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Abstract: In this paper, we study the convergence analysis of the sequence generated by an inexact proximal point
method with unbounded errors to find zeros of m-accretive operators in Banach spaces. We prove the zero set of
the operator is nonempty if and only if the generated sequence is bounded. In this case, we show that the generated
sequence converges strongly to a zero of the operator. This process defines a sunny nonexpansive retraction from
the Banach space onto the zero set of the operator. We present also some applications and numerical experiments
for our results.
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1 Introduction
Let X be a real Banach space with norm ∥ · ∥. The
topological dual of X is denoted by X∗, and the
duality pair between x ∈ X and w ∈ X∗ by ⟨x,w⟩.
We define the duality mapping J : X → P(X∗) by

J(x) =
{
w ∈ X∗ : ⟨x,w⟩ = ∥x∥2 = ∥w∥2

}
for x ∈ X . The operator A : D(A) ⊂ X → P(X) is
called accretive, if for each x, y ∈ D(A), there exists
j(y − x) ∈ J(y − x) such that

⟨v − u, j(y − x)⟩ ≥ 0, (1)

for all u ∈ A(x) and v ∈ A(y). An accretive
operator A is called maximal accretive if there is
no proper accretive extension of A. If I denotes the
identity operator on X , we say that the operator A is
m-accretive if R(I + γA) = X for all γ > 0. Every
m-accretive operator is maximal accretive, however
the converse is not true in general. For every accretive
operator A, and for each γ > 0, we can define a
nonexpansive single-valued mapping JA

γ (·) : R(I +
γA) → D(A) by JA

γ (x) = (I + γA)−1(x), which is
called the resolvent of A.

The study, [1], proved that if X is a uniformly
smooth Banach space, A : X → P(X) is an
m-accretive operator and A−1(0) ̸= ∅, then for any
x ∈ X , the strong limγ→∞ JA

γ (x) exists and belongs
to A−1(0). The study, [2], investigated an iterative
method for finding the common zeros of two accretive
operators. Recently, [3], studied the convergence of
an inexact proximal point algorithm for finding zeros

of maximal monotone operators in Hilbert spaces. If
A is a maximal monotone operator inX and u ∈ X is
an arbitrary point, the authors, [4], showed the strong
convergence of the sequence generated by an inexact
proximal point method to PA−1(0)(u) where P is the
generalized projection of u onto A−1(0). For other
recent results in this direction see, [5], [6].

Motivated by the above results, we investigate
the strong convergence of the sequence generated
by an inexact proximal point method with possible
unbounded errors to find zeros of m-accretive
operators in Banach spaces. We show that the
zero set of the operator is nonempty, if and only
if the generated sequence is bounded. In this
case, the generated sequence converges strongly to
QA−1(0)(u), where A is an m-accretive operator, u ∈
X is an arbitrary point and QA−1(0) is the sunny
nonexpansive retraction of X onto A−1(0).

2 Preliminaries
A Banach space X is called strictly convex if
∥x+y

2 ∥ < 1 for all x, y ∈ X with ∥x∥ = ∥y∥ = 1
and x ̸= y. X is called a uniformly convex if for
each ε ∈ (0, 2], there exists δ > 0 such that for all
x, y ∈ X with ∥x∥ = ∥y∥ = 1 and ∥x − y∥ ≥ ε, it
holds that ∥x+y

2 ∥ < 1 − δ. Every uniformly convex
Banach space is reflexive and strictly convex. X is
called smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2)

exists for all x, y ∈ B = {z ∈ X : ∥z∥ = 1}. If X is
smooth, then the duality mapping J is single valued.
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A Banach space X is called uniformly smooth if the
limit in (2) is attained uniformly for x, y ∈ B. The
spacesLp (1 < p <∞) and the Sobolev spacesW k,p

(1 < p < ∞) are examples of uniformly convex and
uniformly smooth Banach spaces.

We denote the strong convergence of a sequence
{xk} to x ∈ X by xk → x, and weak convergence by
xk ⇀ x.

