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Abstract: - Fractional Analysis is a mathematical method based on different principles from those governing the 
well-known mathematical principles of differential and integral calculus. The main difference from ordinary 
differential analysis lies in its property being a non-local analysis, not a local one. This analysis is essential in 
studying problems in physics, engineering, biology, biomechanics, and others that fall into the  micro and nano 
areas. However, the main issue in fractional analysis is the mathematical imperfections presented by fractional 
derivatives. In fact, not all known fractional derivatives meet the differential topology requirements for 
mathematical derivatives. Hence, Λ-fractional differential geometry is invented and applied in various scientific 
areas, like physics, mechanics, biology, economy, and other fields. Apart from the basic mathematical theory 
concerning establishing the Λ-fractional derivative, the corresponding differential geometry, differential 
equations, variational methods, and fields theory are outlined. Proceeding to the applications, Λ-fractional 
continuum mechanics, Λ-fractional viscoelasticity, Λ-fractional physics, Λ-fractional beam and plate theory are 
discussed. It is pointed out that only globally stable states are allowed into the context of Λ-fractional analysis.  
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1   Introduction 
The need for global differential analysis in physics 
and engineering has pushed the blooming of 
fractional calculus, which is inherently global. In 
[1], pointing out the importance of the global 
analysis in micro and nanophysics, refers in the 
introduction of his book, “Non-local continuum 

field theories are concerned with the physics of 

material bodies whose behavior of a material point 

is influenced by the state of all points of the body. 

The non-local theory generalizes the classical field 

theory in two respects i) the energy balance law is 

considered valid globally(for the entire body), and 

ii) the state of the body at a material point is 

described by the response functionals”.  

In fact, Fractional Calculus is a mathematical 
method of global analysis, demanded in various 
theories concerning micro and nano theories in 
physics and engineering and not only. [2], [3] and 
[4], and not only were highly concerned about 
fractional integrals and derivatives. [5] have 
presented the historical evolution of fractional 
calculus. Fractional calculus is an indispensable 
tool in describing the non-local character of many 
phenomena in mechanics, physics, engineering,  
control theory, and economics, [6]. Systematic 
description and analysis of the fractional calculus 
field may be found in the books [7], [8], [9], [10], 
[11] and various applications are also included.  

Local mathematical calculus cannot describe an 
extensive collection of phenomena in mechanics, 
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physics, and other scientific fields. Since 
intermolecular attractions are considerable, non-
local continuum theories are only accepted. Indeed, 
singularities are generated by various fields, like 
the application of concentrated loads to the fields of 
stresses and strains around the crack tips and 
dislocations. Further, viscoelastic problems are 
described through time fractional fields. In fact, 
only viscoelastic problems have been formulated 
using fractional time calculus for the last 50 years. 
The interest concerning fractional calculus was 
turned from time to space [12],  expressing the 
distribution of non-homogeneous material fields, 
like microcracks, composite materials, and others, 
through fractional formulation.  Moreover, a lot 
have been done in the field on stability criteria, 
[13].  

Contrary to the conventional strain, [12] and  
[14] proposed the fractional strain. That strain 
exhibits strong non-local character.  However, the 
well-known fractional derivatives are 
mathematically simple operators, not mathematical 
derivatives satisfying the prerequisites demanded 
by Differential Topology,  

a. Linearity 𝐷(𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)) = 𝑎𝐷𝑓(𝑥) +
𝑏𝐷𝑔(𝑥)                                                    (1) 
 

b. Leibniz rule   𝐷(𝑓(𝑥) ∙ 𝑔(𝑥)) = 𝐷𝑓(𝑥) ∙
𝑔(𝑥) + 𝑓(𝑥) ∙ 𝐷𝑔(𝑥)                               (2) 
 

c. Chain rule      𝐷(𝑔(𝑓))(𝑥) = 𝐷𝑔(𝑓(𝑥) ∙
𝐷𝑓(𝑥)                                                      (3) 

 
Hence, the use of fractional derivatives was not 

mathematically established. [15]  proposed the L-
fractional derivative, then the fractional Λ-
derivative, which is mathematically correct.  The 
proposed non-local procedure has already been 
applied to the various problems in mechanics and 
not only. We propose  Λ- fractional deformations 
and define the corresponding deformation tensors 
[14], [15], [16], [17], [18].  

The fractional strain has been presented in [19], 
[20], [21], [22], however, they do not comply with 
fractional differential geometries. Further, the Λ- 
fractional strain tensors will also be presented.  Let 
us point out that the strain exists only in the Λ-
space, having the character of a derivative. 

We present the formulation of the Λ-space, 
where geometry and physics are valid in a 
conventional way. Further, the results in the Λ-
space are not the true results. They should be 
transferred to the initial space. The problem 
concerning the extension of a fractional bar under 

axial load is presented. Its solution exhibits the size 
effect phenomenon. Similar phenomena have been 
presented in the strain gradient theories. 

Λ-Fractional differential analysis is formulated 
in the present work.  The fractional derivatives are 
local and conventional in the Λ-fractional space. 
Hence, differential geometry is generated. The 
actual results should be located in the initial space 
and should be found by transferring the results 
found in the Λ-space into the initial space. The Λ-
fractional transformation, governing the Λ-
fractional space, is similar to Laplace’s 
transformation. The results are transferred from the 
Λ-fractional space to the initial one,  the true space.  

 
 

2   Summary of Fractional Calculus 
One of the most active and interesting fields in 
applied mathematics is Fractional Calculus due to 
its broad applications in micro and nano problems.  
Many applications in engineering and physics are 
considered in that context.  Due to the high 
importance of Fractional Calculus in many 
applications, the field has also been extended 
theoretically. There exist many definitions of 
fractional derivatives.  Leibniz, looking for the 

possibility of defining the derivative 
n

n

dx

gd  when 

2
1

n , suggested fractional derivatives. There 

exists a plethora of those derivatives. Nevertheless, 
they are all non-local, contrary to the conventional 
ones that are local. Information about fractional 
analysis and its applications may be found in the 
classical books of [8], [9] and [10]. 
 
Recalling the n-fold integral of a function f(x)                               

 a
n

xI f x 

1

a

1 ( ) ( ) , 0,
( 1)!

x

nx s f s ds x n N
n

  
          (4)                                          

 
Leibniz defined the γ-multiple integral with 0<γ<1 
by, 

𝐼𝑎 𝑥
𝛾
𝑓(𝑥) =

1

𝛤(𝛾)
∫

𝑓(𝑠)

(𝑥−𝑠)1−𝛾
𝑥

𝑎
𝑑𝑠                     (5) 

with Γ(γ) Euler’s Gamma function.       
 
Further, the left Riemann-Liouville (R-L) 
derivatives are defined by: 
𝐷𝑥
𝛾

𝑎
𝑅𝐿 𝑓(𝑥) =

𝑑

𝑑𝑥
( 𝐼𝑥

1−𝛾
𝛼 𝑓(𝑥)) =

1

𝛤(1−𝛾)

𝑑

𝑑𝑥
∫

𝑓(𝑠)

(𝑥−𝑠)𝛾
𝑥

𝑎
𝑑𝑠.                                           (6) 
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Moreover, definitions for the right fractional 
integrals and derivatives have been assigned,  [9].  
 
 
3   The Λ-Fractional Derivative  
The authors initially introduced  The L-fractional 
derivative to establish a fractional derivative 
conforming to the properties of a derivative 
demanded by the Differential Topology. The 
objective was for the fractional derivative to 
correspond to a fractional differential. As has been 
mentioned, the prerequisites of differential 
topology for the derivatives are [23]: 
a.Linearity:  
D(af+bg)(x)= aDf(x)+bDg(x)                              (7)  
         
b. Composition (chain rule): 

        D f g x Df g D g x                               (8) 
                                                
c. Leibniz’s (product) rule:  

)(()()()())(( xgDxfxgxDfxgfD                          (9)        
 
The Λ-fractional derivative (Λ-FD) has been 
introduced as: 

( )( )
RL

x
a x RL

a x

D f x
D f x

D x


 



       .                             (10) 

 
Hence, according to the definition of the fractional 
derivative, Eq. (6), the Λ-FD is defined by: 

 

1

1

1 1

( )
( )

a x

a x
a x

a x a x

d I f x

d I f xdxD f x
d I x d I x

dx






 






 
 

           (11)  

 
Assuming xIX xa




1   and   

)()( 1 xfIXF xa

  the Λ-FD behaves like a 
conventional derivative, with local behavior in the 
fractional space (X, F(X)). Hence, it is possible to 
generate  Fractional Differential Geometry in the 
Λ-Fractional space (X, F(X)),  with the derivative,  

 
( )

a x

dF X
D f x

dX

        .                             (12) 

 
Further the relation, 

1 1( ( )) ( )RL

a x a xD I f x f x                             (13) 
pulls back to the initial space,  the functions 
generated in the fractional Λ-space. The proposed 
Λ-Fractional analysis is similar to Laplace’s 
transformation. Further, Eq.(13) is similar to the 
inverse of Laplace’s transformation. 

For better understanding, consider in the initial 
space  the function, 

  2xxf  .                                              (14) 
 
Transferring that function in the  Λ-fractional space 
(X, F(X)) (with a=0), 

𝛸 =
 3

2 γx

Γ γ




                                    (15) 

  

   

 

1( ) 0
2 31 2

1 (4 )0

F X I f x X
x

x s
ds x

x s





 


 


 

   

.    (16) 

 

Further considering from Eq. (15), 

  
1

23x      .                   (17) 
 
Eq. (16) yields 

 
  

 

31
22 3

4

X

F X










 
  

 
  .                    (18) 

 
The curve in the initial plane (x, f(x)), shown in 
Figure 1.  

 

 
Fig. 1: The original plane (x, f(x)=x2) 
 
is transferred to the Λ-fractional plane (space) 
shown in Figure 2, for γ=0.6. 
 

 
Fig. 2:  The curve in the Fractional Space (X, F(X)) 
for γ=0.6 
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Thus, the derivative: 

D(F(X))=
𝑑𝐹(𝑋)

𝑑𝑋
=
24(5−𝛾)𝛤(3−𝛾)(𝑋𝛤(3−𝛾))

3
2−𝛾

(2−𝛾)𝛤(6−𝛾)
    (19) 

 
The Λ-fractional plane for X0=0.6 and γ=0.6 

yields the derivative  D(F(X0))=1.1580. 
Consequently, the equation of the tangent line  Y(X) 
of that curve at a point X0 is defined by Figure 3  

Y(X)=F(X0)+
𝑑

𝑑𝑋
(F(X0))(X-X0).             (20) 

 

 
Fig. 3: Λ-Fractional Plane with the tangent space of 
the curve (x,F(X))  
 

The tangent space is transferred in the original 
plane (x, f(x)) following the procedure explained 
below:  

The point x0=0.81 in the initial x-axis, 
corresponding to X0=0.60 is defined, recalling Eq. 
(20), Then substituting in the derivative 𝑑𝐹(𝑋)

𝑑𝑋
  in 

the fractional plane, the X as a function of x, the 
𝐷𝑥
𝛾

0
𝛬 𝑓(𝑥) is defined. Hence, the corresponding 
function in the real space (x, f(x)) may be pulled 
back by the relation 𝐷0

𝑅𝐿
𝑥
1−𝛾
( 𝐷𝑥

𝛾
0
𝛬 𝑓(𝑥) ). Indeed,  

𝐷0
𝑅𝐿

𝑥
1−𝛾
( 𝐷𝑥

𝛾
0
𝛬 𝑓(𝑥) ) = 
1

𝛤(𝛾)
 
𝑑

𝑑𝑥
∫ (𝑥 − 𝑠)𝛾−1 𝐷𝑥

𝛾
0
𝛬 𝑓(𝑠)

𝑥

0
𝑑𝑠.           (21)   

 
In the present case for the function f(x)=x2 

𝐷0
𝑅𝐿

𝑥
1−𝛾
( 𝐷𝑥

𝛾
0
𝛬 𝑥2 )

𝑥=0.81
= 1.41.             (22)                                  

 
Thus, the fractional tangent space g(x) in the 
original space (x, f(x)) is defined by: 

𝑔(𝑥) = 𝑓(𝑥)𝑥0 + 𝐷0
𝑅𝐿

𝑥
1−𝛾

( 𝐷𝑥
𝛾

0
𝐿 𝑓(𝑥))

𝑥=𝑥0
(

 

2

3

x 





 

− 𝑋0)                                                    
(23) 

 
In the present case at X0=0.6 for γ=0.6, x0=0.81, 
the tangent space is expressed by Figure 4. 

𝑔(𝑥) = (𝑥2)𝑥=0.81 + 1.41( )4.0(
79.1 4.1



x
− 0.6)   (24) 

 
Fig. 4: The fractional tangent space g(x)  of the 
curve f(x) in the original plane for γ=0.6 at x=0.81 
 
 
4   The fractional Arc-Length 
The Λ-Fractional plane (X, Y(X)) for a function  
y=f(x) , with its Λ-Fractional Differential of order 
0<γ<1, is defined by: 

dX
dX

XdY
XdY

)()( 
                    (25)                                                                                 

 

with X and Y(X) defined by xIX xa




1      and   

)()( 1 xfIXF xa

 . Hence,  in the Λ-Fractional 
Plane, the arc length is expressed by: 

 
 
 

dX
dX

XdF
XS

2
1

2

2

1)(













         (26)                                                                              

 
Likewise, in the original plane, the arc length s(x) is 
defined by:  

   

1
0

2
1

0 2

( ) ( ( ))

( ( ))
2 3 1

RL

x

RL

x

s x D S X

x
D S






  






 

                      (27)                        
 

 
Nevertheless, for the curves defined parametrically 
by: 

   tfytgx  , .                            (28)                                                                              
 
The differential of the arc length in the Λ-fractional 
plane is defined by: 

  dT
dT

TdX

dT

TdY
TdS

22 )()(



















        (29)
 

 
With the expression of  the arc length,  

  
T

ΤdSTS
0

)(
.                              (30)                                                                         
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The Integral Equation  below yields the arc length 
s(t) in the original plane: 

   

1

2
1

2

( ) ( ( ))

( ( ))
2 3 1

RL

a x

RL

a x

s t D S T

t
D S






  









      (31) 

 
 

5  The Fractional Tangent Space of a 

Space Curve 
Assuming that the equation r=r(s) represents a 
space curve equation in the initial space, with s the 
fractional length of the curve. Transferring the 
space curve, defined in the initial space, into the Λ-
fractional space, the derivative defines the 
fractional tangent space in the Λ-space: 

dS

Sd

sdI

dI

sd

d )(
1

1

1
Rrr

R 












        (32)                                                          
 

 
Since, 

dSSd )(R ,                                      (33)                                                                      

the length 1R  is unity. Proceeding to the 
expression of the tangent vector with variables of 
the original plane: 

 
1 1 1( ) ( ) ( )

3

2 γs
R s S

Γ γ



 


R R

 
       (34)                                                                     

 
Further, pulling back that tangent vector into the 
initial space: 

𝑟𝑡(𝑠0 ) =
   

2
1 0

1 2
( )

2 3 1
RL

a s

s
D




  




   
R        (35) 

 
Since, at the point ro=r(so), the tangent space of the 
curve rt=r(s) is defined considering the Fractional 
Space with: 

Rt=R(S0) +kR1(S0),                                    (36)                                                                     
the tangent space, in the original space, 
corresponding to the tangent space in the Λ-
Fractional space  may be defined by: 

 
   

2 2
1 0

0 1 0( ) ( ( ))
3 3

t RL

a s

s s
s s D S

 


 

 


 
        

r r R

  
(37)  

 
The normal plane to the curve at S0 orthogonal to 
the tangent line at R0=R(S0) is defined by: 

    

    

0 0

0 1 0 0

S S

S S

  

  

Y R T

Y R R
 .                                     (38)                                    

The corresponding normal space in the initial space 
is defined by: 

𝒚(𝑠) = RL

a sD 𝐘(𝑆(𝑠).                      (39)    
 
                                                                                        

6  Geometry in the Λ-fractional Space 
Considering the surface, Figure 5, 

z=x2y2,   0<x<1,  0<y<1                (40) 
shown in Figure 5.  

 
Fig. 5: The surface z in the initial space 
 

Assuming the fractional order equal to γ, the Λ-

space (X, Y, Z) is defined by: 
𝑋 =

𝑥2−𝛾

𝛤(3−𝛾)
                             (41)                                                                                               

𝑌 =
𝑦2−𝛾

𝛤(3−𝛾)
                               (42)                                                                                              

 𝑍 = 𝐼𝑏 𝑦
1−𝛾

𝐼𝛼 𝑥
1−𝛾
𝑧(𝑥, 𝑦) =

1

(𝛤(1−𝛾))2
∫ (∫

𝑧(𝑠,𝑡)

(𝑥−𝑠)𝛾
𝑥

𝛼

𝑦

𝑏
𝑑𝑠)

𝑑𝑡

(𝑦−𝑡)𝛾
 .                       (43) 

 
With a=b=0 , Eq.(43) yields, 

𝑍 = (−
2((𝑋Γ[3−𝛾])

1
2−𝛾)3−𝛾

Γ[4−𝛾]
∗ 𝑌)             (44)                                        

 
In the Λ- fractional space, the surface Z is defined 
for γ=0.6 by:  

Z=0.947X1.714Y1.714                     (45)                                                                 
 
That surface in the Λ-fractional space is shown in 
Figure 6. 

