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1 Introduction 
The primary aim of this article is to thoroughly 
examine and analyze the significant contributions 
made by various authors and researchers in the field 
of the Generalized Gamma (GG) family, [1]. 
Through the provision of a comprehensive and 
detailed overview, the primary objective of this 
article is to illuminate and bring forth a greater 
understanding of the vast and extensive body of 
work that has been generated and produced on this 
subject matter. Additionally, this research also aims 
to offer a comprehensive and in-depth 
comprehension of the moments and cumulants 
associated with the generalized standardized gamma 
distribution. These mathematical expressions and 
calculations serve as a vital component in 
facilitating a more profound and all-encompassing 
comprehension of the various properties and 
characteristics exhibited by this distribution. 
Moreover, they also serve as a fundamental and 
indispensable foundation upon which further 
analysis, exploration, and applications can be built 
and conducted. The gamma distribution may be 
used in place of the normal distribution as the basis 
distribution in expansions of the Gram-Charlier 
type. In applied work, gamma distributions give 
useful representations of many physical situations. 

They have been used to make realistic adjustments 
to exponential distributions in representing lifetimes 
and it is very important in the theory of random 
counters and other topics associated with random 
processes in time, in meteorological precipitation 
processes. The GG family, encompassing 
Exponential, Gamma, and Weibull as subgroups, 
and Lognormal as a boundary distribution, has been 
warmly embraced in the realm of economics, [2]. 
The authors in [3] have limited the applicability of 
the GG model. The estimation of parameters for its 
subgroup (two-parameter gamma distribution) using 
maximum-likelihood and quasi-maximum 
likelihood estimators can be found in [4]. The 
authors of the manuscript [5] have introduced a 
unique moment estimation method for the 
parameters of the GG distribution by using its 
characterization. In statistical modeling, the choice 
of probability distribution plays a pivotal role in 
accurately capturing the underlying characteristics 
of the data. 

This paper presents parameter estimation, 
focusing on the versatile gamma distribution and its 
generalized forms to address various modeling 
challenges. It provides a more comprehensive 
examination of the significant works on the GG 
family. It explores the relationship between 
cumulants and central moments, providing a 
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comprehensive view of the distribution’s 
characteristics. The paper is organized as follows: 
section 2 introduces the gamma distribution and an 
alternative parametrization along with some special 
cases when different values are assigned to the 
parameters. Section 3 explores the estimation of 
parameters with the method of moments, and 
likelihood estimation and provides an in-depth 
exploration of the Moment Generating Function. 
Section 4 extends our exploration to the continuous 
three-parameter GG distribution, namely basic 
properties, particular cases, shapes, CDF, the 
method of moments, maximum likelihood 
estimation, and Moment Generating Function. In 
Section 4 we present the definition of location 
families, scale families, and location-scale families 
and we consider Generalized standardized gamma 
distributions emphasizing that such models achieve 
a harmony between simplicity and flexibility, 
facilitating ease of estimation and interpretation, 
especially in cases where the data’s specific shape is 
known or expected. Section 5 presents Model 
Adjustment in mixed models and how to obtain a 
Generalized Least Squares Estimator, the Moments 
Generating Function for GG distribution, and the 
final section of this paper turns its attention to 
standard cumulants and due to the existing 
relationship between high order cumulants and these 
cumulants. We also consider mixed Models, where 
the components of the random part are characterized 
by rth cumulants. We explore the orthogonality 
structure of these models, providing a framework 
for estimating the coefficient parameters as well as 
cumulants of any order. In Section 6 we study the 
case considering generalized standardized gamma 
distribution but the components distribution of the 
random portion of the model can belong to different 
types. 
 
 
2 Gamma Distribution 
The gamma distribution is a two-parameter family 
of continuous probability distributions. The 
exponential, Erlang, and chi-squared distributions 
are special cases of the gamma distribution. This 
distribution can be parameterized in terms of a shape 
parameter α and an inverse scale parameter β = 1/θ, 

called the rate parameter. A random variable X that 
is gamma-distributed with shape α and rate β is 
denoted by X ∼ Γ(α, β), [6]. The corresponding PDF, 
in the shape-rate parametrization, is given by 

   (1) 

where Γ(α) is the gamma function. Alternatively, the 
PDF can be expressed in terms of the shape 
parameter α and the scale parameter θ 

 . (2) 
 

Both parameterizations are common because 
either can be more convenient depending on the 
situation. Alternative parameterizations are used 
when α = d/p, with d and p being shape parameters. 
The CDF of the gamma distribution is the 
regularized gamma function: 

  (3) 
where γ (α, βx) is the lower incomplete gamma 
function. In [7], they considered the GG function: 

  (4) 
where λ is a non-negative integer and α, β > 0. 