Consider the Banach space ℓ∞ of all bounded
complex-valued sequences. A Banach limit is a
continuous linear functional ψ : ℓ∞ → C such that
for all sequences x = {xn} and y = {yn} in ℓ∞, and
complex numbers α, we have
(i) ψ(αx+ y) = αψ(x) + ψ(y),
(ii) if xn ≥ 0 for all n ∈ N, then ψ(x) ≥ 0,
(iii) ψ(x) = ψ(Sx), where S is the shift operator
defined by (Sx)n = xn+1,
(iv) if x = {xn} is a convergent sequence, then
ψ(x) = limn→∞ xn.
In fact, a Banach limit extends the usual notion of
a limit for a sequence, is linear, shift-invariant and
positive. However, it may not be unique. For more
details on Banach limits, we refer the reader to [7].

Lemma 2.1. [8], [9] LetX be a Banach space with a
uniformly Gâteaux differentiable norm, and C ⊂ X
be a nonempty, closed and convex set. Suppose that
{xk} is a bounded sequence inX , LIM a Banach limit
on ℓ∞ and q ∈ C, then

LIM∥xk − q∥2 = min
y∈C

{
LIM∥xk − y∥2

}
if and only if

LIM⟨x− q, J(xk − q⟩ ≤ 0

for all x ∈ C.

Lemma 2.2. [10] Suppose that A : D(A) ⊂ X →
P(X) is an accretive operator. Then for r, γ > 0 and
x ∈ X , we have the resolvent identity

JA
γ x = JA

r

( r
γ
x+ (1− r

γ
)JA

γ x
)
.

Assume that C ⊂ X is nonempty, closed and
convex andD is a nonempty subset of C. A mapping
Q : C → D is a retraction whenever Qx = x for all
x ∈ D. A retraction Q : C → D is nonexpansive if
Q is nonexpansive. A retractionQ : C → D is sunny
if Q satisfies the property:

Q(Qx+t(x−Qx)) = Qx for all x ∈ C and t > 0,
(3)

whenever Qx + t(x − Qx) ∈ C. A retraction Q :
C → D is sunny nonexpansive if Q is both sunny
and nonexpansive. It is known ([11], [12]) that in a
smooth Banach space X , a retraction Q : C → D is

a sunny nonexpansive retraction from C to D if and
only if the following inequality holds:
⟨x−Qx, J(z −Qx)⟩ ≤ 0 for x ∈ C and z ∈ D.

(4)
In particular, this shows that Q is unique, if it exists.
Lemma 2.3. [12], [13] (Browder fixed point
theorem) LetX be a uniformly convex Banach space.
If C ⊂ X is a nonempty, closed, convex and bounded
set, and T : C → C is a nonexpansive mapping, then
T has a fixed point.

3 Main results
Let X be a uniformly smooth and uniformly convex
Banach space, and A : D(A) ⊂ X → P(X) be
an m-accretive operator. Let the sequence {xk} be
generated by

xk+1 = JA
γk
(uk + αk(xk + ek)), (5)

where x0 ∈ X , αk ∈ R and γk ∈ (0,∞) for all k, and
{uk} ⊂ X is an arbitrary sequence such that uk → u,
and {ek} is a sequence of computational errors. We
provide a necessary and sufficient condition for the
zero set of A to be nonempty, and in this case, show
the strong convergence of the sequence generated by
(5) to a zero of A.

Lemma 3.1. Let A : D(A) ⊂ X → P(X) be
an m-accretive operator, and the sequence {xk} be
generated by (5), where {αk} ⊂ R and {γk} ⊂
(0,∞) and γk → ∞ such that {αk} and {αkek}
are bounded. If {xk} is bounded and r > 0, then
limk→∞ ∥JA

r xk − xk∥ = 0.
Proof. Without loss of generality, we assume that
γk > r for all k. Suppose that zk−1 := (uk−1 +
αk−1(xk−1 + ek−1)). Then we have

∥JA
r xk − xk∥ = ∥JA

r xk − JA
γk−1

zk−1∥

= ∥JA
r xk − JA

r

( r

γk−1
zk−1 + (1− r

γk−1
)JA

γk−1
zk−1

)
∥

≤ ∥xk −
( r

γk−1
zk−1 + (1− r

γk−1
)JA

γk−1
zk−1

)
∥

= ∥xk −
( r

γk−1
zk−1 + (1− r

γk−1
)xk

)
∥

=
r

γk−1
∥xk − zk−1∥

≤ r

γk−1

(
∥xk − uk−1∥+ | αk−1(| ∥xk−1∥+ ∥ek−1∥)

)
.

