
15(11), 4489-4500 , 2016.
DOI:10.1007/s11128-016-1426-5
[24] Y.Liu, R.Li, L. Lv and Y. Ma, A class of
constacyclic BCH codes and new quantum
codes, Quantum Inf. Process. , 2017. https:
//doi.org/10.1007/s11128-017-1533-y
[25] F. Ma, J. Gao and F.W. Fu Constacyclic codes
over the ring Fq+vFq+v2Fqand their
application of constructing new non-binary
quantum codes, Quantum Inf Process 122 (1 -
19) , 2018. https:
//doi.org/10.1007/s11128-018-1898-6
[26] H.Q. Dinh, T. Bag, A. K. Upadhyay, R. Bandi,
W. Chinnakum, On the Structure of Cyclic
Codes Over FqRS and Applications in
Quantum and LCD Codes Constructions, IEEE
Access 2020, 8, 18902-18914. https:
//doi.org/10.1109/ACCESS.2020.2966542
[27] M. Ashraf, N. Khan, G. Mohammad, Quantum
codes from cyclic codes over the mixed
alphabet structure. Quantum Inf. Process.
2022, 21, 1-25. https:
//doi.org/10.1007/s11128-022-03491-z
[28] F. Çalişkan, T. Yildirim and R. Aksoy,
Non-Binary Quantum Codes from Cyclic Codes
over Fp×(Fp+vFp), International Journal of
Theoretical Physics, 62:29, 2023. https:
//doi.org/10.1007/s10773-023-05294-z
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present re-
search, at all stages from the formulation of the prob-
lem to the final findings and solution.
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.
Conflicts of Interest
The authors have no conflicts of interest to
declare that are relevant to the content of this
article.
Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
Appendix
Table 1: QECC over F3×(F3+vF3+v2F3)
2iΓ(C) : [4n, k, dL]QECC: [n, 2k−4n, dL]
24[26,23.7,2] [26,24.3,2]
26[26,23.31,2] [28,24.3.5,2]
28[210,23.127,2] [210 ,24.32.7,2]
210 [212,23.7.73,3] [212 ,24.3.5.17,3]
212 [214,23.23.89,2] [212 ,24.3.11.31,2]
214 [216,23.8191,4] [216 ,24.32.5.7.13,4]
216 [218,23.7.31.151,2] [218 ,24.3.43.127,2]
218 [220,23.131071,2] [220 ,24.3.5.17.257,2]
220 [222,23.524287,2] [222 ,24.33.7.19.73,2]
222 [224,23.72.127.137,2] [224 ,24.3.52.11.31.41,2]
224 [226,23.47.178481,2] [226 ,24.3.23.89.683,2]
226 [228,23.31.601.1801,2] [228 ,24.32.5.7.13.17.241,2]
228 [230,23.7.73.262657,2] [230 ,24.3.2731.8191,2]
230 [232,23.233.1103.2089,2] [232 ,24.3.5.29.43.113.127,2]
232 [234,23.2147483647,2] [234 ,24.32.7.11.31.151.331,2]
234 [236,23.7.23.89.599479,2] [236 ,24.3.5.17.257.65537,2]
236 [238,23.31.71.127.122921,2] [238 ,24.3.43691.131071,2]
238 [240,23.223.616318177,2] [240 ,24.3.174763.524287,2]
240 [242,23.7.79.8191.121369,2] [242 ,24.3.174763.524287,2]
Table 2: QECC over F5×(F5+vF5+v2F5)
2iΓ(C) : [4n, k, dL]QECC: [n, 2k−4n, dL]
26[28,23.31,2] [28,24.3.5,2]
210 [212,23.7.73,2] [212 ,24.3.5.17,2]
214 [216,23.8191,2] [216 ,24.32.5.7.13,2]
218 [220,23.131071,3] [220 ,24.3.5.17.257,3]
222 [224,23.72.127.337,2] [224 ,24.3.52.11.31.41,2]
226 [228,23.31.601.1801,3] [228 ,24.32.5.7.13.17.241,3]
230 [232,23.233.1103.2089,2] [232 ,24.3.5.29.43.113.127,2]
234 [236,23.7.23.89.599479,2] [236 ,24.3.5.17.257.65537,2]
238 [240,23.223.616318177,2] [240 ,24.33.5.7.13.19.37.73.109,2]
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.3
Noureddine Essaidi,
Abdelhamid Tadmori, Ossama El Abouti