 
Fig. 6: The surface Z in the Λ- fractional space 
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Proceeding to the definition of the tangent space of 
that surface, at the point X=Y=0.6, 
𝑍 = (0.947𝑋1.714𝑌1.714)(𝑋=𝑌=0.6) +
𝑑𝑍(𝑋=𝑌=0.6)

𝑑𝑋
(𝛸 − 0.6) + 

𝑑𝑍(𝑋=𝑌=0.6)

𝑑𝑌
(𝑌 − 0.6),     

(46)                                             
simplified by,  
Z=0.164+0.469(Χ-0.6)+0.469(Υ-0.6)                (47) 
 
The tangent space of the surface in the Λ-fractional 
space is shown in Figure 7. 

 
Fig. 7: The tangent plane of the surface in the Λ-

fractional space 
 

The corresponding surface in the initial space 
to the tangent plane in the Λ-fractional space is 
defined by: 
z= 𝑥2𝑦2(𝑥=𝑦=0.81) +

( 𝐷0
𝑅𝐿

𝑦=0.81
1−𝛾

𝐷0
𝑅𝐿

𝑥=0.81
1−𝛾

(
𝑑𝑍

𝑑𝑋
)) (𝑋(𝑥) − 0.6))     

+ ( 𝐷0
𝑅𝐿

𝑦=0.81
1−𝛾

𝐷0
𝑅𝐿

𝑥=0.81
1−𝛾

(
𝑑𝑍

𝑑𝑌
)) (𝑌(𝑦) − 0.6))                                                                      

(48) 

 
The corresponding tangent surface in the initial 
space  is shown in Figure 8. 
 

 
Fig. 8: The surface with its tangent surface at the 
point (x=y=0.8106) at the initial space 
 
 
7   The Fractional Field Theorems 
The well-known field theorems are expressed by: 

a. Green’s theorem. Let Qx(x,y), Qy(x,y), be 
smooth real functions in a domain Ω, with its 
boundary a smooth closed curve 𝜕𝛺. Then, 

∫ (𝑄𝑥𝑑𝑥 + 𝑄𝑦𝑑𝑦)𝜕𝛺
= ∬ 𝑑𝑥𝑑𝑦 (

𝑑𝑄𝑥

𝑑𝑦
−
𝑑𝑄𝑦

𝑑𝑥
)

𝛺
                                                                

(49) 
 

Corollary: When  Qx(x,y), Qy(x,y), are derived by a 
potential function Φ(x,y) with 𝑄𝑥 =

𝑑𝛷

𝑑𝑥
, 𝑄𝑦 =

𝑑𝛷

𝑑𝑦
,   

the  RHS of Eq.(49) becomes zero. That means that 
the curvilinear integral along a closed smooth 
boundary is zero.  
 
b. Stoke’s theorem: 
For a smooth vector field F defined on a simple 
surface Ω with the boundary 𝜕𝛺, Stoke’s theorem 
is expressed by, ∫ (𝑭, 𝑑𝑳) = ∬ (𝛁 ×

𝛺𝜕𝛺
𝑭, 𝑑𝑺)                                     

(50)                                                                              
where (∙,∙)  denotes the scalar product.              
                                
c. The Gauss’ (divergence) theorem: 

For a space region Ω with a smooth surface 
boundary 𝜕𝛺, the volume integral of  the 
divergence of a vector field F over Ω is equal to the 
surface integral of F over the boundary 𝜕𝛺: 

∫ (𝑭, 𝑑𝑺) =∭ 𝛁 ∙
𝛺𝜕𝛺

𝑭 𝑑𝛺                 (51) 
                                                                    

It is pointed out that those field theorems are 
valid in the Λ-fractional space. However, the 
results may be transferred into the initial space.   

 
 

8  Fractional Variational Calculus 

 and Fractional Multiple Integrals  
For a double integral in the fractional Λ-space: 

𝐼 = ∬ 𝐿(𝑋, 𝑌,𝑊,𝑊𝑋,𝑊𝑌)𝑑𝑋𝑑𝑌𝛺
           (52)                                                                          

 
The extremizing function is expressed by: 

𝜕𝐿

𝜕𝑊
−

𝜕

𝜕𝑋
(
𝜕𝐿

𝜕𝑊𝑋
) −

𝜕

𝜕𝑌
(
𝜕𝐿

𝜕𝑊𝑌
) = 0,              (53)                                                                               

 
along with the condition,    

𝜕𝐿

𝜕𝑊𝑋

𝑑𝑌

𝑑𝑋
−

𝜕𝐿

𝜕𝑊𝑌
= 0,                                  (54)                                                                            

 
on boundary C.  
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9  Λ-fractional Differential Equations. 

Existence and Uniqueness 

Theorems  
The problem of   the existence and uniqueness of 
theorems concerning Λ-fractional ordinary 
differential equations has been discussed: 

𝑑𝑌

𝑑𝑋
= 𝐹(𝑋, 𝑌)                      (55)   

                                                                                              
satisfying the Lipschitz condition, in the Λ-
fractional space: 

|𝐹(𝑋, 𝑌̃ )– 𝐹(𝑋, 𝑌)| < 𝐾,                          (56)           
 

Satisfying the initial condition, Y(X0)=Y0.                                      
Those properties are transferred into the initial 
space through the equation: 

𝑦(𝑥) =
1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝑌(
𝑠2−𝛾

𝛤(3−𝛾)
)

(𝑥−𝑠)1−𝛾
𝑥

0
ds  .                   (57) 

 
Applying Sonia Kowalewski’s theorem, 

concerning the existence of a solution of a Λ-
fractional partial differential equation, [24], p.49, in 
the Λ-space the following existence conditions are 
derived: 

With G(Y) and all its partial  Λ-derivatives 
continuous for |𝑌 − 𝑌0| < 𝛥,  if X0 is a given 
number and Z0=G(Y,0), Q0=𝐺′(𝑌0), and if 
F(X,Y,Z,G) in the region S defined by: 
|𝑋 − 𝑋0| < 𝛥, |𝛶 − 𝛶0| < 𝛥 , |𝛧 − 𝛧0| < 𝛥    (58)                                                      

 
then there exists a unique function Φ(X,Y) such 
that, 
a) Φ(Χ,Υ) and all its partial derivatives are 
continuous in the region R defined by:  

|𝑋 − 𝑋0| < 𝛥1,    |𝛶 − 𝛶0| < 𝛥2             (59)                                                                    
b) For all (X,Y) in R, Z=Φ(X,Y)  is a solution of the 
equation: 

𝜕𝑍

𝜕𝑋
= 𝐹(𝑋, 𝑌, 𝑍,

𝜕𝑍

𝜕𝑌
 )                           (60)   

                                                                             
c) For all values of  Y in the interval: 

 |𝛶 − 𝛶0| < 𝛥1  , Φ(X0,Y)=G(Y)           (61) 
 
The solution may be transferred into the initial 
space through the equation: 

𝑧(𝑥, 𝑦) =
1

𝛤(𝛾)2
𝜕2

𝜕𝑥𝜕𝑦
∫ ∫

𝛷(
𝑠2−𝛾

𝛤(3−𝛾)
 ,
𝑡2−𝛾

𝛤(3−𝛾)
)

(𝑥−𝑠)1−𝛾(𝑦−𝑡)1−𝛾
𝑦

0

𝑥

0
𝑑𝑠 𝑑𝑡.  

(62)   
 
                                                    

10  Linear Oscillations with 

 Fractional Dissipation 
An elastic spring with k elastic modulus acts along 
the axis x upon a body of mass m. In addition, 

friction of coefficient μ is acting upon the mass. 
Then, the Λ- space is defined with the T (time) axis 
corresponding to the t-axis by: 

𝑇 =
1

𝛤(1−𝛾)
∫

𝑠

(𝑡−𝑠)𝛾
𝑡

0
𝑑𝑠= 𝑡2−𝛾

𝛤(3−𝛾)
.              (63)                                                                       

 
Then, the Lagrangian is defined by: 

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚(

𝑑(𝑋(𝑇))

𝑑𝑇
)2 −

1

2
𝑘𝑋(𝑇)2    (64)                                                                    

 
Therefore, the Λ-space  equation of motion is 
defined by: 

𝑑2(𝑋(𝑇))

𝑑𝑇2
+ 𝜇

𝑑𝑋(𝑇)

𝑑𝑇
+𝜔2𝛸(𝛵) = 0           (65)                                                                      

with 𝜔2 = 𝑘

𝑚
   and the initial conditions, X(0)=X0 ,  

𝑑𝑋(0)

𝑑𝑇
=X1                                (66) 

 
Solving the differential equation for T>0 gives: 

𝑋(𝑇) = 𝑋0 cos (𝑇√𝜔
2 +

𝜇2

4
) 𝑒

−
𝜇𝑇

2 + (𝑋1 +

𝜇

2
𝛸0)

𝑠𝑖𝑛(𝑇√𝜔2+
𝜇2

4
)

√𝜔2+
𝜇2

4

𝑒−
𝜇𝑇

2 .                                    (67) 

 
That solution is valid in the Λ-fractional space. For 
the parameters: 

𝑋0 = 𝑋1 = 𝜔 = 𝜇 = 1,                      (68)                                                         
the solution is shown in Figure 9.  
 

 
Fig.  9: The solution X(T)  in the Λ-fractional space 
 
The solution in the initial space (t, x(t)), is defined 
with the help of the expression of T(t) with, 

  𝑇(𝑡)= 𝑡2−𝛾

𝛤(3−𝛾)
    .                                         (69)                                                                                              

 
In fact, it should be substituted into the solution 
X(T) in the Λ-space, so  

𝑋(𝑇(𝑡)) = 𝑋(
𝑡2−𝛾

𝛤(3−𝛾)
).                              (70)                                                                                       

 
The corresponding solution, x(t) in the initial space, 
is expressed by the equation: 

𝑥(𝑡) =
1

𝛤(𝛾)

𝑑

𝑑𝑡
∫
𝑋(

𝑠2−𝛾

𝛤(3−𝛾)
 )

(𝑡−𝑠)1−𝛾
𝑡

0
𝑑𝑠.                    (71)                                                                                 
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The solution x(t) of the fractional equation for 
fractional order γ1=0.5 is shown in Figure 10 and 
for γ1=0.8 in Figure 11. 

 
Fig. 10: The initial space solution x(t) for γ=0.5 

 

 
Fig. 11:  The initial space solution x(t) for                                   
γ=0.8 
 
 
11   The Wave Equation 
Let us now discuss the wave equation:  

𝜕2𝑌(𝑋,𝑇)

𝜕𝑋2
=

1

𝐶2
𝜕2𝑌(𝑋,𝑇)

𝜕𝑇2
                              (72)                                                                        

in the Λ- space with the initial conditions:    
Y(X,0)=η(X)   ,   𝜕𝑌(𝑋,0)

𝜕𝑇
= 𝑣(𝑋)             (73)                                                                         

 
The solution is presented in [24], page 220. In fact, 
where:  

η(Χ)=
𝜀𝛸

𝛼
                   0 ≤ 𝛸 < 𝛼           (74) 

η(Χ)=  𝜀 (3𝛼−2𝛸)
𝛼

      𝛼 < 𝛸 ≤ 2𝛼       (75)                                                                               

η(Χ)=  𝜀 (𝛸−3𝛼)
𝛼

      2𝛼 < 𝛸 < 3𝛼       (76)   
and  υ(X)=0,  the solution in the Λ-space is 
presented by: 
𝑌(𝛸, 𝛵) =

9𝜀

𝜋2
∑

1

𝑛2
∞
𝑛=1 𝑠𝑖𝑛

2𝑛𝜋

3
𝑠𝑖𝑛

2𝑛𝜋𝑋

3𝑎
𝑐𝑜𝑠

2𝑛𝜋𝑐𝑇

3𝛼
 .  
(77)                                                     

 
Assuming specific values ε=1, n=2, α=1, and 

c=1, the solution Y(X,T) in the Λ-space is shown in 
Figure 12. 

 
Fig. 12:  Solution of Y(X,T) in the Λ-space 

The solution obtained in the Λ-fractional space 
is transferred to the initial space, considering the 
fractional orders of time, γ1, of the x coordinate γ2, 
simulating the non-homogeneous distribution of the 
media in that space direction. 

Examples are porous or composite materials, 
and not only.  

Considering homogeneous media, i.e. media 
with γ2=1, the solution Y(X,T) is transferred into the 
initial space, recalling that: 

𝑋 = 𝑥          𝛵(𝑡) =
𝑡2−𝛾1

𝛤(3−𝛾1)
               (78)                                                                                        

 
Ιntroducing (Χ,Τ) into the function of Y(X,T),  

Y(x,t)=Y(X,T(t))= Y(𝑥, 𝑡2−𝛾1

𝛤(3−𝛾1)
 )        (79)                                                                                

 
Then, the solution of the equation y(x,t) in the 
initial space is defined through the transformation, 
y(x,t)= 1

𝛤(𝛾1)
 𝑑
𝑑𝑡
∫

𝑌(𝑥,𝜏)

(𝑡−𝜏)1−𝛾1
𝑑𝜏

𝑡

0
           (80)                                                                            

 
Figure 13 shows the solution of the equation in the 
initial space for γ1=0.5 and Figure 14 for γ1=0.8. 

 

 
Fig. 13:  The wave solution y(x,t) for γ1=0.5 

 
Fig. 14:  The solution in the initial space y(x,t) for 
γ1=0.8 
 

In fact,  non-homogeneous media, such as 
porous or composite materials, and not only are 
simulated.  
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It is recalled that: 
𝑋(𝑥) =

𝑥2−𝛾2

𝛤(3−𝛾2)
,    𝛵(𝑡) =

𝑡2−𝛾1

𝛤(3−𝛾1)
           (81)                                                                        

 
Then, introducing these values into the function of 
Y(X,T): 

Y(x,t)=Y(X(x),T(t))=Y( 𝑥
2−𝛾2

𝛤(3−𝛾2)
,

𝑡2−𝛾1

𝛤(3−𝛾1)
  )    (82) 

 
Then, the solution y(x,t) is given  by: 
y(x,t)=

1

𝛤(𝛾)2
 𝑑
𝑑𝑥

𝑑

𝑑𝑡
∫ ∫

𝑌(𝑠,𝜏)

(𝑥−𝑠)1−𝛾2(𝑡−𝜏)1−𝛾1
𝑑𝜏𝑑𝑠

𝑡

0

𝑥

0
   

(83) 
 

Figure 15 shows the solution of the equation in 
the initial space for fractional time order γ1=0.5 and 
space fractional order γ2=0.5. Nevertheless, the 
solution y(x,t)  for time fractional order γ1=0.5 and 
space fractional order γ2=0.8 is shown in Figure 16.   
Figure 17  corresponds to the solution y(x,t) in the 
initial space forγ1=0.8 and γ2=0.5. Figure 18  
corresponds to the solution y(x,t) in the initial space 
for γ1=0.8 and γ2=0.8 

 

 
Fig. 15: The solution y(x,t) in the initial space for 
γ1=0.5 and γ2=0.5 
 

 
Fig. 16: The solution y(x,t) in the initial space for 
γ1=0.5 and γ2=0.8 
 

 
Fig. 17: The solution y(x,t) in the initial space for 
γ1=0.8 and γ2=0.5 
 

 
Fig. 18: The solution y(x,t) in the initial space for 
γ1=0.8 and γ2=0.8 
 

Figure 15, Figure 16, Figure 17 amd Figure 18 
clearly show the influence of the time(viscoelastic ) 
and space (porosity) order effects. 
 
 
12 The Λ-fractional Diffusion 

 Equation 
The one-dimensional Λ-fractional diffusion 
equation is: 

𝜕2𝑌

𝜕𝑋2
=
1

𝑘

𝜕𝑌

𝜕𝑇
  ,                                             (84)                                                                         

 
with the b.cs, 

𝑌(𝑋, 0) = ∑ 𝑐𝑛
∞
𝑛=0 𝑐𝑜𝑠(𝑛𝛸 + 𝜀𝑛),            (85) 

 and      𝑌 → 0  𝑎𝑠  𝑇 → ∞.                                    
For the solution to the diffusion equation, see [24],  

𝑌(𝑋, 𝑇) = ∑ 𝑐𝑛
∞
𝑛=0 𝑐𝑜𝑠(𝑛𝑋 + 𝜀𝑛)𝑒

−𝑛2𝑘𝑇    (86)                                                                                 
 
First-time fractional space is considered with 
fractional order γ1 only. In that case: 

𝑇 =
𝑡2−𝛾1

𝛤(3−𝛾1)
 ,     Χ=x.                                    (87)                                                                                   

 
Hence, 
𝑌(𝑥, 𝑇(𝑡)) = 𝑌 (𝑥,

𝑡2−𝛾1

Γ(3−𝛾1)
) = ∑ 𝑐𝑛

∞
𝑛=0 𝑐𝑜𝑠(𝑛𝑋 +

𝜀𝑛)𝑒
−𝑛2𝑘

𝑡2−𝛾1

Γ(3−𝛾1)
                                                   (88) 
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The solution is transferred to the initial space with: 

𝑧(𝑥, 𝑡) =
1

Γ(𝛾1)

𝑑

𝑑𝑡
∫
∑ 𝑐𝑛

∞
𝑛=0 𝑐𝑜𝑠(𝑛𝑋+𝜀𝑛)𝑒

−𝑛2𝑘
𝜏2−𝛾1

Γ(3−𝛾1)
 
 

(𝑡−𝜏)1−𝛾1
𝑑𝜏

𝑡

0
    

                                                                         (89)                                                    
 
A simplified solution with the initial condition: 

𝑌(𝑋, 0) = cos (𝑋),                                  (90)                                                                 
is considered with k=1. Hence,  the solution in the 
Λ-fractional space is defined by: 

𝑌(𝑋, 𝑇) = 𝑐𝑜𝑠𝑋𝑒−𝑇.                                 (91)                                                                         
 
Figure 19 pictures the solution of the diffusion 
equation in the Λ-fractional space.  
 