Since {αk} and {αkek} are bounded, uk → u and
γk → ∞ as k → ∞, we get

lim
k→∞

∥JA
r xk − xk∥ = 0.
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Theorem 3.2. Let X be a uniformly convex Banach
space, and A : D(A) ⊂ X → P(X) be an
m-accretive operator. Suppose that the sequence
{xk} is generated by (5), where {αk} ⊂ R and
{γk} ⊂ (0,∞) such that γk → ∞, αk → 0 and
{αkek} is bounded. Also {uk} ⊂ X is an arbitrary
sequence such that uk → u. Then A−1(0) ̸= ∅ if and
only if the sequence {xk} is bounded.
Proof. Assume A−1(0) ̸= ∅ and let x∗ ∈ A−1(0).
Since the resolvent operator JA

γk
is nonexpansive, we

have
∥x∗ − xk+1∥ = ∥x∗ − Jγk

(uk + αk(xk + ek))∥
≤ ∥x∗ − (uk + αk(xk + ek))∥
≤ ∥x∗∥+ ∥uk∥+ | αk | (∥xk∥+ ∥ek∥)

which implies that
∥xk+1∥ ≤ 2∥x∗∥+∥uk∥+ | αk | (∥xk∥+∥ek∥) (6)
By assumption, we have uk → u, αk → 0 and
{αkek} is bounded. Let

L := sup
k

{
2∥x∗∥+ ∥uk∥+ | αk | ∥ek∥

}
.

Then we have
∥xk+1∥ ≤| αk | ∥xk∥+ L (7)

Now sinceαk → 0, there exists r ∈ (0, 1) and k0 ∈ N
such that | αk |< r for all k ≥ k0. Then the above
inequality implies that

∥xk+1∥ ≤ r∥xk∥+ L, for all k ≥ k0. (8)
Now we have
∥xk+1∥ ≤ r∥xk∥+ L

≤ r
[
r∥xk−1∥+ L

]
+ L

= r2∥xk−1∥+ rL+ L

≤ r2
[
r∥xk−2∥+ L

]
+ rL+ L

= r3∥xk−2∥+ r2L+ rL+ L

≤ · · ·
≤ rk−k0+1∥xk0

∥+ rk−k0L+ · · ·+ rL+ L

≤ rk−k0+1∥xk0
∥+ (

1

1− r
)L.

This implies that the sequence {xk} is bounded.
Conversely, let the sequence {xk} be bounded,

then there exists a subsequence {xkn
} of {xk} such

that xkn
⇀ p where p is a weak cluster point of

the sequence {xk}. On the other hand, for any
λ > 0, the operator JA

λ is nonexpansive, and hence
it is demiclosed. Now since xkn

⇀ p and JA
λ is

demiclosed, therefore by Lemma 3.1 we get p ∈
Fix(JA

λ ), that is p ∈ A−1(0).

Theorem 3.3. Let X be a uniformly smooth and
uniformly convex Banach space, and A : D(A) ⊂
X → P(X) be an m-accretive operator. Suppose
that the sequence {xk} is generated by (5), where
{αk} ⊂ R and {γk} ⊂ (0,∞) such that γk →
∞, αk → 0 and αkek → 0. Also {uk} ⊂ X
is an arbitrary sequence such that uk → u. If
A−1(0) ̸= ∅, then the sequence {xk} converges
strongly to QA−1(0)(u), where QA−1(0) is the sunny
nonexpansive retraction of X onto A−1(0).

