. Aly, Analytical view of nonlinear
delay differential equations using Sawi
iterative scheme, Symmetry, 14, 2022, 2430.
[36] M. Higazy and S. Aggarwal, Sawi
transformation for a system of ordinary
differential equations with the application,
Ain Shams Engineering Journal, 12, 2021,
3173-3182.
[37] M. Kapoor and S. Khosla, An iterative
approach using Sawi transform for fractional
telegraph equation in diversified dimensions,
Nonlinear Engineering, 2023, 12, 20220285.
[38] M. Nadeem, New strategy for the numerical
solution of multi-dimensional diffusion
equations, International Journal of
Numerical Methods for Heat & Fluid Flow,
2023, 33, 1939-54.
[39] M. Higazy, S. Aggarwal, and T. A. Nofal,
Sawi decomposition method for Volterra
integral equation with application, Journal of
Mathematics, 2020, 2020.
[40] S. R. Khirsariya and S. B. Rao, On the semi-
analytic technique to deal with nonlinear
fractional differential equations, Journal of
Applied Mathematics and Computational
Mechanics, 2023, 22, 13-26.
[41] M. Sahoo and S. Chakraverty, Sawi
Transform Based Homotopy Perturbation
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.9