 
Fig. 19: The solution of the diffusion equation in 
the Λ-space 
 
Hence, 

𝑌(𝑥, 𝑇(𝑡)) = 𝑌 (𝑥,
𝑡2−𝛾1

Γ(3−𝛾1)
) = 𝑐𝑜𝑠𝑥 𝑒

−(
𝑡2−𝛾1

Γ(3−𝛾1)
)                                           

(92)  
                                             

Therefore, the solution in the initial space is 
defined by: 

𝑦(𝑥, 𝑡) =
1

Γ(𝛾1)

𝑑

𝑑𝑡
∫
𝑐𝑜𝑠(𝑥)𝑒

−𝑛2𝑘
𝜏2−𝛾1

Γ(3−𝛾1)
 
 

(𝑡−𝑠)1−𝛾1
𝑑𝜏

𝑡

0
    (93)                                                                 

 
Figure 20 represents the solution of the 

diffusion equation in the initial space for fractional 
order γ1=0.5. However, Figure 21 shows the 
solution for γ1=0.8.  

 
Fig. 20: The solution of the diffusion equation in 
the initial space for fractional order γ1=0.5 

 
Fig. 21:  The solution of the diffusion equation in 
the initial space for fractional order γ1=0.8 
 
Proceeding to the interaction of time γ1  and space 
γ2 fractional orders:  

𝑇 =
𝑡2−𝛾1

Γ(3−𝛾1)
 ,     Χ=

𝑥2−𝛾2

Γ(3−𝛾2)
                       (94)                                                                               

 
Hence, 
𝑌(𝑋(𝑥), 𝑇(𝑡)) = 𝑌 (

𝑥2−𝛾2

Γ(3−𝛾2)
  ,

𝑡2−𝛾1

Γ(3−𝛾1)
) =

∑ 𝑐𝑛
∞
𝑛=0 𝑐𝑜𝑠 (𝑛

𝑥2−𝛾2

Γ(3−𝛾2)
  + 𝜀𝑛) 𝑒

−𝑛2𝑘
𝑡2−𝛾1

𝛤(3−𝛾1)
 
    

(95) 
                                                                          
Transferring the solution to the initial space: 
𝑦(𝑥, 𝑡) =

1

𝛤(𝛾1)𝛤(𝛾2)

𝑑

𝑑𝑥

𝑑

𝑑𝑡
∫ ∫

∑ 𝑐𝑛
∞
𝑛=0 𝑐𝑜𝑠(𝑛

𝑠2−𝛾2

𝛤(3−𝛾2)
  +𝜀𝑛)𝑒

−𝑛2𝑘
𝜏2−𝛾1

𝛤(3−𝛾1)
 
 

(𝑥−𝑠)1−𝛾2(𝑡−𝜏)1−𝛾1
𝑑𝜏𝑑𝑠

𝑡

0

𝑥

0
                                                          

  (96) 
 
Simplifying the algebra the solution:        

𝑌(𝑋, 0) = cos (𝑋) ,                                  (97)                                                                       
is taken into consideration with k=1. The solution 
in the Λ-fractional space, is defined by: 

𝑌(𝑋, 𝑇) = 𝑐𝑜𝑠𝑋𝑒−𝑇                                 (98)                                                             
 
Figure 22 shows the solution of the diffusion 
equation in the Λ-fractional space.  

 
Fig. 22:  The solution of the diffusion equation in 
the Λ-space 
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Hence, 
𝑌(𝑋(𝑥), 𝑇(𝑡)) = 𝑌 (

𝑥2−𝛾2

Γ(3−𝛾2)
,
𝑡2−𝛾1

Γ(3−𝛾1)
) =

𝑐𝑜𝑠
𝑥2−𝛾2

Γ(3−𝛾2)
 𝑒
−(

𝑡2−𝛾1

Γ(3−𝛾1)
).                                       (99)         

 
Hence, in the initial space: 
𝑦(𝑥, 𝑡) =

1

Γ(𝛾2)Γ(𝛾1)

𝑑

𝑑𝑥

𝑑

𝑑𝑡
∫ ∫

𝑐𝑜𝑠(
𝑠2−𝛾2

Γ(3−𝛾2)
)𝑒
−𝑛2𝑘

𝜏2−𝛾1

Γ(3−𝛾1)
 
 

(𝑥−𝑠)1−𝛾2(𝑡−𝜏)1−𝛾1
𝑑𝜏

𝑡

0
𝑑𝑠

𝑥

0
 .                                                              

(100) 
 

The solution of the diffusion equation in the 
initial space for time fractional order γ1=0.5 and 
space fractional order γ2=0.5 is shown in Figure 23. 
Nevertheless, in Figure 24   we can see the solution 
for time fractional order γ1=0.5 and space fractional 
order γ2=0.8. Figure 25  pictures the solution of the 
equation for time order γ1=0.8 and space order 
γ2=0.5.  Figure 26 indicates the solution of the 
equation for time order γ1=0.8 and space order 
γ2=0.8. 

 

 
Fig. 23:   The solution of the equation for time 
order γ1=0.5 and space order γ2=0.5 
 
 

 
Fig. 24:   The solution of the equation for time 
order γ1=0.5 and space order γ2=0.8 
 

 
Fig. 25: The solution of the equation for time order 
γ1=0.8 and space order γ2=0.5 
 

 
Fig. 26: The solution of the equation for time order 
γ1=0.8 and space order γ2=0.8 
 

 

13 Branching of the Λ-fractional 

 Differential Equations 
Branching problems are considered into the context 
of Λ-fractional analysis.  

The beam deflection due to branching is 
represented by w(x), (Figure 27), corresponding to 
the buckling of a simply supported beam, where the 
axial load p is applied upon the support at x=l and 

with axis 0<x<l.   

 

 
Fig. 27: Branching curve in the initial plane 
(x,w(x)) 
 
The geometry of the branching problem in the Λ-
fractional space is defined by: 

𝑋 =
1

𝛤(1−𝛾)

𝑑

𝑑𝑥
∫

𝑠

(𝑥−𝑠)𝛾
𝑥

0
𝑑𝑠 ,                    (101)                                                              

and the beam deflection W(X) ,( Figure 28) 
𝑊(𝑋) =

1

𝛤(1−𝛾)
∫

𝑤(𝑠)

(𝑥−𝑠)𝛾
𝑥

0
𝑑𝑠.                 (102)   

                                                                      

 
Fig. 28: Branching curve in the Λ-space (X,W(X)) 
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The length l and the axial force p . correspond to L 
and P  in the Λ-fractional space, where: 

𝐿 =
𝑙1−𝛾

𝛤(2−𝛾)
    and       𝑃 = 𝑝1−𝛾

𝛤(2−𝛾)
          (103)                                                                    

 
Further, the free energy of the beam is given by: 

𝑉 =
𝐸𝐼

2
∫ 𝐾2𝑑𝑆 − 𝑃𝛿𝐿
𝐿

0
                           (104)                                                                                    

where the various characteristics of the beam in the 
Λ-space are defined as follows: S represents the arc 
length of the inextensible elastic curve of the beam 
in the Λ-space, EI stands for the stiffness of the 
beam, and δL denotes the displacement of the load 
P. Hence, defining  the free energy of the beam, 
Eq.(104): 

𝑉 =
𝐸𝐼

2
∫(

𝑊 ′′(𝑆)

√1 +𝑊 ′(𝑆)2
)

2𝐿

0

𝑑𝑆 − 

−𝑃∫ (1 −
1

√1+𝑊′(𝑆)2
) 

𝐿

0
dS                                (105) 

 
Considering small deflections, |𝑊(𝑆)| ≪ 1, the 
free energy function is expressed by: 

𝑉 = ∫
𝐸𝐼

2

𝐿

0
(𝑊 ′′(𝑆)2 (1 −

1

2
𝑊 ′(𝑆)2)

2
−

𝑃

2
𝑊 ′(𝑆)2)𝑑𝑆=∫ 𝛺(𝑆, 𝑃)𝑑𝑆

𝐿

0
.                          (106) 

 
The variational equation, derived through the 
potential function V, yields the equilibrium 
equation: 

𝑑2

𝑑𝑆2
𝜕𝛺(𝑆,𝑃)

𝜕𝑊′′(𝑆)
−

𝑑

𝑑𝑆

𝜕𝛺(𝑆,𝑃)

𝜕𝑊′(𝑆)
= 0.                  (107)                                                            

 
Consequently, the equilibrium equation is:  
𝑊(4)(𝑆) +

𝑃

𝐸𝐼
𝑊 ′′(𝑆) =

9

2
𝑊 ′(𝑆)2𝑊 ′′(𝑆) +

𝑊 ′′(𝑆)3 + 4𝑊 ′(𝑆)𝑊 ′′(𝑆)𝑊 ′′′(𝑆),                    (108) 
 
with  the b.cs,  
W(0)=𝑊 ′′(0) = 𝑊(𝐿) = 𝑊 ′′(𝐿) = 0.             (109)                                                                            
 
Following the principles of  branching theory, [13], 
[25], the homogeneous linear problem:  

𝑊(4)(𝑆) +
𝑃

𝐸𝐼
𝑊 ′′(𝑆) = 0,                      (110)                                                                        

with the above b.cs, is expressed by: 
𝑊(𝑆) = 𝜉 sin(𝜆𝑆),                               (111)                                                                        

with  𝜆2 = 𝑃

𝐸𝐼
= (

𝜋

𝐿
)
2
  .                          (112)                                                                                         

 
Further, increasing the loading by: 

𝑃

𝐸𝐼
= 𝜆2(1 + 𝑘2),                                       (113)                                                                        

the branching equation becomes: 

𝑊(4)(𝑆) + 𝜆2𝑊 ′′(𝑆)
= 𝑅(𝑆, 𝑘)                                                                   

= −𝜆2𝑘2𝑊 ′′(𝑆) −
9

2
𝑊 ′(𝑆)2𝑊 ′′(𝑆) +𝑊 ′′(𝑆)3

+ 4𝑊 ′(𝑆)𝑊 ′′(𝑆)𝑊 ′′′(𝑆) 
                                                                          (114)                  
 
According to Fredholm's alternative theorem, the 
branching equation has a solution if: 

∫ 𝑅(𝑆, 𝐾)𝑑𝑆 = 0
𝐿

0
,                           (115)                                                                        

 
Hence, the deflection of the branching curve is 
defined  as a function of the incremental axial force 
by: 

𝜉 =
1.26

𝜋
𝑘𝐿  .                                      (116)                                                                            

 
Consequently, the branching elastic curve in the Λ-
space  is defined by: 

𝑊(𝑋) =
1.26

𝜋
𝑘𝐿 sin(𝜆𝑋).                  (117)                                                                       

 
Expressing the elastic line in the Λ-space with 
variables of the initial space: 

W(X(x))=ξ sin(
𝜋

𝐿

𝑥2−𝛾

𝛤(3−𝛾)
)  .                    (118)                                                                                

 
Finally, the branching equation in the initial space 
is defined by: 

 𝑤(𝑥) = 1

Γ(𝛾)

d

dx
∫

𝜉 sin(
𝜋

𝐿

𝑠2−𝛾

Γ(3−𝛾)
) 

(x−s)1−𝛾
𝑑𝑠

x

0
.     (119)   

 
                                                               

14   The Λ-fractional Euler-Lagrange 

Equation 
We transfer the variational problem, [26] from the 
initial space to the Λ-fractional space [27], [28]. 
The various functions are defined through: 

𝑋 =
1

𝛤(1−𝛾)
∫

𝑥

(𝑥−𝑠)𝛾
𝑥

0
𝑑𝑠= 𝑥2−𝛾

𝛤(3−𝛾)
         (120)                                                          

𝑥 = (𝑋𝛤(3 − 𝛾))1/(2−𝛾).                    (121)                                                                
 
The extermination of the functional in the Λ- 
fractional space is expressed by: 

𝑉   =∫ 𝐹(𝑋, 𝑌(𝑋), 𝑌′(𝑋))𝑑𝑋
𝐿

0
            (122)                                                                       

with some corresponding boundary conditions.         
 
The extremal equation is defined by:           

𝑑

𝑑𝑋

∂F(X,Y(X),𝑌′(𝑋))

∂𝑌′(𝑋)
−
∂W(𝑋,𝑌(𝑋),𝑌′(𝑋))

∂Y(X)
= 0       (123)                                                               

with the boundary conditions. Since Λ-fractional 
analysis is a global procedure, globally stable 
variational problems will be considered. In other 
words, continuous solutions of the extremal 
Eq.(123) are adopted with non-continuous 
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derivatives; hence,  the Weierstrass-Erdman corner 
conditions, [13], [27], should additionally be 
satisfied with: 
𝐹𝑌′[𝑋 = 𝑐 − 0] −𝐹𝑌′[𝑋 = 𝑐 + 0] = 0  (124)                                                                         
(𝐹 − 𝑌′𝐹𝑌′)[𝑋 = 𝑐 − 0] −(𝐹 − 𝑌′𝐹𝑌′)[𝑋 = 𝑐 +
0] = 0.                                                              (125) 
 
With the help of the Eqs. (120), we should transfer 
the extremal function Y(X) into the initial space.  
 
Indeed, 

𝑌(𝑋) = 𝑌(
𝑥2−𝛾

𝛤(3−𝛾)
).                                 (126)                                                            

 
Further, using Eq. (126) the problem is transferred 
into the initial space as:  

𝑦(𝑥) =
1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝑌(
𝑠2−𝛾

𝛤(3−𝛾)
)

(𝑥−𝑠)1−𝛾
𝑑𝑠

𝑥

0
.                 (127)                                                            

 

 

15 The Λ-fractional Refraction of 

Light 
Two mediums I and II are sparated by the line y=0. 
The light ray transverses a path from point a=(x1,y1) 

of medium I with velocity v1 to point b=(x2,y2) of 
medium II with velocity v2, considering the shortest 
time interval.   

The points A=(X1,Y1)   and B=(X2, Y2) in the Λ-
fractional space correspond to the points a and b in 
the initial space, Figure 29. 

 

 
Fig. 29: The Λ-fractional light refraction problem 
 

We define the Λ-fractional space by(γ is the 
fractional order of various material non-
homogeneous distributions): 

𝑋 =
𝑥2−𝛾

𝛤(3−𝛾)
 ,            𝑌 = 𝑦2−𝛾

𝛤(3−𝛾)
  ,            (128)                                                    

 
where (x,y) are the corresponding points of the 
initial space.  
 

We formulate the Λ-fractional light refraction 
problem in the Λ-fractional space. In order to solve 
it, the following integral must be  minimized:  

𝐽 = ∫
√1+𝑌′2

𝑣1
𝑑𝑋 + ∫

√1+𝑌′2

𝑣2
𝑑𝑋

𝑋2
𝑋𝑜

𝑋𝑜
𝑋1

      (129)                                                        
 

Both the Euler-Lagrange equation and the 
corner conditions must be considered to minimize 
globally the integral. 

The minimum time for the light traveling from 
point A to point B is defined for the zigzag straight 
line AX0B, which can be given from the relation: 

𝑠𝑖𝑛𝜑

𝑠𝑖𝑛𝜃
=
𝑣1

𝑣2
= constant.                         (130)                                                              

 
From that relation, we can define the point X0 

where the light beam meets the axis X. The point x0 
in the initial space, corresponding to the X0, is 
defined with the formula: 

𝑥𝑜 = (𝑋𝑜𝛤(3 − 𝛾))
1/(2−𝛾).                (131)                                                      

 
We transfer straight lines in the Λ-fractional 

space as straight lines in the initial space; the path 
should pass through the points a, xo, and b in the 
initial space, and the zigzag curve axon defines the 
fractional refraction problem. 

 
 

16 Conventional Deformation vs Λ - 

Fractional Deformation Geometry 
Let us consider a material body b in its undeformed 
initial placement with its boundary 𝜕𝐛. The 
deformed configuration is δ with the boundary 𝜕δ. 

If a material point x in b moves to the position ψ in 
δ, (Figure 30), the local deformation is defined  by 
[13], [16], [17], [29]: 

 
Fig. 30:  The initial and deformed placements at the 
initial space 
 

𝐅(𝛙(𝐱)) =
𝜕(𝛙)

𝜕𝐱
                               (132)                                                   

 
The right Cauchy-Green deformation tensor is: 

C=FT F                                              (133)                                                             
 
whereas the left Cauchy-Green deformation tensor 
is given by: 

B=F FT                                                (134)                                                             
 
where ( )T denotes the transpose matrix. 
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We then define the Euler-Lagrange strain tensor as, 
E=1/2 (C-I)                                      (135)                                                                        

 
and the Euler-Almansi strain tensor: 

𝐞 = 1/2(𝐈 − 𝐁−𝟏)                             (136)                                                                 
 
Besides, the linear strain tensor is defined by: 

𝐄𝐥 =
1

2
(𝐅 + 𝐅𝐓) − 𝐈 =

𝟏

𝟐
(𝐇 + 𝐇𝐓)    (137)                                                               

 
where H =F-I  is the displacement gradient tensor.   
The configurations  B and Δ in the Λ-space 
correspond to the configurations of the reference 
placement b and the deformed one δ in the initial 
space. In fact the transformation: 

𝐗 =
𝑥𝑖
2−𝛾𝐞𝑖

𝛤(3−𝛾)
 ,  i =1,.,3                  (138)     

is considered.                                                              
(The tensor contraction and the vectors ei are the 
unit ones). Likewise, the transformation Ψ of the 
current placement ψ(x) in the fractional Λ-space 
(Figure 31) is defined by: 
𝚿̅(𝐱) =

𝐄𝑖

𝛤(1−𝛾)3
∭

𝜓𝜄(𝑠,𝑡,𝑢) 𝑑𝑠 𝑑𝑡 𝑑𝑢

((𝑥1−𝑠)(𝑥2−𝑡)(𝑥3−𝑢))
𝛾

𝑥3𝑥2 𝑥3
𝛼3𝛼2𝛼1

    

                                                              (139)                                                
where Ει,  i=1,2,3, are the unit vectors in the 
conjugate Λ-space.  
 