Sometimes it is interesting to study the following 
function so-called Modified GG function, MGGF, as 

(5) 

with λ ≥ 0, and [8] state that this 
function can have special cases, namely 

a) If b = 1, (5) reduces to the exact form of 
Kobayashi’s function given by (4). 

 
b) If b = 1, λ = 0, (5) becomes the standard 

form of the gamma function: 

; (6)  
c) If b = 0, k = 1, λ = α + h, (5) yields the standard 
form of the beta function of the second type. The 
PDF of the MGGF distribution is with x ≥ 0, φ = (α, 

k, b, λ, θ, β)t, α, k, θ, β  ≥ 0, λ, β > 0, where α, β are 
the shape parameters, θ, b is the scale parameters, k 

is the displacement parameter and λ is the parameter 
of intensity of the effect of the corresponding 
displacement parameter; 

d) When b = 1, λ = 0, (2) reduces to the GG 
distribution, given in [6] and [9] with PDF 

  (7) 
with x ≥ 0, β, α, θ > 0. 

 
Different special cases arise when different 

values are assigned to the parameters. For instance, 
by selecting specific parameter values, we can 
derive various distributions such as the Generalized 
Beta distribution of the second kind, the Weibull 
distribution, and so on. 
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3 Estimation of Parameters 
 

3.1  Method of Moments 
We will use the notation X ∼ Γ(α, β) to denote that a 
random variable X with density 

         (8) 
with α > 0, β > 0, follows a gamma distribution with 
parameters α, β. The rth moment for the gamma 
distribution is given by: 

      (9) 
r a positive integer. Let us consider X1, X2, ..., Xn ∼ 
Γ(α, β), and x1, x2, ..., xn  a random sample from a 
gamma distribution. If we observe a particular value 
each x1, x2, ..., xn, then the sample moments are 

given by   . 
The method moments consist of setting those 

population moments equal to the sample moments. 
Considering the cases r = 1,2, ... we must solve the 
equations: 

 , (10) 
and 

 , (11) 
for α and β. By using the properties for the gamma 
function and equations (10) and (11), we obtain the 
estimators: 

  (12) 
and 

 , (13) 
using the notation βˆ to denote the maximum 
likelihood estimator for β. 

 
3.2  Maximum Likelihood Estimation 
Maximum likelihood estimation is a method of 
estimating the parameters of a distribution by 
maximizing a likelihood function so that under the 
assumed statistical model the observed data is most 
probable. The point in the parameter space that 
maximizes the likelihood function is called the 
maximum likelihood estimate. 

Let us consider Xi, i = 1, ..., n independent GG 
random variables. If x1, x2, ..., xn is a random sample 
from a gamma distribution with parameters α and β, 

it is possible to make inferences about the 
population that is most likely to have generated the 
sample, specifically the probability distribution 
corresponding to the population.  

Associated with each probability distribution is 
a unique vector, say θ = [θ1, θ2, ..., θn]t of parameters 
that index the probability distribution within a 
parametric family. As θ changes in value, different 
probability distributions are generated. The 
likelihood function for the gamma distribution is 
given by: 

  

                             
              (14) 

 
The maximum likelihood estimation method 

involves finding the values for α and β that 
minimize equation (14). By taking the natural 
logarithm of both sides of (14) and applying the 
properties of logarithms, we have: 

 
 
 

(15) 
 
 

Taking the derivative concerning α in (15) and 
setting it equal to zero gives the corresponding 
equation: 

  (16) 
 
Differentiating concerning β, we have: 

     (17) 
 
from which we derive: 

   . (18) 
 

Solving for α the equation (16) is quite 
complicated because of the function Γ(α). There is 
no closed way to solve for α in this equation, but in 
[10] they show how to obtain the maximum 
likelihood estimation for α. 

