[12] A. H. Khater, D. K. Callebaut, and A. R.
Seadawy, “Nonlinear dispersive instabilities
in Kelvin-Helmholtz magnetohydrodynamic
flow,” Physica Scripta, vol. 67, pp. 340–349,
2003.
[13] A. H. Khater, O. H. El-Kalaawy, and D. K.
Callebaut, “B¨acklund transformations for
Alfvén solitons in a relativistic electron-
positron plasma,” Physica Scripta, vol. 58, pp.
545–548, 1998.
[14] K. Chadan and P. C. Sabatier, Inverse
Problems in Quantum Scattering Theory,
Springer, New York, NY, USA, 1977.
[15] A. H. Khater, W. Malfliet, D. K. Callebaut,
and E. S. Kamel, “Travelling wave solutions
of some classes of nonlinear evolution
equations in (1+1) and (2+1) dimensions,”
Journal of Computational and Applied
Mathematics, vol. 140, no. 1-2, pp. 469–477,
2002.
[16] K. Konno and M.Wadati, “Simple derivation
of B¨acklund transformation from Riccati
form of inverse method,” Progress of
Theoretical Physics, vol. 53, no. 6, pp. 1652–
1656, 1975.
[17] M. Marvan, “Scalar second-order evolution
equations possessing an irreducible sl2-valued
zero curvature representation,” Journal of
Physics A, vol. 35, no. 44, pp. 9431–9439,
2002.
[18] R. M. Miura, B¨acklund Transformations, the
Inverse Scattering Method, Solitons, and
Their Applications, vol. 515 of Lecture Notes
in Mathematics, Springer, New York, NY,
USA, 1976.
[19] E. G. Reyes, “Pseudo-spherical surfaces and
integrability of evolution equations,” Journal
of Differential Equations, vol. 147, no. 1, pp.
195–230, 1998.
[20] E. G. Reyes, “Conservation laws and Calapso-
Guichard deformations of equations
describing pseudo-spherical surfaces,”
Journal of Mathematical Physics, vol. 41, no.
5, pp. 2968–2989, 2000.
[21] A. V. Shchepetilov, “The geometric sense of
the Sasaki connection,” Journal of Physics A,
vol. 36, no. 13, pp. 3893–3898, 2003.
[22] V. E. Zakharov and A. B. Shabat, “Exact
theory of two-dimensional self-focusing and
one-dimensional self–modulation of waves in
nonlinear Media,” Soviet Physics, vol. 34, pp.
62–69, 1972.
[23] J. A. Cavalcante and K. Tenenblat,
“Conservation laws for nonlinear evolution
equations,” Journal of Mathematical Physics,
vol. 29, no. 4, pp. 1044–1049, 1988.
[24] R. Beals, M. Rabelo, and K. Tenenblat,
“Bäcklund transformations and inverse
scattering solutions for some pseudospherical
surface equations,” Studies in Applied
Mathematics, vol. 81, no. 2, pp. 125–151,
1989.
[25] M. Crampin, “Solitons and SL(2, R),” Physics
Letters A, vol. 66, no. 3, pp. 170–172, 1978.
[26] A. C. Scott, F. Y. F. Chu, and D. W.
McLaughlin, “The soliton: a new concept in
applied science,” Proceedings of the IEEE,
vol. 61, pp. 1443–1483, 1973.
[27] E. G. Reyes, “On Geometrically integrable
equations and Hierarchies of pseudospherical
type,” Contemporary Mathematics, vol. 285,
pp. 145–155, 2001.
[28] M. L. Rabelo and K. Tenenblat, “A
classification of pseudospherical surface
equations of type ,”
Journal of Mathematical Physics, vol. 33, no.
2, pp. 537–549, 1992.
[29] A. Sakovich and S. Sakovich, “On
transformations of the Rabelo equations,”
SIGMA. Symmetry, Integrability and
Geometry, vol. 3, pp. 1–8, 2007.
[30] M. J. Ablowitz, R. Beals, and K. Tenenblat,
“On the solution of the generalized wave and
generalized sine-Gordon equations,” Studies
in Applied Mathematics, vol. 74, no. 3, pp.
177–203, 1986.
[31] S. M. Sayed, O. O. Elhamahmy, and G. M.
Gharib, “Travelling wave solutions for the
KdV-Burgers-Kuramoto and nonlinear
Schr¨odinger equations which describe
pseudospherical surfaces,” Journal of Applied
Mathematics, vol. 2008, Article ID 576783,
10 pages, 2008.
[32] S. M. Sayed, A. M. Elkholy, and G. M.
Gharib, “Exact solutions and conservation
laws for Ibragimov-Shabat equation which
describe a pseudo-spherical surface,”
Computational & Applied Mathematics, vol.
27, no. 3, pp. 305–318, 2008.
[33] K. Tenenblat, Transformations of Manifolds
and Applications to Differential Equations,
vol. 93 of Pitman Monographs and Surveys in
Pure and Applied Mathematics, Addison
Wesley Longman, Harlow, UK, 1998.
[34] M. C. Nucci, “Pseudopotentials, Lax
equations and Bäcklund transformations for
nonlinear evolution equations,” Journal of
Physics A, vol. 21, no. 1, pp. 73–79, 1988.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.5
Gharib M. Gharib, Maha S. Alsauodi, Mohamad Abu-Seileek