 
Fig. 31: The initial and the deformed placements at 
the Λ-space 
 

Eq.(138) defines the transformation of the 
current placement in the Λ-space. With the help of 
Eq.(138), the current placement is defined: 

Ψ=Ψ(Χ)                                                     (140)                                                              
with the Χ vector defining the initial placement in 
the conjugate Λ-fractional space.  
 
Therefore, the Λ- fractional deformation  tensor is 
defined by: 

𝐅𝜦 (𝚿(𝚾)) =
𝜕(𝚿)

𝜕𝚾
                              (141)                                                                    

 
The right Cauchy-Green deformation tensor  in the 
Λ- fractional is defined by: 

ΛC=ΛFT ΛF                                         (142)                                                                       
 

Further, expressing the left Λ- fractional Cauchy-
Green deformation tensor: 

ΛB=ΛF ΛFT                                             (143)                                                          
 

with ( )T denoting the transpose matrix. 
 
Then, the Λ- fractional Euler-Lagrange strain 
tensor is defined by: 

ΛE=1/2 (ΛC-I)                                     (144)                                                             
 
where I is the identity matrix. Yet the Λ- fractional 
Euler-Almansi strain tensor: 

𝐞𝚲 = 1/2(𝐈 − 𝐁𝚲 −𝟏)                        (145)                                                                                    
 
Further, the Λ-fractional linear strain tensor is 
defined by: 
𝐄𝚲 𝐥 =

1

2
( 𝐅𝚲 + 𝐅𝚲 𝐓) − 𝐈 =

𝟏

𝟐
( 𝐇𝜦 + 𝐇𝚲 𝐓)   (146)                                               

with 𝐇𝛬   the Λ-fractional displacement gradient in 
the  Λ-fractional space.     
 

At this point, we must note that strains may not 
be transferred in the initial space since strains are, 
in fact, derivatives. Nevertheless, if strain is needed 
in the initial space, those strains will be transferred 
as functions.                                

We transfer the various deformation tensors in 
the Λ-fractional space back to the original space 
through the transformation:  

𝐪(𝐱) = 𝐷𝑎
𝑅𝐿

𝐱(𝐗)
1−𝛾(𝐐(𝐗))                          (147)    

 
In the case of both sides transformation Ψ(X) 

of the displacement function ψ, Eq.(139) becomes: 
𝚿̅(𝒙)=

𝐄𝑖

(2𝛤(1−𝛾))3
𝑑

𝑑𝑥3
(
𝑑

𝑑𝑥2
∫ (

𝑑

𝑑𝑥1
(∫

𝜓𝜄(𝑠,𝑡,𝑢) 𝑑𝑠 

((𝑥1−𝑠)(𝑥2−𝑡)(𝑥3−𝑢))
𝛾

𝑥1
𝑎1

−
𝑥2
𝑎2

      + ∫
𝜓𝜄(𝑠,𝑡,𝑢) 𝑑𝑠 

((𝑥1−𝑠)(𝑥2−𝑡)(𝑥3−𝑢))
𝛾

𝑏1
𝑥1

)𝑑𝑡) 𝑑𝑢)           (148) 

 
In order to make the problem more accessible, 

we will consider only the left fractional derivative 
in the first chapters. 

  
 

17   The Elasticity Problem 
The strain energy density function is defined, [16], 
[17], [30] as: 

𝑊 = 𝑊(𝐂),                                          (149)                                                                                                         
where C is the right Cauchy-Green deformation 
tensor, Eq.(142); moreover, for isotropic materials 
holds that: 

𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3)                                 (150)                                                        
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where 𝐼1, 𝐼2, 𝐼3 are the principal invariants of the 
tensor C or B. Then the stress tensor T is defined 
by [30]: 

𝐓 = 𝜒0𝚰+𝜒1𝐁+ 𝜒−1𝚩
−1                     (151)                                                               

where 𝚰 is the unit 3x3 matrix, and if  
𝑊𝑖 =

𝜕𝑊

𝜕𝐼𝑖
,                                              (152) 

𝜒0 =
2

𝛪3
1/2 (𝛪2𝑊2 + 𝛪3𝑊3)                       (153) 

𝜒1 =
2

𝐼3
1/2𝑊1                                            (154)   

 𝜒−1 = −2𝐼3
1/2
𝑊2                                    (155) 

 
Further, for incompressible isotropic materials with 
I3=1, the stress tensor is expressed by: 

𝐓 = −𝑝𝚰+2𝑊1𝐁− 2𝑊2𝚩
−1                  (156)                                                                 

where p  is the pressure due to the constraint of 
incompressibility.   
 
Let us point out that for neo-Hookean materials:  

𝑊 = 𝐶1(𝐼1 − 3)                                  (157)                                                             
with 

𝐓 = −𝑝𝚰+2𝐶1𝚩1                                   (158)       
 
Besides, for the Mooney-Rivlin incompressible 
materials with: 

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3)                 (159) 
the stress tensor is expressed by: 

𝐓 = −𝑝𝚰+2𝐶1𝐁 − 2𝐶2𝚩
−1  .                (160) 

 
Likewise, for linear elasticity with infinitesimal 
deformations, we get: 

𝑇𝐾𝐿 = 2𝜇𝛦𝐾𝐿 + 𝜆𝛦𝛭𝛭𝛿𝐾𝐿                      (161)                                                             
where, 

𝐸𝐾𝐿 =
1

2
(𝑢𝐾,𝐿 + 𝑢𝐿,𝐾)                            (162)                                                                   

is the linear deformation tensor.  
 

The coefficients (λ,μ)  are the well-known 
Lame coefficients. Furthermore, we may transfer 
the various results only as functions to the original 
space. Moreover, the equation of the balance of 
linear momentum is defined by: 

[ ] 0div  T b                           (163)                                                      
where b is the body loading and ρ is the material 
density. The symmetry of Cauchy stress tensor 
yields, 

TT T                    (164)                                                 
 

All the relations concerning elasticity theory 
are evidently valid in the Λ-Fractional space, not 
the initial space. The results from the Λ-space are 
transferred into the initial space, and those are the 
final results. 

In the case of the Λ-space, all the functions will 
be considered with the Λ-upper left index.   
 
 
18   Application 
A material point (x,y) moves from the initial to the 
deformed position through the formula: 
(χ,ψ)=ξ(x+x2y, y+y2x), with |𝜉| ≪ 1,  in the initial 
plane. Therefore, this point, in its undeformed and 
deformed status, can be described in the 
corresponding positions (X,Y) in the Λ-fractional 
space, where, see Eq.(135): 

     𝑋 =
𝑥2−𝛾

𝛤(3−𝛾)
                                         (165)                                                                                               

      𝑌 = 𝑦2−𝛾

𝛤(3−𝛾)
                                        (166)                                                         

 
Meanwhile, in order for the algebra not to 

become lengthy, the application presented will have 
fractional order γ=0.6. 

Furthermore, the initial plane's current 
displacement (u,v) corresponds to the displacement 
(U, V) in the Λ-fractional space. According to 
Eq.(135),we have: 

𝑈 = 0.973𝜉𝛸1.71𝑌                                (167) 
 𝑉 = 0.973𝜉𝛸𝑌1.71                                (168)                                                                 

 
The Λ-fractional (non-local) displacement gradient 
𝐇𝛬  is defined by: 

𝚮 =
𝜕(𝑈,𝑉)

𝜕(𝑋,𝑌)
Λ                                            (169)                                                                                                 

 
The Λ- fractional linear strain tensor, Eq.(135), is 
defined by using the computerized Mathematica 
pack, [31]. In that case: 
𝐄𝐥𝚲 (𝑋, 𝑌) =

𝜉 [
1.668𝛸0.714𝑌 0.487(𝛸0.714 + 𝑌0.714)

0.487(𝛸0.714 + 𝑌0.714) 1.668𝛸𝑌0.714
]    

                                                                          (170)                                     
 

Similarly, we may define all the necessary Λ-
fractional deformation and strain tensors using 
similar procedures with the help of the 
Mathematica computerized algebra. In order to pull 
back to the initial space all the various deformation 
tensors, the following method should be followed: 

Through the Eqs. (165, 166, 147), the variables 
X and Y are expressed in x and y. Then the Eq.(147) 
yields: 
𝐪(𝑥, 𝑦) = 𝐷𝑎

𝑅𝐿
𝒚
1−𝛾

𝐷𝑎
𝑅𝐿

𝒙
1−𝛾(𝐐(𝑋(𝑥), 𝑌(𝑦)))     (171)                                                  

 
Expressing the fractional Riemann-Liοuville 
derivatives in Eq.(171), it appears: 
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𝐪(𝑥, 𝑦) =
1

(𝛤(𝛾))2
𝜕2

𝜕𝑥𝜕𝑦
∫

1

(𝑦−𝑡)1−𝛾
𝑦

0
(∫

𝐐(𝑠,𝑡)

(𝑥−𝑠)1−𝛾
𝑥

0
𝑑𝑠)𝑑𝑡      (172)                                      

 
The corresponding matrices in the original 

space (x,y) are extracted by applying Eq.(172) to 
the Λ-fractional deformation and Λ-strain matrices. 
Indeed, we may compute the fractional linear strain 
𝐞𝐥 in the initial space through the relation: 
𝐞𝐥(𝑥, 𝑦) = 𝐷𝑎

𝑅𝐿
𝒚
1−𝛾

𝐷𝑎
𝑅𝐿

𝒙
1−𝛾
( 𝐄𝐥𝚲 (𝑋(𝑥), 𝑌(𝑦)))    

(173)                                                  
 

Performing the computation with the help of 
Mathematica computerized algebra, it is found: 
𝐞𝐥(𝑥, 𝑦) =

𝜉 [
1.599𝑥0.6𝑦 0.335 (

𝑥2

𝑦0.4
+

𝑦2

𝑥0.4
)

0.335 (
𝑥2

𝑦0.4
+

𝑦2

𝑥0.4
) 1.599𝑥𝑦0.6

]    

(174)                                  
 
Proceeding to the definition of the stresses in the Λ-
space: 

𝛴11
(2𝜇+𝜆)𝜉

= 𝛦11 +
𝜇

2𝜇+𝜆
𝛦22                       (175)                                                                

𝛴22
(2𝜇+𝜆)𝜉

= 𝛦22 +
𝜇

2𝜇+𝜆
𝛦11                      (176)                                                             

𝛴12
(2𝜇+𝜆)𝜉

=
2𝜇

2𝜇+𝜆
𝛦12       .                          (177)                                                           

 
We have computed the stresses 𝜎𝑖𝑗

(2𝜇+𝜆)𝜉  
 in the 

original space for 𝜇

2𝜇+𝜆
= 0.30. (Figure 32, Figure 

33 and Figure 34). 

 

 
Fig. 32: The stress σ11 in the initial space for γ=0.5, 
0.8, 1.0 
 
 
 
 
 
 
 

 

 
Fig. 33: The stress σ12 in the initial space for 
γ=0.5,0.8,1.0 
 

  
 

 
Fig. 34: The stress σ22 in the initial space for 
γ=0.5,0.8,1.0 
 
The high importance of the contribution of the 
fractional-order γ is evident. 
 
 
19   The Bar Extension  
This section describes the problem of the bar 
extension using the Λ-strain, as implemented in 
deformation problems. Let's assume a bar, which is 
fixed at one end, is fractionally deformed due to a 
force p at its free end (Figure 35). 
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Fig. 35: The bar in the initial space 

 
This initial space force p corresponds to a force 

P in the fractional Λ-space, which is defined by the 
formula: 

𝑷 =
1

𝛤(1−𝛾)
∫

𝒑

(𝑙−𝑠)𝛾
𝑑𝑠

𝑙

0
=

𝒑𝑙1−𝛾

𝛤(2−𝛾)
       (178)                                                                 

 
Transferring into the Λ-space, the length l of the 
bar: 

  𝐿 =
𝑙2−𝛾

𝛤(3−𝛾)
  ,                                   (179)                                                                   

(Figure 36).     
 

 
Fig. 36: The fractional Λ-space  
                                                        
Likewise,  the constant cross-section area is 
transferred to the Λ-space through the formula: 

  𝐴 =
1

𝛤(1−𝛾)
∫

𝑎

(𝑙−𝑠)𝛾
𝑑𝑠

𝑥

0
=

𝑎𝑥1−𝛾

𝛤(2−𝛾)
        (180)                                                           

 
Hence, the linear Hook’s law in the Λ-space, is 
defined by:  

𝑑𝑌

𝑑𝑋
=

𝑃

𝐸𝐴
=

𝑝𝑙1−𝛾

𝛦𝑎𝑥1−𝛾
                               (181)                                                                 

where  E is Young’s modulus of Elasticity in the Λ-
space. Furthermore: 

 𝑥 = (𝛤(3 − 𝛾)𝛸)
1

2−𝛾                            (182)                                                                            
 
Hence, Eq.(181) yields: 

𝑌(𝛸) = ∫
𝑝𝑙1−𝛾  𝑑𝛸

𝛦𝑎(𝛤(3−𝛾)𝛸)
1−𝛾
2−𝛾  

=
(2−𝛾)𝑝𝑙1−𝛾𝛸

1
2−𝛾

𝛦𝑎
  

𝑋

0
                                               

                                                                  (183) 
where Υ(Χ) signifies the displacement in the 
fractional Λ-space.  
 

Likewise, the displacement Y may be defined 
as a function of the initial placement x through 
Eqs.(165),(166). Indeed,  

𝑌(𝑥) =
𝑝𝑥2−𝛾(𝑙(𝑥2−𝛾)

1
−2+𝛾)

1−𝛾

𝛦𝑎𝛤(1−𝛾)
                 (184)                                                                    

 
Moreover, the displacement y(x) in the initial plane 
(x,y) is transferred through,  

𝑦(𝑥) =
1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝑌(𝑠)

(𝑥−𝑠)1−𝛾
𝑥

0
𝑑𝑠.                 (185) 

The displacement in the initial space x is defined 
by: 

𝑦(𝑥) =
(−2+𝛾)𝑙1−𝛾𝑝𝑥𝛾

𝛦𝛼𝛤(1+𝛾)𝛤(3−𝛾)
1
2−𝛾

                    (186) 

 
Figure 37 shows the displacement functions for a 
bar of length l=2 and γ=0.6, 0.8, 1. 
 

 
Fig. 37: The bar displacement y(x) for various 
values of the fractional-order γ  
 

We can conclude that the displacements 
increase for smaller values of the fractional orders 
γ.  

Since the conventional mechanics' rules are 
valid in the Λ-space,  the axial force is equal to P, 
see Eq.(178). Hence,  the axial stress Σ(Χ), is 
defined through the formula: 

Σ(Χ)= 
𝑃

𝐴
=

𝑃𝛤(2−𝛾)

𝑎(𝛤(3−𝛾)𝛸)
1−𝛾
2−𝛾

                       (187)                                                          

 
Furthermore, the stress Σ(Χ) in the Λ-space may be 
expressed in the x variable of the initial space by: 

Σ(Χ(x)) =
𝑝𝑙1−𝛾

𝛼𝑥1−𝛾
                                      (188)                                                            

 
Transferring the stress from the Λ-space to the 
initial space: 
𝜎(𝑥) =

𝐷𝑥
1−𝛾
𝛴(𝛸(𝑥)) =

1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝑝𝑙1−𝛾

𝛼𝑠1−𝛾(𝑥−𝑠)1−𝛾

𝑥

0
𝑑𝑠 =

𝑝𝑙1−𝛾𝛤(𝛾)𝑥−2+2𝛾

𝛼𝛤(2𝛾−1)0
𝑅𝐿      

(189) 
 

Let’s point out that the size effect phenomenon 
is present in this analysis, precisely as the one that 
appeared in gradient elasticity theories, [32]. 
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Diagrams of the stresses in the initial space for a 
bar of initial length l=2 is shown in Figure 38. 
 

 
Fig. 38: Stresses in the initial space for various 
fractional orders γ 
 
 
20   The Fractal Bar Extension 
Λ- derivative and the use of the Λ-fractional space 
will be applied in fractals. Consider bars with 
variable cross-section area a(x) defined through the 
fractal function with Hausdorff dimension dH=1.5, 

𝑎(𝑥) = 1 + ∑ 𝑛−0.5𝑛∞
𝑛=1 𝑠𝑖𝑛(𝑛𝑛𝑥)        (190)    

                                                       
and approximated by Figure 39 

 𝑎(𝑥) ≈ 1 + ∑ 𝑛−0.5𝑛5
𝑛=1 𝑠𝑖𝑛(𝑛𝑛𝑥)       (191)                               

 

 
Fig. 39: The unit length fractal cross-sectional area 
a(x) 
 
Then, the cross-sectional area in the Λ-space is 
expressed by: 

𝐴(𝑥) =
1

𝛤(1−𝛾)
∫

𝑎(𝑠)

(𝑥−𝑠)𝛾
𝑥

0
𝑑𝑠 .                    (192)                       

 

Moreover,  
   𝑋 =

𝑥2−𝛾

𝛤(3−𝛾)
  .                                        (193)                                                                                             

 
Solving for x from Eq. (193),  

𝑥 = (𝛤(3 − 𝛾)𝑋)
1

2−𝛾   .                         (194)                                                                               
 

Hausdorff dimension and fractal order are 
simply connected; [33], [34], [35], [36], [37]. 