 
3.3 Moment-generating Function for the 

Gamma Distribution 
We shall start by considering the two-parameter 
gamma distribution that is frequently a probability 
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model for waiting times; for instance, in life testing, 
the waiting time until death is a random variable that 
is frequently modeled with a gamma distribution. Its 
importance is largely due to its relation to 
exponential and normal distributions. The PDF is 
given by: 

  (19) 
with Γ(.) the gamma function, the parameter α is 
referred to as the shape parameter, as it primarily 
affects the distribution's kurtosis, [11], while the 
parameter β is called the scale parameter since most 
of its influence is on the spread of the distribution 
and 0 < x < ∞, α > 0, β > 0. In some applied fields, 
the parametrization with shape α and rate θ, which is 
the inverse of β, as mentioned before, is more 
common. 

According to [12], the moment-generating 
function, MGF, is given by: 

       (20) 
∞ < x < +∞.  

 
Doing a change of variable y = x(1−βt) we obtain: 

 . (21) 
 

If t ≥1/β then the quantity 1/β−t in the integrand 
of the above equation is nonpositive and the integral 
in the second part is infinite. Thus, the MGF of the 
gamma distribution exists only if t < 1/β. Following 
[12], if X has MGF MX(t), then 

 . (22) 
 

That is, the rth moment is equal to the rth 

derivative of MX(t) evaluated at t = 0. It is well 
known that moments are specific measures that 
allow a more detailed description of a probability 
distribution. Central moments µr can be expressed in 
terms of noncentral moments (raw moments) using 
the following relationship, [13], 

                (23) 
 

Putting r=0 in (23) gives , independently 
of the parameters α, β and τ. Therefore, the moment 
of order zero does not provide any information 
about the shape or location of the distribution. This 
is because the moment of order zero is simply the 
integral of the PDF over the entire domain, which is 
always equal to one. In parameter estimation 
problems, it is important to use informative 

moments that can help estimate the parameters of 
the distribution accurately. 

 
 

4 Generalized Gamma Distribution 
 

4.1  Basic Properties of Generalized Gamma 

Distribution 
We will use the notation X ∼ GG (α, β, τ) to denote 
that a random variable has a GG distribution with 
three parameters. This distribution has two shape 
parameters, α and τ, and one scale parameter, β, but 
no location parameter. It has a fixed lower bound 
equal to zero and exhibits great flexibility in shape, 
[14] allowing for various forms commonly observed 
in hydrological applications, [2] and [6]. The GG (α, 

β, τ) has GG distribution with PDF 

 , (24) 
where x, β, α > 0, and τ can be either positive or 
negative. 

 
An important property of the GG (α, β, τ) 

family, [13] and [15], is that the family is closed 
under power transformation, that is: 

 , (25) 
with s a positive integer and, if Z = ηX, η > 0, then 
GG (ηα, β, τ). 
 

4.2  Particular Cases and Shapes 
We now obtain cases and shapes from (24). We have 
the well-known exponential distribution when α = τ 
= 1, gamma distribution when τ = 1, and Weibull 
distribution when α = 1. If τ = 2, we obtain a 
subfamily of GG (α, β, τ) which is known as the 
generalized normal distribution, that itself includes 
half normal distribution. By setting α = 1/2, τ = 2, 

we get the half-normal distribution defined by: 

 , (26) 
where we use the fact that Γ(1/2) =√𝜋 . In the 
literature sometimes appears β = √2 σ, where σ is 
the standard deviation of a normal random variable. 
So, equation (24) becomes: 

(27) 
 
 

 
Examining the behavior of the τ parameter of 

the GG distribution where τ increases, the shape of 
the distribution tends to become thinner, and within 
the interval [0,1], the distribution exhibits right 
skewness. This skewness becomes more pronounced 
as τ approaches zero. As τ decreases, the graphical 
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representation of this distribution exhibits significant 
right skewness. 

 
4.3  The Cumulative Distribution Function 
The CDF of a random variable X denoted by F(x), is 
defined as F(x) = Pr(X ≤ x). Using identity for the 
probability of disjoint events, if X is a discrete 
random variable, then 

 , (28) 
where xk  gives the largest possible value of X that is 
less than or equal to x. The CDF measures any value 
up to and including x. If X is a continuous random 
variable, then 

            (29) 
 
The CDF of GG distribution is given by: 

 , (30) 
where γ(.) denotes the lower incomplete gamma 
function, as in Section 2. Another interesting 
function is the survival function given as 
 SGG(t) = 1 − Γ(α−2(e−τt)α/σ;α−2). (31) 
 
4.4  Estimation of Parameters - Generalized 

Gamma Distribution 
 

4.4.1  Method of Moments 

We will use: 

     (32) 
to find the moments of the GG distribution. Doing 
the change of variable.                , we get: 

  (33) 
 

The rth moment (also known as the rth moment of 
the origin or raw moment) of a GG distribution is 
given by 

 . (34) 
 

It is well known that in the method of moments, 
we find sample moments and set them equal to their 
population counterparts, solving for the parameters 
of the distribution. Thus, the equations are obtained 
by equating population and sample moments: 

        (35) 

and 

 . (36) 
 
4.4.2 Maximum likelihood Estimation - 

Generalized Gamma Distribution 

In this section, we obtain the maximum likelihood 
estimators for the GG distribution. 