Proof. If A−1(0) ̸= ∅, then the sequence {xk} is
bounded by Theorem 3.2. Now assume that

yt := tu+ (1− t)JA
r yt,

where r > 0 and t ∈ (0, 1). Note that yt is well
defined, because the map y 7−→ tu + (1 − t)JA

r (y)
fromX toX is a contraction and hence by the Banach
fixed point theorem, it has a unique fixed point. Let
p ∈ A−1(0). Then we have

∥yt − p∥ = ∥tu+ (1− t)JA
r yt − p∥

≤ t∥u− p∥+ (1− t)∥JA
r yt − p∥

≤ t∥u− p∥+ (1− t)∥yt − p∥.

Therefore we get

∥yt − p∥ ≤ ∥u− p∥,

which implies that {yt} is bounded, and subsequently
{JA

r yt} is bounded too. Note that

∥yt − JA
r yt∥ = t∥u− JA

r yt∥ → 0 (9)

as t → 0. Now we show that {yt} is strongly
convergent to an element in A−1(0) as t → 0. Let
tm → 0 and define ψ : X → [0,+∞) by

ψ(x) = LIM∥ytm − x∥2, x ∈ X,

where LIM is a Banach limit on ℓ∞. Since X is
reflexive, ψ is convex and continuous, and ψ(x) →
+∞ as ∥x∥ → +∞, ψ has a minimum in X . Let

K =
{
y ∈ X : ψ(y) = min

x∈X

{
LIM∥ytm − x∥2

}}
.

It is easy to see that K is nonempty, closed, convex
and bounded. Also,K is invariant under JA

r . In fact,
since ∥yt − JA

r yt∥ → 0 by (9), for any y ∈ K, we
have

ψ(JA
r y) = LIM∥ytm − JA

r y∥2

= LIM∥JA
r ytm − JA

r y∥2

≤ LIM∥ytm − y∥2

= ψ(y).
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Therefore JA
r has a fixed point q inK by Lemma 2.3.

Now Lemma 2.1 implies that

LIM⟨x−q, J(ytm−q)⟩ ≤ 0, for all x ∈ X. (10)

On the other hand, we have

∥yt − q∥2 = ⟨yt − q, J(yt − q)⟩
= t⟨u− q, J(yt − q)⟩+ (1− t)⟨JA

r yt − q, J(yt − q)⟩
≤ t⟨u− q, J(yt − q)⟩+ (1− t)∥yt − q∥2.

This implies that

∥yt − q∥2 ≤ ⟨u− q, J(yt − q)⟩. (11)

Letting t = tm and using (11), we get

LIM∥ytm − q∥2 ≤ LIM⟨u− q, J(ytm − q)⟩. (12)

Taking x = u in (10) and using (12), we have
LIM∥ytm − q∥2 ≤ 0 which implies that LIM∥ytm −
q∥2 = 0. Therefore there is a subsequence {ytmi

} of
{ytm} such that ytmi

→ q.
In the sequel, we prove that yt → q as t → 0.

Let {ytj} be another subsequence of {yt} such that
ytj → z. Replacing t = tj in (11) and taking the
limit, we get

∥z − q∥2 ≤ ⟨u− q, J(z − q)⟩ (13)

By using (9), it is clear that z is a fixed point of JA
r .

Therefore a similar inequality as in (11) holds for q
replaced by z. Replacing t = tmi

in that inequality
and taking the limit, we get

∥q − z∥2 ≤ ⟨u− z, J(q − z)⟩ (14)

Adding both sides of (13) and (14), we get

2∥q − z∥2 ≤ ⟨q − z, J(q − z)⟩ = ∥q − z∥2, (15)

which implies that q = z and hence yt → q as t→ 0.
In the sequel, since yt = tu + (1 − t)JA

r yt, we
have

yt − u = −1− t

t
(I − JA

r )yt (16)

Now, for any p ∈ Fix(JA
r ) = A−1(0), we have

⟨yt − u, J(yt − p)⟩ = −1− t

t
⟨(I − JA

r )yt, J(yt − p)⟩

= −1− t

t
⟨(I − JA

r )yt − (I − JA
r )p, J(yt − p)⟩

≤ 0.