The cross-sectional area function Α(Χ) in the 
Λ-space, for the initial cross-sectional area a(x) for 
γ=0.6, is shown in Figure 40. 

 
Fig. 40: The cross-sectional area A(X) versus the 
axial coordinate X in the Λ-space 
 

Transferring all the characteristics of the bar in 
the Λ-space, the length L and the force P 
corresponding to l and p are defined by: 

𝐿 =
1

𝛤(1−𝛾)
∫

1

(𝑙−𝑠)𝛾
𝑑𝑠

𝑙

0
=

𝑙1−𝛾

𝛤(2−𝛾)
 .            (195)                                                            

𝑃 =
1

𝛤(1−𝛾)
∫

𝑝

(𝑙−𝑠)𝛾
𝑑𝑠

𝑙

0
=

𝑝𝑙1−𝛾

𝛤(2−𝛾)
           (196)                                   

in the Λ-space. The stress in the Λ-space is defined 
by Figure 41: 

𝛴(𝛸) =
𝑃

𝐴(𝑋)
=

𝑝𝑙1−𝛾

𝛤(2−𝛾)𝛢(𝛸)
                      (197)                                                               

 
Size effects, as seen in [31], are present. 

 
Fig.41: The fractional stress Σ(Χ) diagram in the Λ-
space for γ=0.6 
 

Moreover, the fractional strain in the Λ-space is 
defined by (considering the elastic modulus E 
constant in the initial space): 

𝐸(𝑋) =
𝛴(𝛸)

𝐸𝛬
=

𝑃

𝐸𝛬𝛢(𝛸)
=

𝑝𝑙1−𝛾

𝛦𝑥1−𝛾𝛢(𝛸)
   (198)                                        

 
Furthermore, considering Eq. (198), the fractional 
strain E(X) is defined by: 

𝐸(𝑋) =
𝑝𝑙1−𝛾

𝛦(𝛤(2−𝛾)𝛸)
1−𝛾
2−𝛾𝛢(𝛸)

                  (199)                                      

 
A diagram of the fractional strain in the Λ-space is 
presented in  Figure 42.  
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Fig. 42: The strain Ε(Χ) in the Λ-space with γ=0.6 
 
Since the strain in the Λ-space: 

𝑑𝑌(𝑋)

𝑑𝑋
= 𝐸(𝑋)                                        (200)                                                                                       

the displacement Υ(Χ) in the Λ-space is defined by, 
𝑌(𝑋) = ∫ 𝐸(𝑋)𝑑𝑋

𝑋

0
                               (201)                                               

 
For the initial unit length fractal bar, the 

displacement function in the Λ-space for the order 
γ=0.6 is shown in Figure 43. 

 

 
Fig.43: The fractional displacement field for the bar 
of unit initial length with γ=0.6 in the Λ-fractional 
space 
 
The axial stress is defined by: 

𝜎(𝑥) =
1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝛴(𝑠)

(𝑥−𝑠)1−𝛾
𝑥

0
𝑑𝑠                 (202)                                                    

 
The stress function in the initial space is shown in 
Figure 44. 
 

 
Fig. 44: The fractional stress field for the unit bar 
with γ=0.6 in the initial  space 
 

Furthermore, the displacement in the initial space 
may be found through the formula: 

𝑦(𝑥) =
1

𝛤(𝛾)

𝑑

𝑑𝑥
∫

𝑌(𝑠)

(𝑥−𝑠)1−𝛾
𝑥

0
𝑑𝑠.                 (203)                                                               

 
Figure 45  indicates the displacement function in 
the initial space. 
 

 
Fig.45: The fractional displacement field for the bar 
of unit initial length with γ=0.6 in the initial  space 
 
 
21 Plane Linear Λ-fractional 

 Elasticity with both Sides 

 Fractional Derivatives 
In the current section, we present the simple 
problem of homogeneous deformation in the plane 
infinitesimal elasticity due to Λ-fractional 
deformations with fractional derivatives of both 
sides. The purpose of the present paragraph is to 
present the analysis, explain its various steps for a 
fractional problem, and consider derivatives of both 
sides. 

We use the biharmonic equation to solve the 
plane elastic problems in linear elasticity: 

𝜕4𝜑

𝜕4𝑥
+ 2

𝜕4𝜑

𝜕2𝑥𝜕2𝑦
+
𝜕4𝜑

𝜕4𝑦
= 0                      (204)                                                                   

 
The plane stresses are defined through the stress 
function φ and the relations: 

𝜎𝑥𝑥 =
𝜕2𝜑

𝜕𝑦2
                                               (205)                                                                       

𝜎𝑦𝑦 =
𝜕2𝜑

𝜕𝑥2
                                               (206)                                                                 

𝜎𝑥𝑦 = −
𝜕2𝜑

𝜕𝑥𝜕𝑦
                                          (207)                                                            

 
Hence, the homogeneous elasticity linear Λ-

fractional problem in the Λ-fractional space is 
completely defined by the biharmonic function: 

Φ=ΑοX2+A1XY+A2Y2  .                     (208)                                                                                    
 
Recalling Eqs. (205-207) we define the 
homogeneous Λ-stresses by: 

Σxx=2A2  , Σxy=-A1,    Σyy=2A0          (209)                                                             
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For any constant Ξ in the fractional Λ-space 
(X, Y),  the corresponding function ξ in the initial 
space (x,y) equals to: 

ξ=
𝛯

 (2𝛤(𝛾))2
𝑑

𝑑𝑥
(∫

1

(𝑥−𝑠)1−𝛾
𝑥

𝛼
(
𝑑

𝑑𝑦
(∫

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠 −

        ∫
1

(𝑠−𝑥)1−𝛾
𝛽

𝑥
(
𝑑

𝑑𝑦
(∫

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠)                                             (210) 

 
Performing the algebra, Eq.(210) is simplified and 
with Ξ=1, Εq. (210)  yields, 
ζ(x,y)=
 
((𝛽−𝑥)−1+𝛾+(−𝛼+𝑥)−1+𝛾)((𝜃−𝑦)−1+𝛾+(−𝜂+𝑦)−1+𝛾)

4Γ(𝛾)2
       

                                                         (211)                                      
 
Therefore, 

𝜎𝑥𝑥 = 𝛴𝑥𝑥 ζ(x, y) = 2𝐴2 𝜁(𝑥, 𝑦),          (212)                                                                 
𝜎𝑦𝑦 = 𝛴𝑦𝑦ζ(x, y) = 2A0𝜁(𝑥, 𝑦),           (213)                                                                    
𝜎𝑥𝑦 = 𝛴𝑥𝑦ζ(x, y) = −𝐴1𝜁(𝑥, 𝑦).           (214)                                                                   

 
We have computed the function ζ(x, y) with the 

help of Mathematica computerized pack and for the 
values, (α=η=0, β=3, θ=2, γ=0.6).  The function 
ζ(x,y) has a picture of Figure 46. 
 

 
Fig. 46: The function ζ(x,y)  in the initial space for 
the specific values  (α=η=0, β=3, θ=2, γ=0.6)  
 

Hence, if we applied the traction to a body in 
the initial plane, it should be governed by Eqs. 
(212-214). The stresses are not constant in the 
initial space but multiples of the function ζ(x,y). 

If we want to define the displacement field, the 
strain in the Λ-space is defined for the plane strain 
problem by: 
𝐸𝑥𝑥 =

1+𝜈

𝛦
[(1 − 𝜈)𝛴𝑥𝑥 − 𝜈𝛴𝑦𝑦] =

2(1+𝜈)

𝛦
[(1 −

𝜈)𝐴2 − 𝜈𝐴0]=K                                                (215) 

𝐸𝑦𝑦 =
1+𝜈

𝛦
[(1 − 𝜈)𝛴𝑦𝑦 − 𝜈𝛴𝑥𝑥] =

2(1+𝜈)

𝛦
[(1 −

𝜈)𝐴0 − 𝜈𝐴2]=M                                               (216) 
with ν denoting Poisson’s ratio and E Young’s 
modulus. It is assumed that for zero x-displacement 
along x=0 and y-displacement along y=0, the 
displacement functions in the Λ-space are defined 
by: 

U=KX                                                      (217) 
and V=MY      .                                        (218)                                                                      

 
Since, 

𝑋 =
𝒙2−𝛾

𝛤(3−𝛾)
      and  𝑌 = 𝒚2−𝛾

𝛤(3−𝛾)
                 (219)                                                                

x=(𝛤(3 − 𝛾)𝛸)
1

2−𝛾 ,y=(𝛤(3 − 𝛾)𝑌)
1

2−𝛾  (220)                                                      
 

We define the displacements (u,v) in the initial 
plane (x,y) that correspond to the displacements (U, 

V), Eqs. (217,218) in the Λ-Fractional space by: 
u=

𝐾

 (2𝛤(𝛾))2
𝑑

𝑑𝑥
(∫

𝒔2−𝛾

𝛤(3−𝛾)
  

1

(𝑥−𝑠)1−𝛾
𝑥

𝛼
(
𝑑

𝑑𝑦
(∫

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠 −

    ∫
𝒔2−𝛾

𝛤(3−𝛾)
  

1

(𝑠−𝑥)1−𝛾
𝛽

𝑥
(
𝑑

𝑑𝑦
(∫

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠)                                             (221) 

and 
v=

𝑀

 (2𝛤(𝛾))2
𝑑

𝑑𝑥
(∫

1

(𝑥−𝑠)1−𝛾
𝑥

𝛼
(
𝑑

𝑑𝑦
(∫

𝒕2−𝛾

𝛤(3−𝛾)
  

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝒕2−𝛾

𝛤(3−𝛾)
 

𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠 −

 ∫
1

(𝑠−𝑥)1−𝛾
𝛽

𝑥
(
𝑑

𝑑𝑦
(∫

𝒕2−𝛾

𝛤(3−𝛾)
 

𝑑𝑡

(𝑦−𝑡)1−𝛾
𝑦

𝜂
−

∫
𝒕2−𝛾

𝛤(3−𝛾)
 

𝑑𝑡

(𝑡−𝑦)1−𝛾
𝜃

𝑦
))𝑑𝑠)                                  (222) 

 
If we perform the algebra with the help of the 

Mathematica computerized algebra pack u 
displacement in the initial space will be computed 
and is equal to: 

u=KΔΨ
Ω

                                                (223)                                                                 
with 

Δ=(2𝑥1+𝛾 + 4𝑥1+𝛾

𝛾
−
2(−𝑥+𝛽)𝛾(2𝑥+𝛽𝛾)

𝛾
+

(−𝑥 + 𝛽)−1+𝛾(2𝑥2 + 2𝑥𝛽𝛾 + 𝛽2𝛾(1 + 𝛾)))(224) 

Ψ=((𝜃 − 𝑦)−1+𝛾 + 𝑦−1+𝛾)                  (225) 
Ω=4(1 + 𝛾)(2 + 𝛾)Γ(3 − 𝛾)Γ(𝛾)2     (226) 
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The x-displacement u  in the initial space for 
the specific values (α=η=0, β=3, θ=2, γ=0.6) is 
shown in Figure 47: 

 

 
Fig. 47: The x-displacement u in the initial space 
for the specific values (α=η=0, β=3, θ=2, γ=0.6)  
 
Furthermore,  

v=MΠΡ
Ω

                                          (227)                                                                               
with        Π=(𝑥−1+𝛾 + (−𝑥𝛽)−1+𝛾)                 (228) 
P=(2𝑦1+𝛾 + 4𝑦1+𝛾

𝛾
−
2(−𝑦+𝜃)𝛾(2𝑦+𝛾𝜃)

𝛾
+

(−𝑦 + 𝜃)−1+𝛾(2𝑦2 + 2𝑦𝛾𝜃 + 𝛾(1 + 𝛾)𝜃2)) (229) 
 

The y-displacement v  in the initial space for 
the specific values (α=η=0, β=3, θ=2, γ=0.6) is 
shown in Figure 48:  

 
Fig. 48: The y-displacement v  in the initial space 
for the specific values (α=η=0, β=3, θ=2, γ=0.6)  
 

Let us point out that we may not transfer strains 
in the initial space since geometry and derivatives 
do not exist in that space. 

The present section demonstrates how a 
problem with both sides of fractional derivatives 
may be formulated. We introduce that 
mathematical procedure in the present section, and 
it may serve as a model for solving problems with 
Λ-fractional derivatives of both sides.  

 
 

22 The Continuum Mechanics 

 Hydrocephalus Model in the Λ-

 Fractional Space 
Let's consider a point in the cylindrical tube, at the 
initial placement,  with Lagrangian cylindrical 
coordinates (R,Θ,Ζ), which takes the current 
placement (r, θ, z) with, (Figure 49) 

r=f(t,R)       ,  θ=Θ    ,     z=Z        (230)     
                                                                                

 
Fig. 49: The hydrocephalus model 
 
Then, we define the deformation gradient F, in the 
cylindrical system (r,θ,z) by: 

𝑭(𝑡, 𝑅) = |

𝜕𝑓(𝑡,𝑅)

𝜕𝑅
0 0

0
𝑓(𝑡,𝑅)

𝑅
0

0 0 1

| .        (231)                                                                          

 
where the material strain energy density function 
depends upon the left Cauchy-Green deformation 
tensor B defined by: 
𝑩(𝑡, 𝑅) = 𝑭(𝑡, 𝑅) ∙ 𝑭𝑇(𝑡, 𝑅) =

|

(
𝜕𝑓(𝑡,𝑅)

𝜕𝑅
)2 0 0

0 (
𝑓(𝑡,𝑅)

𝑅
)2 0

0 0 1

|.                                (232)                                      

 
The principal invariants of B(t, R) are defined by: 

𝐼1 = (
𝜕𝑓(𝑡,𝑅)

𝜕𝑅
)2 + (

𝑓(𝑡,𝑅)

𝑅
)
2
+ 1,       (233)       

                                                                        

𝐼2 = (
𝜕𝑓(𝑡,𝑅)

𝜕𝑅
)2 (

𝑓(𝑡,𝑅)

𝑅
)
2
+ (

𝜕𝑓(𝑡,𝑅)

𝜕𝑅
)2 + (

𝑓(𝑡,𝑅)

𝑅
)
2
,                                                   

(234) 
 

𝐼3 = (
𝜕𝑓(𝑡,𝑅)

𝜕𝑅
)2 (

𝑓(𝑡,𝑅)

𝑅
)
2
.                          (235)                                                                         

 
The third invariant I3=1, since we assume 
incompressibility of the brain tissue, which yields: 

h(T,R)=𝑑𝑓(𝑡,𝑅)
𝑑𝑅

=
𝑅

𝑓(𝑡,𝑅)
   .                        (236)                                                                        

 
The solution of the Eq.( 236 ) is defined by: 

𝑓(𝑡, 𝑅) = √𝑅2 + 𝑘(𝑡)  .                     (237)                                                                         
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Then, the left Cauchy-Green deformation tensor 
B(t,R) yields, 

𝑩(𝑡, 𝑅) = ||

𝑅2

𝑅2+𝑘(𝑡)
0 0

0
𝑅2+𝑘(𝑡)

𝑅2
0

0 0 1

||.                (238)                                                                            

 
Moreover, the rate of strain tensor is defined in the 
present case by: 

𝑫(𝑡, 𝑅) = ||

𝜕𝑓̇(𝑡,𝑅)

𝜕𝑓
0 0

0
𝑓̇(𝑡,𝑅)

𝑓
0

0 0 0

||.          (239)                                                                          

 
The stress tensor σ, for an incompressible Kelvin-
Voigt material, is defined by: 
𝝈 = −𝑞𝑰 + 2 [(

∂W

∂I1
+ I1

∂W

∂I2
)𝐁 −

∂W

∂I2
𝐁𝟐] +

𝜂𝑫(𝑡, 𝑅),                                                         (240)                              
 

As q we denote the incompressibility pressure 
term, and η is a coefficient that has to do with the 
visco-elastic behavior of the material.  

We adapt the strain energy model, following 
[21], as a Mooney-Rivlin model with strain energy 
density:  

𝑊 = 𝑐10(𝐼1 − 3) + 𝑐01(𝐼2 − 3).    (241)                                                                            
 
Therefore, the stresses are expressed by:  

𝛴𝑟(𝑡, 𝑅) = −𝑞 + 2(𝑐10 + 𝑐01 (ℎ
2(𝑡, 𝑅) +

𝑓2(𝑡,𝑅)

𝑅2
+

1))ℎ2(𝑡, 𝑅) − 2𝑐01ℎ
4(𝑡, 𝑅)+η𝜕

2𝑓(𝑡,𝑅)

𝜕𝑡𝜕𝑅
 .  (242) 

𝛴𝜃(𝑡, 𝑅) = −𝑞 + 2(𝑐10 + 𝑐01 (ℎ
2(𝑡, 𝑅) +

𝑓2(𝑡,𝑅)

𝑅2
+ 1))

ℎ2(𝑡,𝑅)

𝑅2
− 2𝑐01

ℎ4(𝑡,𝑅)

𝑅4
+η 𝜕
𝜕𝑡
(
𝑓(𝑡,𝑅)

𝑅
)  

(243) 

𝛴𝑧(𝑡, 𝑅) = −𝑞 + 2(𝑐10 + 𝑐01 (ℎ
2(𝑡, 𝑅) +

𝑓2(𝑡,𝑅)

𝑅2
+

1)) − 2𝑐01 .                                                      

(244) 
 
The equilibrium equation, excluding body forces, is 
expressed by: 

𝜕𝛴𝑅

𝜕𝑅
+
1

𝑅
(𝛴𝑅 − 𝛴𝜃) = 0 ,           (245)                                                                     

 
with the b.cs. 
𝛴𝑅(𝑇, 𝑅1) = −𝑃0(𝑇)   and  𝛴𝑅(𝑇, 𝑅2) = 0     (246) 

 
 

 
 
Further,  
𝑃𝑜(𝑇) =

𝜇

2
∫ (

1

𝑥
−

𝑥

(𝑥+𝐵(𝑇))2
)𝑑𝑥 +

𝑏

1

𝜂

2𝑅1
∫ (

𝐵̇(𝑇)

√𝑥  √(𝑥+𝐵(𝑇))

+
𝐵̇(𝑇)

(√(𝑥+𝐵(𝑇)))

3)
𝑏

1
𝑑𝑥  .      

(247)  
with B(T)=𝑅1−2𝑘(𝑇). 
 
Thus, it shows up  the equation, 
 

  𝐵′(𝑇) =
−
𝜇

2
(

(−1+𝑏)𝐵(𝛵)

(1+𝐵(𝛵))(𝑏+𝐵(𝛵))
+L𝑛(

𝑏(1+𝐵(𝑇))

𝑏+𝐵(𝑇)
))+𝑃0(𝑇) 

𝜂(
1

(1+𝐵(𝑇))0.5
−

2

(𝑏+𝐵(𝑇))0.5
)

 ,   

(248)                                       
with the b.c., B(0)=0 .                            (249)                                                                     

 
The deformation of the hydrocephalus cylinder 

is extracted from Eq.(248, 249)  
Hence, the stresses in the Λ-fractional space are 

extracted from Eqs.(242-244). We adopt the 
parameters μ=207, η=0.66, b=9, R1=2 cm. In that 
case, the radial stress Σr(T,R) in the Λ-fractional 
space is shown in  Figure 50.  

 

 
Fig. 50: The radial stress Σr(T,R) of the ventricular 
cylinder 
 
Figure 51 shows the distribution of the stress 
Σθ(T,R) in the Λ-fractional space.  
  

 
Fig. 51: The stress Σθ(T,R) in the Λ-fractional space 
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These assumptions influence this fluid flow 
(through the deformation of the hydrocephalus 
cylindrical tube).  
 
The stresses in the initial space 

a. Fractional response with respect to time 

We should recall the related equations by 
transferring the stresses in the initial space. In the 
present section, we only consider the fractional 
behavior of time, which is related to the 
viscoelastic behavior of the model, [38], [39]. In 
that case, time T in the Λ-space and time t in the 
initial space are given by:  

𝑇 =
1

𝛤(1−𝛾)
∫

𝑠

(𝑡−𝑠)𝛾
𝑡

0
=

𝑡2−𝛾

𝛤(3−𝛾)
.                (250)                                                                         

 
Hence, we relate time t in the initial space to time T  
in Λ-space by: 

𝑡 = (𝛤(3 − 𝛾)𝛵)
1

2−𝛾.                           (251)                                                                        
 
Further, the various stresses σ(t,r) in the initial 
space are defined by: 

𝜎(𝑡, 𝑟) =
1

𝛤(𝛾)

𝑑

𝑑𝑡
∫
𝛴(

𝑠2−𝛾

𝛤(3−𝛾)
,𝑟)

(𝑡−𝑠)1−𝛾
𝑡

0
𝑑𝑠.        (252)                                                                            

 
Figure 52 shows the distribution of the radial stress 
𝜎𝑟(𝑡, 𝑟) in the initial space for γ=0.9.  
 

 
Fig. 52: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space for γ=0.9 
 
Further, Figure 53 shows the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space for γ=0.9. 
 

 
Fig. 53: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space for γ=0.9 
 

In addition, Figure 54 shows the distribution of 
the radial stress 𝜎𝑟(𝑡, 𝑟) in the initial space for 
γ=0.8. 

 
Fig. 54:  Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space for γ=0.8 
 

Similarly, Figure 55. shows the distribution of 
the radial stress 𝜎𝜃(𝑡, 𝑟) in the initial space for 
γ=0.8. 

 

 
Fig. 55:  Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space for γ=0.8 

 
If the fractional order is reduced to γ=0.7, the 

distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in the initial 
space is shown in Figure 56, and the distribution of 
the tangential stress 𝜎𝜃(𝑡, 𝑟) is shown in Figure 57. 

 

 
Fig. 56: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space for γ=0.7 
 

 
Fig. 57: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space for γ=0.8 
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Finally, for the fractional order γ=0.6, we show 
the radial stress distribution 𝜎𝑟(𝑡, 𝑟) in the initial 
space in Figure 58 and the distribution of the stress 
𝜎𝜃(𝑡, 𝑟) In the initial space is figured in Figure 59. 

 
Fig. 58: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space for γ=0.6 

 

 
Fig. 59: Distribution of the stress 𝜎𝜃(𝑟, 𝑡) in the 
initial space for γ=0.6 
 

The influence of the time (viscosity) fractional 
order on stresses is shown in Figure 52, Figure 53, 
Figure 54, Figure 55, Figure 56, Figure 57, Figure 
58 and Figure 59. The less the fractional time-
fractional order, the higher the stresses.  

 
b. Fractional response with respect to time and 

space 

The fractional response with respect to time 
corresponds to the viscoelastic reaction of the 
material; moreover, the fractional response with 
respect to the special variable R corresponds to the 
porosity of the material. In that case, space variable 
transferring and time variable transferring should 
be adopted. 

Hence, let us assume that the fractional order of 
time and space are represented by  γ2 and γ1, 
respectively. Furthermore, let us define the 
fractional space order of the radius r, corresponding 
to the radius R in the Λ-fractional space. Then, we 
may define the transformation from the Λ-
fractional space (T,R) to the initial space (t,r), 

through the relations:  
𝑅 =

1

𝛤(1−𝛾1)
∫

𝑞

(𝑟−𝑞)𝛾1

𝑟

0
=

𝑡2−𝛾1

𝛤(3−𝛾1)
           (253)  

                                                                   

𝑟 = (𝛤(3 − 𝛾1)𝑅)
1

2−𝛾1                          (254)   
                                                                        

and 
𝑇 =

1

𝛤(1−𝛾2)
∫

𝜏

(𝑡−𝜏)𝛾2

𝑡

0
=

𝑟2−𝛾2

𝛤(3−𝛾2)
            (255)  

                                                                       

𝑡 = (𝛤(3 − 𝛾2)𝑇)
1

2−𝛾2                       (256)    
           

Thus, 
2 1

1

2 1

1 1
0

1 10 0
2 1

(t, ) ( ( ( , )))

1 1 ( , )( )
( ) ( ) (t ) ( )

RL RL

t r r

t r

r D D q

d d q
dq d

dt ds s q

 

 

 




  

 

 

  




    

  (257)  

 
When the stresses Σr(T,R), Σθ(T,R) are 

transferred from the Λ-fractional space to the 
initial one, we can define the radial stress σr(t,r) 

and the stress σθ(t,r) if  Eq.(257) is applied. 
Indeed, the stresses for space fractional order 

γ1=0.9 (which indicates the material's porosity) and 
the time fractional order γ2=0.9, are shown in 
Figure 60 and Figure 61. 

  

 
Fig. 60: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space with space (porosity) fractional 
order γ1=0.9 and time fractional order γ2=0.9 
 
 

 
Fig. 61: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space with space (porosity) fractional order 
γ1=0.9 and time fractional order γ2=0.9 
 

If the space (porosity) order is decreased to 
γ1=0.7, while leaving the time (viscosity) fractional 
order the same, γ2=0.9, the stress distribution for 
the radial σr(t,r) and the stress σθ(t,r) can be seen in 
Figure 62 and Figure 63. 

 

  
Fig. 62: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space with space (porosity) fractional 
order γ1=0.7 and time fractional order γ2=0.9  
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Fig. 63: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space with space (porosity) fractional order 
γ1=0.7 and time fractional order γ2=0.9 
 

If the space (porosity) order is γ1=0.9,  and if 
we decrease the time (viscosity) fractional order to 
γ2=0.7, then we can show the stress distribution for 
the radial σr(t,r) and the stress σθ(t,r) in Figure 64 
and Figure 65. 

 

 
Fig. 64: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space with space (porosity) fractional 
order γ1=0.9 and time fractional order γ2=0.7  

 
 

 
Fig. 65: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space with space (porosity) fractional order 
γ1=0.9 and time fractional order γ2=0.7 

 

 
Fig. 66: Distribution of the radial stress 𝜎𝑟(𝑡, 𝑟) in 
the initial space with space (porosity) fractional 
order γ1=0.7 and time fractional order γ2=0.7  

 
Fig. 67: Distribution of the stress 𝜎𝜃(𝑡, 𝑟) in the 
initial space with space (porosity) fractional order 
γ1=0.7 and time fractional order γ2=0.7 
 

The influence of the fractional orders of  time 
and space on the stresses is shown in Figure 60, 
Figure 61, Figure 62, Figure 63, Figure 64, Figure 
65, Figure 66 and Figure 67. In these figures, the 
less the fractional time-fractional order or the space 
(porosity) fractional order, the higher the stresses.  
 
 
23 Λ-Fractional Calculus Dendrites 

and Axons Study 
Potential electric signals of potential V are 
transferred by dendrites and axons. It is very 
common to model these minute parts of the neural 
system using fractional calculus. Moreover, it is 
assumed that these cables have a constant radius 
R0. Fractional derivatives are most suitable to 
describe this non-local phenomenon. We use Λ-
fractional derivatives to model the electric current 
passing through these building blocks of the neural 
system while Λ-transform and Λ-space are also 
participating. The voltage of the electric current 
inside the cable is governed by the equation ([40]): 

 𝐶𝑀
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
=

𝑑0

4𝑟𝐿

𝜕2𝑉(𝑥,𝑡)

𝜕𝑥2
− 𝑖𝑖𝑜𝑛.      (258)                                                   

 
In Eq.(258)  d0, V(x,t), CM  are the constant 

diameter of the cable, the voltage of the current 
passing through the cable, and the specific 
membrane capacitance accordingly; at the same 
time rL denotes the longitudinal resistance, and iion 
is the ionic current per unit area into and out of the 
cable. In the passive cable case, that is, when iion= 
V/rM, with rM the specific membrane resistance, we 
have this equation, which is processed 
geometrically in [40]; Therefore, we can extract the 
final cable equation: 
 𝜕𝑉(𝑠,𝑡)
𝜕𝑡

=
1

𝑟𝐿𝐶𝑀 ∫ 𝑑𝜃√𝑑𝑒𝑡𝑔(𝜃,𝑠)
2𝜋

0

𝜕

𝜕𝑠
(𝑎(𝑠)

𝜕𝑉(𝑠,𝑡)

𝜕𝑠
) −

𝑉(𝑠,𝑡)

𝑟𝑀𝐶𝑀
      

                                                                      (259)                                     
 

In Eq.(259) s is the length of the cable; θ is the 
angle in the cross-section of the cable; a(s) is the 
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cross-sectional area of the cable, and g(θ,s) is the 
metric of the cable. It is important to underline that 
we solved this equation using the Caputo derivative 
in [40]. 

According to Lazopoulos’ approach, we 
execute the necessary transformation of the 
equation to Λ-space with the ordinary derivatives, 
resulting in the following solution for the voltage in 
Λ-space ([40]): 

  𝑉𝛬(𝑇, 𝑆) = 𝑉0𝑙0√
𝑟𝐿⋅𝑐𝑀

2⋅𝜋⋅𝑅0⋅𝑇
⋅ 𝑒
−
𝑟𝐿⋅𝑐𝑀⋅𝑆

2

2𝑅0⋅𝑇 ⋅ 𝑒
−

𝑇

𝑟𝐿⋅𝑐𝑀, 

                                 (260) 
where T, S is the time and arc length in Λ-space. 
We connect these variables with the ones in real 
space with the relations for fractional order γ: 

𝑡 = [𝛤(3 − 𝛾) ⋅ 𝑇]
1

2−𝛾, 𝑠 = [𝛤(3 − 𝛾) ⋅ 𝑆]
1

2−𝛾 
                  (261) 

 
The other parameters in Eq. (260)are constants and 
take the values: 
𝑐𝑀 = 0.001𝐹/𝑐𝑚

2, 𝑟𝑀 = 3000 ⋅ 𝛺 ⋅ 𝑐𝑚
2, 𝑟𝐿

= 100 ⋅ 𝛺 ⋅ 𝑐𝑚𝑅0 = 10
−4𝑐𝑚, 𝑉0

= 1.3 × 10−6𝑉, 𝑙0 = 0.13𝑐𝑚 
 

Initially, the case where the values of arc 
lengths S in Λ-space are constants will be 
examined. In order to find the values of the voltage 
V(t,s) in the initial  space, the following inverse 
transformation is imposed: 
𝑉(𝑡, 𝑠) = 𝐷0

𝑅𝐿
𝑡
1−𝛾
(𝑉𝛬(𝑡, 𝑠)) =

1

𝛤(𝛾)

𝑑

𝑑𝑡
∫

𝑉𝛬(𝜏,𝑠)

(𝑡 −𝜏)1−𝛾
𝑡

0
𝑑𝜏.                                      (262)

                     
We can see the voltage V(t, s) for various 

values of s and fractional order γ in real space in 
Figure 68, Figure 69, Figure 70 and Figure 71. 
These figures show that as the value of arc length s 
is increased, the voltage's maximum to higher time 
values is shifted. It is believed that we expect this 
delay in maximum response due to increased cable 
length. Moreover, we have a decrease in the 
maximum value of voltage and broadness of the 
voltage curve as the arc length s increases, denoting 
an inertial behavior across the cable. 

 
Fig. 68: The voltage V(t,s) for various values of 
fractional order γ and corresponding values of s, in 
real space. (S=0.01) 

 
Fig. 69: The voltage V(t,s) for various values of 
fractional order γ and corresponding values of s, in 
real space. (S=0.02) 
 
 

 
Fig. 70: The voltage V(t,s) for various values of 
fractional order γ and corresponding values of s, in 
real space. (S=0.04) 
 

 
Fig. 71: The voltage V(t,s) for various values of 
fractional order γ and corresponding values of s, in 
real space. (S=0.08) 
 

Finally, it must be mentioned that in all cases 
of arc length values, the decrease of fractional order 
γ gives greater maximum values in voltage, 
reversing the polarity of the resulting voltage (from 
positive to negative ones) as time passes. 

Now, we will examine the voltage VΛ(T,S) 
(Eq.(260)) as a two-variable function in Λ-space. In 
order to transform it to the initial space, the 
following formula will be used for inverse 
transformation for both t and s, according to the Λ-
fractional approach: 

2 1

2 1

1 1
0 0

1 10 0
2 1

(t, ) ( ( ( , )))

1 1 ( , )( )
( ) ( ) (t ) ( )

RL RL

t s

t s

V s D D V q

d d V q
dq d

dt ds s q

 

 






  

  



 

 


    

    (263)  
 
where the relation gives VΛ (τ,q): 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.108

Konstantinos A. Lazopoulos, 
Anastasios Lazopoulos, Dimitrios Karaoulanis

E-ISSN: 2224-2880 1075 Volume 23, 2024



𝑉𝛬(𝜏, 𝑞) = 𝑉0𝑙0√
𝑟𝐿⋅𝑐𝑀⋅𝛤(3−𝛾2)

2⋅𝜋⋅𝑅0⋅𝜏
2−𝛾2

⋅

𝑒
−
𝑟𝐿⋅𝑐𝑀⋅𝛤(3−𝛾2)⋅𝑞

4−2𝛾1

2𝑅0⋅(𝛤(3−𝛾1))
2⋅𝜏2−𝛾2 ⋅ 𝑒

−
𝜏2−𝛾2

𝑟𝐿⋅𝑐𝑀⋅𝛤(3−𝛾2)                                       
                                                                         (264) 
 

In this case, the fractional orders (γ2,γ1) for the 
inverse transformation are different for time t and 
arc length s. The voltage V(t,s) in real space for 
various values of fractional orders is presented in 
Figure 72, Figure 73, Figure 74, Figure 75, Figure 
76, Figure 77 and Figure 78. The constants in 
Eq.(264) take the same values as in Eq.(260). 

 

 
Fig. 72: The voltage VΛ(T,S) in Λ-space as a 
function of time T and arc length S 
 
 

 
Fig. 73: The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.8 and γ1=0.9 
 
 

 
Fig. 74: The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.8 and γ1=0.7 

 
Fig. 75: The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.8 and γ1=0.5 
 
 

 
Fig. 76: The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.6 and γ1=0.9 
 

 
Fig.77. The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.6 and γ1=0.7 
 

 
Fig. 78: The voltage V(t,s) in real space as a 
function of time and arc length s, for fractional 
orders γ2=0.6 and γ1=0.5 
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Based on  Figure 72, Figure 73, Figure 74, 
Figure 75, Figure 76, Figure 77 and Figure 78, we 
can conclude that as we decrease the fractional 
order for time t (γ2) or arc length s (γ1), the 
maximum value reached by the voltage V(t,s) 
increases. Also, in all cases, the voltage's polarity 
(positive to negative) is changed along the cable. 
Finally, we can observe that as fractional order for 
time t (γ2) or arc length s (γ1) decreases, we have 
non-zero voltage values for higher values of arc 
length s (longer cable). 