Letting t→ 0, we get

⟨q − u, J(q − p)⟩ ≤ 0, for all p ∈ A−1(0). (17)

Now since A−1(0) is a nonempty, closed and convex
subset ofX and u can be chosen arbitrarily inX , then
by (4), (17) implies that q is the sunny nonexpansive
retraction of u onto A−1(0). From now on, we
also denote q by QA−1(0)(u) where QA−1(0)(u) is the
sunny nonexpansive retraction of u onto A−1(0).

In the sequel, we prove that the sequence {xk}
converges strongly to q = QA−1(0)(u). Let M :=
sup{∥xk − yt∥ : t ∈ (0, 1), k ≥ 0}. Then we have

∥yt − xk∥2 = t⟨u− xk, J(yt − xk)⟩
+ (1− t)⟨JA

r yt − xk, J(yt − xk)⟩
= t⟨u− yt + yt − xk, J(yt − xk)⟩
+ (1− t)⟨JA

r yt − JA
r xk + JA

r xk − xk, J(yt − xk)⟩
= t⟨u− yt, J(yt − xk)⟩+ t∥yt − xk∥2

+ (1− t)⟨JA
r yt − JA

r xk, J(yt − xk)⟩
+ (1− t)⟨JA

r xk − xk, J(yt − xk)⟩
≤ t⟨u− yt, J(yt − xk)⟩+ t∥yt − xk∥2

+ (1− t)∥yt − xk∥2 +M∥JA
r xk − xk∥.

This shows that

⟨u−yt, J(xk−yt)⟩ ≤
M

t
∥JA

r xk−xk∥, ∀ t ∈ (0, 1).

(18)
Since ∥JA

r xk − xk∥ → 0 by Lemma 3.1, we get

lim sup
k→∞

⟨u−yt, J(xk−yt)⟩ ≤ 0, ∀ t ∈ (0, 1). (19)

We note that

| ⟨u− q, J(xk − q)⟩ − ⟨u− yt, J(xk − yt)⟩ |
=| ⟨u− q, J(xk − q)− J(xk − yt)⟩
+ ⟨q − yt, J(xk − yt)⟩ |
≤| ⟨u− q, J(xk − q)− J(xk − yt)⟩ | +M∥q − yt∥.

Now since yt → q as t→ 0 and J is uniformly norm
to weak∗ continuous on bounded subsets of X , we
have

lim
t→0

| ⟨u− q, J(xk − q)⟩ − ⟨u− yt, J(xk − yt)⟩ |= 0

(20)
uniformly for k ≥ 0. Therefore (19) and (20) imply
that

lim sup
k→∞

⟨u− q, J(xk − q)⟩ ≤ 0. (21)

On the other hand, by (5) and the definition of the
resolvent operator, we have

vk :=
uk + αk(xk + ek)− xk+1

γk
∈ A(xk+1) (22)
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Since q ∈ A−1(0) and A is an accretive operator, we
have

⟨0− vk, J(q − xk+1)⟩ ≥ 0. (23)
Let zk := uk + αk(xk + ek), then we get

⟨zk − xk+1, J(q − xk+1)⟩ ≤ 0, (24)

which implies that

∥q − xk+1∥2 = ⟨q − xk+1, J(q − xk+1)⟩
≤ ⟨zk − q, J(xk+1 − q)⟩. (25)

On the other hand, since αk → 0, αkek → 0 and
uk → u as k → ∞, we have zk → u as k → ∞.
Therefore (21) shows that

lim sup
k→∞

⟨zk − q, J(xk+1 − q)⟩

= lim sup
k→∞

⟨u− q, J(xk+1 − q)⟩ ≤ 0. (26)

Now, (25) and (26) imply that the sequence {xk}
converges strongly to q = QA−1(0)(u).