 
 

24  The Λ-fractional Special 

 Relativity Theory 
Two principles govern the Special Relativity. 

a. The first states that the same physical laws 
govern  all physical phenomena  
in all inertial systems and  

b. The light has constant speed c in the 
vacuum in all inertial observers and equal 
to c= 2.99792458 x108m/sec.          

 
An inertial system Σ (x,y,z,t)  and another one  

𝛴′(x΄,y΄,z΄, t΄)  are considered moving along the axis 
x with constant relative velocity V. Then the 
special theory of relativity is characterized by two 
basic properties:   

p1.  Dilation of time Δt’    𝛥𝑡 =
𝛥𝑡

√1−
𝑉2

𝑐2

         (265)                                

p2.  Contraction of length along the x-axis,    𝛥𝐿΄ 

=𝛥𝐿√1 − 𝑉2

𝑐2
      .                              (266) 

 
Further, we express the Lorentz transformation 
between the two inertial systems by: 

(

𝑐𝛥𝑡΄
𝛥𝑥΄
𝛥𝑦΄

𝛥𝑧΄

)=Λ(V)(

𝑐𝛥𝑡
𝛥𝑥
𝛥𝑦
𝛥𝑧

)                 (267)                                                                     

with  Λ(V) the 4x4 matrix, 

𝛬(𝑉) = (

𝛾(𝑉) −𝛽(𝑉)𝛾(𝑉) 0 0
−𝛽(𝑉)𝛾(𝑉) 𝛾(𝑉) 0 0

0
0

0
0

1
0

0
1

)        

                                                 (268)                                   
where, 

𝛽(𝑉) =
𝑉

𝑐
,   𝛾(𝑉) =

1

√1−𝛽2(𝑉)
.         (269)                                                         

 
Further,  

𝛬(𝑉)𝛬(−𝑉) = 𝟏                           (270)                                                                 
where 1 is the unit matrix of the 4x4 matrices. 
 

Moreover, (ux ,uy ,uz ) are the components of 
velocity in the Σ inertial coordinate system and (𝑢𝑥′  

, 𝑢𝑦
′ , 𝑢𝑧

′ )  the corresponding coordinates in the Σ΄ 
inertial  coordinate system as we apply the Lorenz 
transformation, we have: 

𝑢𝑥
′ =

𝑢𝑥−𝑉

1−𝑉𝑢𝑥/𝑐
2                           (271) 

    𝑢𝑦′ = √1 −
𝑉2

𝑐2
  

𝑢𝑦

1−𝑉𝑢𝑥/𝑐
2                      (272) 

,  𝑢𝑧
′ = √1 −

𝑉2

𝑐2
  

𝑢𝑧

1−𝑉𝑢𝑥/𝑐
2  .                        (273)  

 
The corresponding components of the 

acceleration  in the inertial coordinate system Σ are 

(αx, αy, αz ), therefore the corresponding 
components (𝑎𝑥′  , 𝑎𝑦

′ , 𝑎𝑧
′ )  in the Σ΄ system are 

defined by: 

𝑎𝑥
′ = 𝑎𝑥

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑢𝑥/𝑐
2)3
,                             (274) 

𝑎𝑦
′ =

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑢𝑥/𝑐
2)3
 (𝑎𝑦 +

𝑉

𝑐2
(𝑎𝑥𝑢𝑦 − 𝑎𝑦𝑢𝑥))      

(275)                                                

𝑎𝑧
′ =

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑢𝑥/𝑐
2)3
 (𝑎𝑧 +

𝑉

𝑐2
(𝑎𝑥𝑢𝑧 − 𝑎𝑧𝑢𝑥))             

(276)                                         
 
Further, the mass of the body is not constant but it 
depends upon its speed u with: 

𝑚 =
𝑚0

√1−(𝑢2/𝑐2)
                                       (277)                                                     

where m0 is the rest mass for the inertial observer. 
Also, Newton’s second law is defined by: 

𝒇 =
𝑑𝒑

𝑑𝑡
=

𝑑

𝑑𝑡
[

𝑚0𝒖

√1−(𝑢2/𝑐2)
]=
𝑑

𝑑𝑡
(𝑚𝒖),   (278)                                                    

where f is the force, m is the current mass, m0 is the 
inertial observer's rest mass, p is the momentum 
vector, and u is the velocity vector. Moreover, we 
define the kinetic energy of a mass point with mass 

m and speed u with u=|𝒖| by the formula: 
𝐾(𝑢,𝑚) =

𝑚𝑐2

√1−(𝑢2/𝑐2)
−𝑚𝑐2 .                (279)                                                                           

 
Yet, the total energy 𝐸(𝑢,𝑚) of the system is 
expressed by: 
𝐸(𝑢,𝑚) =

𝑚𝑐2

√1−(𝑢2/𝑐2)
= 𝑚𝑐2 + 𝐾(𝑢,𝑚)     (280) 

 
According to Λ-fractional theory, a fractional 

derivative that corresponds to a differential exists 
only in the Λ-space, where only fractional 
differential geometry may be established. Hence, 
with its corresponding laws, physics may be 
established in that space. We may simply transfer 
the various results as functions in the initial space. 
Consider V the constant relative speed  of the 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.108

Konstantinos A. Lazopoulos, 
Anastasios Lazopoulos, Dimitrios Karaoulanis

E-ISSN: 2224-2880 1077 Volume 23, 2024



inertial system 𝛴𝛬 ΄ for the initial inertial coordinate 
system 𝛴𝛬  in the Λ-space and c be the speed of 
light.  

Then, we express the relation between the time 
intervals ΔΤ  in the 𝛴𝛬  and ΔΤ΄in the 𝛴𝛬 ΄ inertial 
systems by the basic property of dilation of time, 
which we consider valid in the Λ-space with: 

 𝛥𝑇΄ =
𝛥𝑇

√1−
𝑉2

𝑐2

.                                       (281)                                                                          

where according to transformation, 
1

0 tT I t = 𝑡2−𝛾

𝛤(3−𝛾)
    and    1

0( ) ( )tF T I f t                      
(282) 

 
Further ΔT  and ΔΤ΄ may be transferred in the 
initial spaces. 
 
Then, we transfer the dilation relation Eq.(281) into 
the initial spaces Σ  and Σ΄ by the relation: 

𝐷0
𝑅𝐿

𝑡
1−𝛾
𝛥𝑇΄ = 𝐷0

𝑅𝐿
𝑡
1−𝛾

𝛥𝑇

√1−
𝑉2

𝑐2

      .                 (283)                                          

 
Hence, the dilation relation,Eq.(281) yields a 
similar contraction relation in the initial spaces Σ 
and Σ΄ by the relation: 

𝛥𝑡΄ = 𝛥𝑡

√1−
𝑉2

𝑐2

    .                                     (284)                                                                                                   

 
Eq.(284) is similar to Eq.(265), apart from that  

constant speed V refers to the relative constant 
speed of the 𝛴𝛬 ΄ inertial frame concerning the 𝛴𝛬  
inertial frame in the Λ-space. 

Proceeding to the contraction of lengths along 
the X-axis of the Λ-space, we get: 

𝛥𝐿΄=𝛥𝐿√1 − 𝑉2

𝑐2
 ,                                  (285) 

where, 1
0 t΄L΄ I l΄    and   1

0 tL I l   .                               
(286) 

                                           
 Since, 

1
0

RL

tl D L      and  1
0

RL

tl΄ D L΄   ,                                                          
(287) 

transferring Eq. (287) into the initial spaces, we get 
a similar contraction of lengths relation: 

𝛥𝑙΄=𝛥𝑙√1 − 𝑉2

𝑐2
   ,                                    (288)                                                                     

where again V is the relative speed of the inertial 
frame 𝛴𝛬 ΄ concerning 𝛴𝛬 . 
 
Further, Lorentz transformation between the two 
inertial systems is expressed by: 

(

𝑐𝛥𝑇΄
𝛥𝑋΄
𝛥𝑌΄
𝛥𝑍΄

)=Λ(V)(

𝑐𝛥𝑇
𝛥𝑋
𝛥𝑌
𝛥𝑍

)  ,                          (289)                                                                                                        

 
with  Λ(V) the 4x4 matrix, Eq.(268), and Eqs. (269, 
270).  Then,  

(

𝑐𝛥𝑡΄
𝛥𝑥΄
𝛥𝑦΄

𝛥𝑧΄

) = Λ(V) 1
0

RL

tD  (

𝑐𝛥𝑇
𝛥𝑋
𝛥𝑌
𝛥𝑍

) .          (290)    

 
The fractional Lorenz transformation is 

expressed by Eq.(290). Furthermore, the inertial 
frames Σ and Σ΄correspond to the 𝛴𝛬   and  𝛴𝛬 ΄ in 
the corresponding fractional Λ-space; ( 𝛴𝛬 ΄  is 
moving with speed V concerning the inertial system  
𝛴𝛬   along the axis, X ). If (Ux, Uy, Uz ) are the 

components of velocity in the 𝛴𝛬    inertial 
coordinate system and (𝑈𝑥′  , 𝑈𝑦

′ , 𝑈𝑧
′)  the 

corresponding coordinates in the 𝛴𝛬 ΄ inertial 
coordinate system applying Lorenz transformation, 
then following the Eqs. (271),(272),(273):  

𝑈𝑥
′ =

𝑈𝑥−𝑉

1−𝑉𝑈𝑥/𝑐
2                       (291) 

 𝑈𝑦′ = √1−
𝑉2

𝑐2
  

𝑈𝑦

1−𝑉𝑈𝑥/𝑐
2                      (292)        

𝑈𝑧
′ = √1−

𝑉2

𝑐2
  

𝑈𝑧

1−𝑉𝑈𝑥/𝑐
2.                   (293) 

 
Since in the fractional Λ-space, 

𝑈𝑥 = 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡) =

𝑑𝑋(𝑡)

𝑑𝑇(𝑡)
     with             (294) 

 𝑋(𝑡) = 𝐼0 𝑡
1−𝛾
𝑥(𝑡)                               (295) 

 and    𝑇(𝑡) = 𝐼0 𝑡
1−𝛾
𝑡                              (296) 

similar expressions are valid for the speed 
components Uy,   Uz in the Λ-space. If we transfer 
the components of the velocity from the Λ-space to 
the initial one, the components in the Σ inertial 
frame are given by: 

𝑢𝑥 = 𝐷0
𝑅𝐿

𝑡
1−𝛾
𝑈𝑥 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑋(𝑡)

𝑑𝑇(𝑡)
)                               (297) 

 
𝑢𝑦 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑦 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑌(𝑡)

𝑑𝑇(𝑡)
)                               (298)  

     
𝑢𝑧 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑧 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑍(𝑡)

𝑑𝑇(𝑡)
)                                (299) 

 
Therefore, Eqs. (297),(298),(299) are defined by: 
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𝑈𝑥
′ =

𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)−𝑉

1−
𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)

𝑐2

                                 (300) 

 𝑈𝑦′ = √1−
𝑉2

𝑐2
  

𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)

1−
𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)

𝑐2

             (301) 

𝑈𝑧
′ = √1−

𝑉2

𝑐2
  

𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)

1−𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)/𝑐2

                (302)                                                                                                                      

 
We transfer the components of the velocity 

from the Λ-space to the initial one; then the 
components in the Σ inertial frame are expressed 
by: 

𝑢𝑥 = 𝐷0
𝑅𝐿

𝑡
1−𝛾
𝑈𝑥 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑋(𝑡)

𝑑𝑇(𝑡)
)                               (303) 

 
𝑢𝑦 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑦 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑌(𝑡)

𝑑𝑇(𝑡)
)                                (304)  

     
𝑢𝑧 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑧 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑𝑍(𝑡)

𝑑𝑇(𝑡)
)                                (305) 

 
Furthermore, we can transfer the speed 

components in the 𝛴𝛬 ΄ inertial  coordinate system 
in the initial space only as functions, not as 
derivatives, by the relations: 

𝑢𝑥
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑥
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾( 𝐷0

𝛬
𝑡
𝛾
𝑥(𝑡)−𝑉

1−𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)/𝑐2

)    

                                                         
 (306)    

                                         

𝑢𝑦
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑦
′ = √1−

𝑉2

𝑐2
 𝐷0
𝑅𝐿

𝑡
1−𝛾
 (

𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)

1−
𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)

𝑐2

)                                          

(307) 
 

𝑢𝑧
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑈𝑧
′ = √1 −

𝑉2

𝑐2
 𝐷0
𝑅𝐿

𝑡
1−𝛾
 (

𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)

1−
𝑉 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)

𝑐2

)                                            

(308) 
 

Following a similar procedure, the  
corresponding components (𝐴𝑥′  , 𝐴𝑦

′ , 𝐴𝑧
′ ) are 

defined in the system and 𝛴𝛬 ΄ by the corresponding 
components of the acceleration (Ax, Ay, Az)  in the 
inertial coordinate system 𝛴𝛬 , see Eqs. 
(274),(275),(276). 

𝐴𝑥
′ = 𝐴𝑥

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑈𝑥/𝑐
2)3
,                 (309)                                                                      

𝐴𝑦
′ =

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑈𝑥/𝑐
2)3
 (𝐴𝑦 +

𝑉

𝑐2
(𝐴𝑥𝑈𝑦 − 𝐴𝑦𝑈𝑥))                                                

(310) 

𝐴𝑧
′ =

(1−𝑉/𝑐2)
3/2

(1−𝑉𝑈𝑥/𝑐
2)3
 (𝐴𝑧 +

𝑉

𝑐2
(𝐴𝑥𝑈𝑧 − 𝐴𝑧𝑈𝑥))   .                                             

(311) 
 
Similar expressions to Eqs. (274),(275),(276) yield 

𝐴𝑥 = 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) =

𝑑2𝑋(𝑡)

𝑑𝑇2
          (312)            

𝑋(𝑡) = 𝐼0 𝑡
1−𝛾
𝑥(𝑡)  and  𝑇(𝑡) = 𝐼0 𝑡

1−𝛾
𝑡     (313) 

 𝐴𝑦 = 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)) =

𝑑2𝑌(𝑡)

𝑑𝑇2
,           (314) 

𝐴𝑧 = 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)) =

𝑑2𝑍(𝑡)

𝑑𝑇2
             (315)                         

 
Therefore, Eqs. (312),(313),(314),(315) yield: 

𝐴𝑥
′ = 𝐷0

𝛬
𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) (

(1−𝑉/𝑐2)
3/2

(1−𝑉( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))/𝑐2)

3)   

(316)             
                                                  

𝐴𝑦
′    =  (

(1−𝑉/𝑐2)
3/2

(1−𝑉( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))/𝑐2)

3)( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)) +

 
𝑉

𝑐2
( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) ( 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡)) −

             𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑦(𝑡)) ( 𝐷0

𝛬
𝑡
𝛾
𝑥(𝑡))))              (317) 

 

𝐴𝑧
′ = (

(1−𝑉/𝑐2)
3/2

(1−𝑉( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))/𝑐2)

3)( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡)) +

 
𝑉

𝑐2
( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡)) ( 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡)) −

            ( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡))) ( 𝐷0

𝛬
𝑡
𝛾
𝑥(𝑡))))                         

   (318) 
 

If we transfer the acceleration   components 
from the Λ-space to the initial one, we have the 
components in the Σ inertial frame given by, 
𝑎𝑥 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝐴𝑥 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
)𝑥(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑2𝑋(𝑡)

𝑑𝑇2
)      

(319)  
             

𝑎𝑦 = 𝐷0
𝑅𝐿

𝑡
1−𝛾
𝐴𝑦 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
)𝑦(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾
(
𝑑2𝑌(𝑡)

𝑑𝑇2
)   

(320) 
 

𝑎𝑧 = 𝐷0
𝑅𝐿

𝑡
1−𝛾
𝐴𝑧 = 𝐷0

𝑅𝐿
𝑡
1−𝛾

( 𝐷0
𝛬

𝑡
𝛾
( 𝐷0
𝛬

𝑡
𝛾
)𝑧(𝑡)) =

𝐷0
𝑅𝐿

𝑡
1−𝛾

(
𝑑2𝑍(𝑡)

𝑑𝑇2
)                                                (321) 

 
Furthermore, the acceleration components in 

the 𝛴𝛬 ΄ inertial  coordinate system may be 
transferred in the initial space as functions, not as 
derivatives, by the relations, 
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𝑎𝑥
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝐴𝑥
′      ,                             (322) 

𝑎𝑦
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝐴𝑦
′          ,                              (323) 

 𝑎𝑥
′ = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝐴𝑧
′            ,                   (324) 

where,  𝐴𝑥′  , 𝐴𝑦′  ,  𝐴𝑧′    are defined by Eqs. 
(316),(317),(318). 
 