Remark 3.4. According to Theorem 3.3, the limit is
unique as long as u, which is the limit of an arbitrary
sequence {uk}, is fixed.
Corollary 3.5. Let X be a uniformly smooth and
uniformly convex Banach space, and A : D(A) ⊂
X → P(X) be an m-accretive operator. Suppose
that the sequence {xk} is generated by (5), where
{αk} ⊂ R and {γk} ⊂ (0,∞) such that γk → ∞,
αk → 0 and αkek → 0. Also {uk} ⊂ X is an
arbitrary sequence such that uk → u. Then the
sequence {xk} is bounded if and only if the sequence
{xk} is strongly convergent to QA−1(0)(u), where
QA−1(0) is the sunny nonexpansive retraction of X
onto A−1(0).
Proof. This is a direct consequence of Theorems 3.2
and 3.3.

The following corollary extends a result of Reich
[1, Theorem 1].
Corollary 3.6. Let X be a uniformly smooth and
uniformly convex Banach space, and A : D(A) ⊂
X → P(X) be an m-accretive operator. Suppose
that x ∈ X and {γk} ⊂ (0,∞) such that γk →
∞ as k → ∞. Then the following statements are
equivalent:
(i) A−1(0) ̸= ∅,
(ii) the sequence {JA

γk
(x)} is bounded,

(iii) {JA
γk
(x)} converges strongly to QA−1(0)(x) as

k → ∞, where QA−1(0) is the sunny nonexpansive
retraction of X onto A−1(0).
Proof. The proof follows directly from Theorems 3.2
and 3.3 by taking αk ≡ 0 and uk ≡ x.

4 Applications
In this section, we apply our main results to
approximate the solution of a variational inequality
and the fixed point of a nonexpansive operator.

Let C be a nonempty, closed and convex subset of
a Banach spaceX and letA : C → X be an operator.
A variational inequality for A and C, abbreviated as
VI(A,C) consists of finding x∗ ∈ C such that

⟨Ax∗, J(y − x∗)⟩ ≥ 0, ∀y ∈ C. (27)

We denote the set of all solutions to (27) by S(A,C).
The associated dual variational inequality, denoted by
DVI(A,C), is expressed as finding x∗ ∈ C such that
⟨Ay, J(x∗ − y)⟩ ≤ 0 for all y ∈ C. It is clear that
VI(A,C) has a solution if and only if the zero set of
the operator A is nonempty.

Let T : C → C be a map, and A(x) = x − Tx
for x ∈ C. Then an example of the above variational
inequality problem is to find x∗ ∈ C such that

⟨x∗ − Tx∗, J(y − x∗)⟩ ≥ 0, ∀y ∈ C. (28)

If we set y = Tx∗, then (28) implies that Tx∗ = x∗.
Therefore VI(A,C) is equivalent to the fixed point
problem for the mapping T : C → C.

Note that if the mapping T : C → C is
nonexpansive, then we have

⟨Tx− Ty, J(x− y)⟩ ≤ ∥Tx− Ty∥∥x− y∥
≤ ∥x− y∥2

= ⟨x− y, J(x− y)⟩. (29)

This implies that

⟨(x− Tx)− (y − Ty), J(x− y)⟩ ≥ 0. (30)

Therefore the operator A : C → X defined by
A(x) = x − Tx is accretive. Hence the following
statements are equivalent:
(i) A−1(0) ̸= ∅.
(ii) S(A,C) ̸= ∅.
(iii) Fix(T ) ̸= ∅.

Nowwe apply our main results to find a zero of the
accretive operator A which will be a solution to the
variational inequality problem VI(A,C), or a fixed
point of the nonexpansive mapping T .

Let X be a uniformly smooth and uniformly
convex Banach space, and T : C → C be a
nonexpansive mapping. Let the sequence {xk} be
generated by

xk+1 = JI−T
γk

(uk + αk(xk + ek))

= (I + γk(I − T ))−1(uk + αk(xk + ek)),
(31)
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where x0 ∈ X , αk ∈ R and γk ∈ (0,∞) for all
k, and {uk} ⊂ X is an arbitrary sequence such that
uk → u, and {ek} is a sequence of computational
errors. We first show that the sequence {xk} is well
defined. Then we present the associated results. For
simplicity, denote vk = uk + αk(xk + ek). Note
that the map y 7−→ 1

1+γk
vk + γk

1+γk
Ty from X to X

is a contraction and hence by the Banach fixed point
theorem, it has a unique fixed point xk+1. Then we
have xk+1 = 1

1+γk
vk + γk

1+γk
Txk+1 which implies

that xk+1 = (I + γk(I − T ))−1(vk).
Corollary 4.1. Let X be a uniformly smooth and
uniformly convex Banach space, and T : X → X be
a nonexpansive mapping. Suppose that the sequence
{xk} is generated by (31), where {αk} ⊂ R and
{γk} ⊂ (0,∞) such that γk → ∞, αk → 0 and
αkek → 0. Also {uk} ⊂ X is an arbitrary sequence
such that uk → u. Then the following statements are
equivalent:
(i) Fix(T ) ̸= ∅,
(ii) the sequence {xk} is bounded,
(iii) {xk} is strongly convergent to QFix(T )(u), where
QFix(T ) is the sunny nonexpansive retraction of X
onto Fix(T ).
Proof. Since T : X → X is a nonexpansive
mapping, the operator I − T is accretive. Now we
show that I−T is an m-accretive operator. In fact, we
show that R(I + λ(I − T )) = X for all λ > 0. Take
y ∈ X and note that the map z 7−→ 1

1+λy +
λ

1+λTz
fromX toX is a contraction and hence by the Banach
fixed point theorem, it has a unique fixed point x.
Therefore we have x = 1

1+λy+
λ

1+λTxwhich implies
that (I+λ(I−T ))x = y. Now the proof follows from
Theorems 3.2 and 3.3.

The following corollary is a result of Corollary 4.1.
Corollary 4.2. Let X be a uniformly smooth and
uniformly convex Banach space, and T : X → X
be a nonexpansive mapping. Suppose that x ∈ X
and {γk} ⊂ (0,∞) such that γk → ∞ as k → ∞.
Then the following statements are equivalent:
(i) Fix(T ) ̸= ∅,
(ii) the sequence {JI−T

γk
(x)} is bounded,

(iii) {JI−T
γk

(x)} converges strongly to QFix(T )(x) as
k → ∞.
Proof. The proof follows directly from Corollary 4.1
by taking αk ≡ 0 and uk ≡ x.

Let H be a real Hilbert space, C ⊂ H be
nonempty, closed and convex, and let f : H×H → R
be a bifunction. An equilibrium problem for f and C
consists of finding x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C. (32)

We denote the set of all solutions for (32) by
S(f, C). It is well known that equilibrium problems
unify many problems in nonlinear analysis and
optimization like convex optimization problems,
fixed point problems variational inequalities , Nash
equilibrium problems, etc. We introduce some
standard conditions on the bifunction f that are
generally used for the study of the convergence
analysis:
B1 : f(x, x) = 0 for all x ∈ H .
B2 : f(·, x) : H → R is upper semicontinuous for all
x ∈ H .
B3 : f(x, ·) : H → R is convex and lower
semicontinuous for all x ∈ X .
B4 : f(x, y) + f(y, x) ≤ 0 for all x, y ∈ H , i.e. f is
monotone.

It was shown in Theorem 4 of [14], that when f
satisfies B1–B4, then Uf : H → P(H) defined by

Uf (x) = ∂f(x, ·)(x) ={
u∗ ∈ H : ⟨y − x, u∗⟩ ≤ f(x, y)− f(x, x), ∀ y ∈ H

}
(33)

is an m-accretive (maximal monotone) operator.
Moreover note that any solution of VI(Uf , C)
belongs to S(f, C) when f satisfies B1–B4.

Suppose that f : H×H → R satisfies B1-B4, and
let the sequence {xk} be generated by

xk+1 = JUf

γk
(uk + αk(xk + ek)), (34)

where x0 ∈ H , αk ∈ R and γk ∈ (0,∞) for all k, and
{uk} ⊂ H is an arbitrary sequence such that uk → u,
and {ek} is a sequence of computational errors.