However, the body's mass depends upon its 
velocity u, so it is not constant, see Eq.(277), in the 
conventional special relativity theory. Therefore, in 
the Λ-space where the mass M corresponds to the 
rest mass M0 is defined by: 
𝑀 =

𝑀0

√1−((( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))

2
+( 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡))

2
+( 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡))

2
) /𝑐2)

         

(325)                                     
 
where we define M0 as the rest mass regarding the 
inertial observer in the Λ-space. Let us point out 
that, 

𝑀0 = 𝐼0 𝑡
1−𝛾
𝑚0 =

𝑚0𝑡
1−𝛾

𝛤(2−𝛾)
                      (326)                         

and  m0  is the rest mass in the inertial system Σ of 
the initial space. Therefore, we define the current 
mass m in the inertial frame Σ of the initial space: 
𝑚 = 𝐷0

𝑅𝐿
𝑡
1−𝛾
𝑀= 

𝐷0
𝑅𝐿

𝑡
1−𝛾

(

 
 
 

𝑚0𝑡
1−𝛾

𝛤(2 − 𝛾)√1 − ((( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))

2
+ ( 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡))

2
+ ( 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡))

2
) /𝑐2)

 

)

 
 
 

 

                                                  (327) 
                                                                                                                             
Also, Newton’s second law is defined in the 
fractional Λ-space, by: 

𝑭 =
𝑑𝑷

𝑑𝑇
=

𝑑

𝑑𝑇
[

𝑀0𝑼

√1−(𝑈2/𝑐2)
]=

𝑑

𝑑𝑇
(𝑀𝑼)        (328)                                                                             

where F is the force in the Λ-space, M is the 
current mass in the Λ-space, M0 is the rest mass in 
the Λ-space concerning the inertial observer, P is 
the momentum vector, and U the velocity vector. 
Educing that, Eqs.(291),(292),(293) becomes:  
𝑼 = 𝐷0

𝛬
𝑡
𝛾
𝑥(𝑡) 𝒊 + 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡) 𝒋 + 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡) 𝒌    

(329)                                                               
and  M   is the corresponding mass in the Λ-space 
defined by Eqs. (326, 327); the force F, according 
to the second Newton’s law, is  defined by: 
𝑭 =

𝑑𝑷

𝑑𝑇
=

𝑑

𝑑𝑇
[

𝑀0( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡) 𝒊+ 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡) 𝒋+ 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡) 𝒌 )

√1−((( 𝐷0
𝛬

𝑡
𝛾
𝑥(𝑡))2+( 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡))2+ ( 𝐷0

𝛬
𝑡
𝛾
𝑧(𝑡))2  )/𝑐2)

]=

𝑑

𝑑𝑇
(𝑀𝑼).                                                    (330)       

 
Hence we transfer back the force F to the initial 
space by: 

 f  = 𝐷0
𝑅𝐿

𝑡
1−𝛾
𝑭    .                                     (331)                          

 
Moreover, we express the kinetic energy of a 

mass point with mass M and speed U with U=|𝑼| 
in the Λ-space with the help of the  relation, 
Eq.(277), 

𝐾(𝑈,𝑀) =
𝑀𝑐2

√1−(𝑈2/𝑐2)
−𝑀𝑐2           (332)                            

with U2= ( 𝐷0𝛬 𝑡
𝛾
𝑥(𝑡))2 + ( 𝐷0

𝛬
𝑡
𝛾
𝑦(𝑡))2 +

 ( 𝐷0
𝛬

𝑡
𝛾
𝑧(𝑡))2                                                      (333) 

 
Transferring the kinetic energy into the initial space 
with the inertial frame of reference:  

K(u, m)= 𝐼0 𝑡
1−𝛾
𝐾(𝑈,𝑀)                     (334)                                                                   

 
Also,we express the total energy 𝐸(𝑈,𝑀) of the 
system in the Λ-space with the help of  Eq.(278): 
𝐸(𝑈,𝑀) =

𝑀𝑐2

√1−(𝑈2/𝑐2)
= 𝑀𝑐2 + 𝐾(𝑈,𝑀)     (335) 

 
And the total energy in the initial space is defined 
by: 
𝐸(𝑢,𝑚) = 𝐼0 𝑡

1−𝛾
𝐸(𝑈,𝑀) = 𝐼0 𝑡

1−𝛾
(𝑀𝑐2 +

𝐾(𝑈,𝑀)).                                                         (336)  
 
  
25 Fractional Special Relativity and 

Classical Electromagnetism 
a. relativity and electromagnetism 
We have already discussed the influence of special 
relativity theory on classical electromagnetism. The 
various fields are related by (outlining that 
influence upon the electric field intensity E, electric 
flux density D, the magnetic field strength H, and 
the magnetic flux density B between two inertial 
frames with primed frame moving relative to the 
unprimed velocity v, and 𝐯̂ the velocity unit 
vector):  
𝚬΄ = 𝛾(𝚬 + 𝐯 × 𝚩) − (𝛾 − 1)(𝚬 ∙ 𝐯̂)𝐯̂  (337)                                                                
𝐁΄ = 𝛾(𝚩 − 𝐯 × 𝚩/𝑐2) − (𝛾 − 1)(𝐁 ∙ 𝐯̂)𝐯̂  

(338)                                                         
𝐃΄ = 𝛾(𝐃 + 𝐯 × 𝐇/𝑐2) + (1 − 𝛾)(𝐃 ∙ 𝐯̂)𝐯̂  

(339)                                                        
𝐇΄ = 𝛾(𝐇 − 𝐯 × 𝐃) + (1 − 𝛾)(𝚮 ∙ 𝐯̂)𝐯̂     (340)                                                             

 
when a particle of charge q moves with velocity u 
concerning frame Σ, the Lorenz force in the inertial 
frame is defined by: 

𝐅 = 𝑞𝐄 + 𝑞 𝐮 x 𝐁                                (341)                                                                     
 
Further, in the inertial frame Σ΄, the Lorenz force 
is: 

𝐅΄ = 𝑞𝐄΄ + 𝑞 𝐮 x 𝐁΄.                            (342)                                                                
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Further, the equations for the charge density ρ and 
the current density J are defined by:  

𝐉΄ = 𝐉 − 𝛾𝜌𝐯 + (𝛾 − 1)(𝐉 ∙ 𝐯̂)𝐯̂              (343)                                                             
𝜌΄ = 𝛾( 𝜌 −

𝐉∙𝐯̂

𝑐2
 )                                      (344) 

                                                          
b. Fractional relativity and electromagnetism 
The fractional analysis has already proved as a 
mathematical tool for expressing relativistic 
phenomena; the present paragraph introduces the 
fractional Λ-derivative in the electromagnetism 
theory under the special relativity theory. We must 
remember that only the fractional Λ-derivative may 
generate differential geometry, whereas all the 
other fractional derivatives do not correspond to 
differentials and are unsuitable for formulating 
equations for physical problems. We also remind 
that differential geometry, along with the fractional 
Λ-derivatives, are valid only in the Λ-space, where 
the various derivatives exhibit conventional 
behavior and are local. The various functions may 
be transferred from the Λ-space to the original one 
by using the equation: 
𝑓(𝑡) = 𝐷𝑡

1−𝛾
( 𝛪0 𝑡

1−𝛾
𝐹(𝑇(𝑡)))0

𝑅𝐿 =

𝐷𝑡
1−𝛾
( 𝛪0 𝑡

1−𝛾
𝑓(𝑡))0

𝑅𝐿                                          (345) 
where F(T) is the various functions expressed in 
Eqs. (337)-Eqs. (344) in the Λ-space. All those 
functions depend upon the variable T,  see Eqs. 
(266, 267). Therefore, all the equations Eq.(342-
344) should be expressed with the variable T. For 
example, Eq.(341) corresponding to the Lorenz 
force in the Λ-space  may be expressed by: 

𝐅(T) = 𝑞𝐄(T) + 𝑞 𝐮(T) x 𝐁(T).        (346)                                                                  
where,  

   𝐮(T) = d(𝐗(T))

𝐝T
   .                                (347)                                                          

 
Then, considering Eq.(345),  Lorenz force f(t) 

is transferred into the initial space by the 
transformation: 
𝒇(𝒕) = 𝑫𝒕

𝟏−𝜸
( 𝜤𝟎 𝒕

𝟏−𝜸
𝑭(𝑻(𝒕)))𝟎

𝑹𝑳 =

𝐷𝑡
1−𝛾(𝑞𝐄(T) + 𝑞 𝐮(T) x 𝐁(T))0

𝑅𝐿                     (348)   
 

Furthermore, Eq.(342), if we express the 
corresponding Lorenz force F΄ in the inertial 
system Σ΄, with Eqs. (337, 338) 
   𝐅΄ = 𝑞(𝛾(𝚬 + 𝐯 × 𝚩) − (𝛾 − 1)(𝚬 ∙ 𝐯̂)𝐯̂ +
𝑞 𝐮 x (𝛾(𝚬 + 𝐯 × 𝚩) − (𝛾 − 1)(𝚬 ∙ 𝐯̂)𝐯̂).             

(349) 
 

Hence, according to the proposed theory, we 
transfer the Lorenz force corresponding to the 
inertial system Σ΄ into the initial system by: 

  𝒇΄(𝒕) = 𝑫𝒕
𝟏−𝜸
( 𝜤𝟎 𝒕

𝟏−𝜸
𝑭΄(𝑻(𝒕)))𝟎

𝑹𝑳         (350)                                                   

Therefore, we may follow the described 
procedure for the definition of any physical 
quantity related to fractional relativistic 
electromagnetism.    

 

                                                                                                   
26   The Maxwell’s Equations 
a. Theory 

We consider the following quantities in order  to 
derive the conventional Maxwell’s electromagnetic 
equations of integer order: 
Η=magnetic field                                                  
D=dielectric displacement 
E=Electric field                                                     
J=density of electric current 
B=magnetic induction                                           ρ= 
charge density. 
 

Those functions are the space-depended 
variables x,y,z, and the time t. The conventional 
Maxwell’s equations are, 
Ampere’s law: 

∇ × 𝐇 = 𝐉 +
𝜕𝐁

𝜕𝑡
                                     (351)   

                                                            
Faraday’s law: 

∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
                                        (352)  

                                                                       
The continuity equation: 

∇ ∙ 𝐃 = 𝜌                                                (353)                                                                                                                                                              
 
And the non-existence of monopole magnetic: 

∇ ∙ 𝐁 = 0                                                (354)                                                                                                            
 
Also, the wave equations: 

𝑣2∇2𝐁−
𝜕2𝐁

𝜕𝑡2
= 0                                   (355)                                                                                                                                      

𝑣2∇2𝐄 −
𝜕2𝐄

𝜕𝑡2
= 0                                     (356)                                                                      

where v is the wave velocity. 
 

At this point, we should know that the 
aforementioned Maxwell’s equations are valid in 
the Λ-space, where differential exists and fractional 
differential geometry is developed. Afterward, the 
equations are transferred from the fractional Λ-
space to the initial one, applying the law: 
f(x,y,z,t)=

 𝐷0
𝑅𝐿

𝑧
1−𝛾
( 𝐷0
𝑅𝐿

𝑦
1−𝛾

( 𝐷0
𝑅𝐿

𝑥
1−𝛾

( 𝐷0
𝑅𝐿

𝑡
1−𝛾
(𝐹(𝑥, 𝑦, 𝑧, 𝑡)))))                               

(357) 
 

Therefore, we can transfer all the quantities 
concerning Maxwell’s equations from the Λ-
fractional space to the initial one. The application 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.108

Konstantinos A. Lazopoulos, 
Anastasios Lazopoulos, Dimitrios Karaoulanis

E-ISSN: 2224-2880 1081 Volume 23, 2024



that follows explains the various stages of the 
proposed method.  

 
b. Application. 

Let us consider in the Λ-fractional space, 
𝑬 = 𝐸𝑚 𝑠𝑖𝑛(𝜔𝛵 − 𝛽𝑋)𝒌                       (358)   

in free space. Find D, B, H in the original space.  
 
Sketch E and H in the original space 
with ω=β=1 and T=0.2. 
 
The Maxwell equation ∇ × 𝐄 = 𝜕𝐁/𝜕𝑇 yields in 
the Λ-fractional space,  

𝑩 =
𝛽𝛦𝑚

𝜔
sin (𝜔𝑇 − 𝛽𝑋)𝒌                  (359)                                                                      

with a neglected constant of integration. Then,  
𝑯 = −

𝛽𝐻𝑚

𝜔
sin (𝜔𝑇 − 𝛽𝑋)𝒋  .            (360)                                                                     

 
Considering β=ω=1 we get  

( , ) sin(T )mE X E              (361)                                                                      

( , ) sin(T )mX X               (362) 
with Hm=Em/μ0. 
 

Those fields valid in the Λ-fractional space, 
expressed in the variables of the initial space, are: 

2 12 2

2 1

( , ) sin( )
(3 ) (3 )m

t x
E t x E

 

 

 

  
   

    (363) 

2 12 2

2 1

H( , ) sin( )
(3 ) (3 )m

t x
t x H

 

 

 

   
   

   (364) 

 
If we transfer the various quantities into the 

initial space (x,y,z,t) with the spatial fractional 
order γ1 and time fractional order γ2, the fields 
E(t,x) and H(t,x) in the initial space may be 
computed through the relations: 

2 1

2 1

1 1
0 0

1 10 0
2 1

(t, ) ( ( (t, )))
1 1 ( , )( )

( ) ( ) (t ) ( )

RL RL

t x

t x

E x D D E x

d d E s
ds d

dt dx x s

 

 




  

 

 

 


    

    

(365) 
2 1

2 1

1 1
0 0

1 10 0
2 1

( , ) ( ( ( , )))
1 1 ( , )( )

( ) ( ) ( ) ( )

RL RL

t x

t x

H t x D D H t x

d d H s
ds d

dt t dx x s

 

 




  

 

 

 


    

     

(366)    
 
We consider for the present application the fields 
E(T,X) and H(T,X) with: 

( , ) sin(T )mE X E X           (367)                                                                             

( , ) sin(T )mX X           (368)                                                                            
and Em=Hm=2. 
 

For T=0.2, the diagram of E(X) is shown in Figure 
79. 

 
Fig. 79: The electric field E(X) in the Λ-fractional 
space for time T=0.2 
 

Further, for fractional time order γ2=0.4, time 
Τ=0.2 corresponds to  t=0.45725. 

If we consider Eqs.(367,368), the electric fields 
in the original space have been computed and are 
shown in Figure 80 for fractional space order 
γ1=0.3, 0.5, 0.7 and 0.9. The same is accurate 
regarding the increase of width and frequency on 
space distribution of the electric field E(x,t) in the 
present case.  

 

  
Fig. 80: The electric field E(X) in the initial space 
for time t=0.457 and γ2=0.4 for various γ1. 

 
It is evident that the wave’s width of the 

electric field increases when the fractional space 
order decreases. Furthermore, when decreasing the 
fractional space order, the width and the frequency 
with respect to space of the electric field 
distribution is increased.  

When we increase the time fractional order 
γ2=0.6, the real-time t corresponding to T=0.2 in the 
Λ- fractional space is t=0.36983. We have 
computed the diagrams of the electric field Ε(x) in 
the true initial space for various space fractional 
orders γ1; they are shown in Figure 81: 

 

 
Fig. 81: The electric field E(X) in the initial space 
for time t=0.37 and γ2=0.6 for various γ1. 
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In the present case, the exact comment on the 
increase of width and frequency on space 
distribution of the Electric field E(x,t) in the initial 
space is also valid. As we increase time-fractional 
order γ2=0.8, the real-time t corresponding to T=0.2 
in the Λ- fractional space goes to t=0.28354. The 
diagrams of the electric field Ε(x) in the true initial 
space for various space fractional orders γ1 are 
computed and are shown in Figure 82: 

 

 
Fig. 82: The electric field E(X) in the initial space 
for time t=0.28 and γ2=0.8 for various γ1. 

 
From Figure 80, Figure 81 and Figure 82, it is 

evident that the width of the electric field E(x,t) 
increases by increasing the time fractional order. 
Proceeding to the corresponding magnetic field in 
the Λ-fractional space for T=0.2 we get the 
diagram,  Figure 83. 

 

 
Fig. 83: The Magnetic field H(T) in the Λ-
fractional space for T=0.2 
 

The magnetic field distribution has been 
computed by transferring the magnetic field into 
the initial space for various time fractional orders 
γ2 and space fractional orders γ1.  For the time 
fractional order γ2=0.4 , the time T=0.2, in the Λ- 
fractional space corresponds to t=0.45725 in the 
initial space (Figure 83). Figure 84 shows the 
distribution of the magnetic field H(t) for various 
space fractional orders γ1.  

 

 
Fig. 84: The magnetic field H(X) in the initial space 
for time t=0.457 and γ2=0.4 for various γ1 

If we transfer the magnetic field into the initial 
space for γ2=0.6, the time T=0.2 in the Λ- fractional 
space corresponds to t=0.37 in the initial space. The 
distribution of the magnetic field H(t) in the initial 
space for various space fractional orders γ1 is 
shown in Figure 85.  

 

 
Fig. 85: The magnetic field H(X) in the initial space 
for time t=0.37 and γ2=0.6 for various γ1 
 

If we transfer the magnetic field into the initial 
space for γ2=0.8, the time T=0.2, in the Λ- 
fractional space, will correspond to t=0.28354 in 
the initial space. The distribution of the magnetic 
field H(t) in the initial space for various space 
fractional orders γ1 is shown in Figure 86.  
 

 
Fig. 86: The magnetic field H(X) in the initial space 
for time t=0.29 and γ2=0.8 for various γ1 
 

As a general comment, it is concluded that the 
width of the electric and magnetic fields are 
increased with increasing fractional time orders, 
while they are decreased with fractional space 
orders. 
 
 
27   Conclusion 
Λ-fractional analysis is presented based upon the 
introduced Λ-fractional derivative; the only 
fractional derivative conforming with the 
prerequisites of differential topology for being a 
mathematical derivative is presented. Hence, it is 
the only fractional derivative that generates 
differential geometry. So, it is a unique fractional 
analysis that describes non-local phenomena in 
physics, mechanics, biology, economy, and others. 
The present review paper presents the basic theory 
and some critical applications in mathematics, 
mechanics, and physics. An almost complete 
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catalog of Λ-fractional applications is presented in 
the references for better information. 
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