Corollary 4.3. Suppose that f : H×H → R satisfies
B1-B4. Let the sequence {xk} be generated by (34),
where {αk} ⊂ R and {γk} ⊂ (0,∞) such that γk →
∞, αk → 0 and αkek → 0. Also let {uk} ⊂ H be
an arbitrary sequence such that uk → u. Then the
following statements are equivalent:
(i) S(f, C) ̸= ∅,
(ii) the sequence {xk} is bounded,
(iii) {xk} is strongly convergent to PS(f,C)(u), where
PS(f,C) is the projection of H onto S(f, C).

Proof. Since f satisfies B1–B4, then Uf : H →
P(H) is m-accretive (maximal monotone) by
Theorem 4 of [14]. Now the proof follows from
Theorems 3.2 and 3.3.

Remark 4.4. Let ϕ : H → R be a proper, convex and
lower semicontinuous function. Define f(x, y) =
ϕ(y)− ϕ(x) for all x, y ∈ H . Since ϕ is convex and
lower semicontinuous, the bifunction f : H×H → R
satisfies B1-B4. Then Corollary 4.3 may be applied
to find a minimum point of ϕ.
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We end this paper by providing a numerical
example where our main result can be applied.
Example 4.5. Let C = R3 and define the bifunction
f : R3 × R3 → R by f(z, y) = ϕ(y) − ϕ(z) where
ϕ(z) = zAzt +Bzt and

A =

[
3 2 0
−2 4 −1
0 1 5

]
B = [ 4 −1 3 ]

where zt denotes the transpose of the vector z =
[ z1 z2 z3 ]. Note that f(z, ·) : R3 → R is convex
for all z ∈ R3, because A is positive definite. Clearly
f satisfies B1-B4. Also, S(f, C) ̸= ∅. Indeed, the
unique solution of the equilibrium problem is x∗ =[ −2

3
1
8

−3
10

]
, because ϕ(z) = 3z21 +4z22 +5z23 +

4z1 − z2 + 3z3.
In order to illustrate an application

of Corollary 4.3, we take αk = 1
k+1 ,

γk = k3 + 1, x1 = [ −2 1 3 ] ,

uk =
[
4 + 2

k+1 −1 + 3
k+1 2 + 2

k+1

]
,

ek =
[
2
√
k + 5 −

√
k + 4 3

√
k − 2

]
. It is

easy to see that uk → u = [ 4 −1 2 ] and
PS(f,K)(u) =

[ −2
3

1
8

−3
10

]
. Note that the error

sequence {ek} is unbounded and the conditions of
Corollary 4.3 are satisfied. If {xk} is the sequence
generated by

xk+1 = JUf

γk
(uk + αk(xk + ek)),

then Corollary 4.3 ensures that {xk} converges to
x∗. We performed the numerical experiment for
this example and the numerical results are displayed
in Table 1.   The table shows  that the  sequence
{xk} is convergent to

[ −2
3

1
8

−3
10

]
, which is the

solution of EP(f, C). This problem was solved by the
Optimization Toolbox in Matlab R2020a on a Laptop
Intel(R) Core(TM) i7- 8665UCPU@1.90GHz RAM
8.00 GB.

Table 1. The numerical experiment for Example 4.5
k xk+1 ∥xk+1−xk∥ ∥xk+1 −x∗∥
1 ( 1.5714, 1.0556, 0.7273) 4.2336 2.6325
2 (0.5309, 0.4169, -0.0418) 1.4429 1.2594
3 (-0.1826, 0.2167, -0.1907) 0.7559 0.5047
10 (-0.6258, 0.1274, -0.2837) 0.0093 0.0440
100 (-0.6658, 0.1249, -0.2994) 1.5803×10−5 0.0010
200 (-0.6664, 0.1249, -0.2998) 2.7028×10−6 3.4551×10−4

500 (-0.6666, 0.1250, -0.2999) 2.7841×10−7 8.5606×10−5
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