The likelihood function is the product of the 
PDFs for each observation, so: 

       (37) 
 

Now, using the PDF of the GG distribution, the 
likelihood function for n iid observations x1, x2, ..., 

xn is: 

   (38) 
from which we calculate the log-likelihood 
function:  

(39) 
 

The first-order conditions for finding the 
optimal values of parameters α, β and τ are obtained 
by differentiating the log-likelihood function to 
these parameters. Differentiating for α, we obtain: 

 (40) 
 
Differentiating to β, we obtain: 

 . (41) 
From this last equation, β turns out to be: 

  (42) 
depending on α and τ. Differentiating to τ 
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    (43) 
 

Now considering  and 
using the properties of the logarithm function we 
have: 

 (44) 
 

Putting the value of β in (42) into (44) and 
rearranging terms we get an expression for α in 
terms of τ 

(45) 

where  
 

If we substitute (45) and (42) into (45) we will 
have an equation in terms of τ only. This equation is: 

, (46) 

where  is the digamma function, the 
derivative of the logarithm of the gamma function, 
and α is given by (50). It is not always possible to 
find a solution for M(τ), [16], to estimate the 
parameters for the GG distribution. 
 
4.5  Moments and Cumulants Generating 

Function 
Moments and cumulants are the expected values of 
certain functions of a random variable. They serve 
to numerically describe the variable concerning 
given characteristics, e.g., location, variation, 
skewness, and kurtosis. The moments about zero 
play a key role for all kinds of moments because the 
latter can be-easily expressed by zero-moments. 

Given a random variable X, the moment 
generating function, if it exists, (i.e., is finite) is 
given by: 
 X(t) = E(etX), (47) 
when E means mean value. The rth order derivative 
at the origin of ϕX(t), when defined, is termed the rth 

moment about zero (relative to the origin) of the 
random variable X 
  (48) 
where r is any real number (but for the most part, r 

is taken as a non-negative integer). 

Besides moments about zero, 
 we will have central moments 

which are related to the above moments, having: 
 µr(X) = E((X − E(X))r), r = 1,2,.... (49) 
 

We point out that µ2(X) is the variance, σ2(X), 
and the relations between central moments and 
moments about zero are: 

(50) 
 

Let’s now consider the case where the 
distribution FX of a random variable X has location, 
dispersion, and shape parameters, namely α, β and τ, 
that will be part of moments. It is well established, 
as documented in [17], that a distribution can be 
expressed in terms of a standard distribution: 

  . (51) 
 
Additionally, we can express: 

 , (52) 
and this relation only depends on τ. If we know  

and µ3( |λ, δ, τ) we also know h(τ) and 
we obtain τ. 
 

In addition to the moment-generating function, 
our attention is now drawn to the cumulant 
generation function. Considering (47), we have 
ψX(t), the cumulant generation function: 

ψX(t) = ln(X(t)). 
 
It is known that, according to [18], 

(53) 

(t |α, β, τ) = eαt(β t |0, 1, τ), 
so we have: 

(54) 

ψ(t |α,β,τ) = αt + ψ(βt |0,1,τ). (55) 
 
The rth cumulant is the rth derivative of the cumulant 
generation function about zero: 

(56) 
coming when r = 2 

 . (57) 
 
Following [7], 
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(58) 
and the fourth-order cumulant is defined as  

χ4( |0,1,τ) = ψ4(0 |0,1,τ) =µ4 −3(σ2)2( |0,1,τ). (59) 
 

The cumulants above enable us to obtain the 
skewness and kurtosis coefficients 

  . (60) 
 
The skewness of a random variable is the third 
’standardized’ moment (about zero). 
 
 
5 Model Adjustment 
We will now direct our attention to mixed models 
and on exploration of their relevant parameters. 
Mixed models are described by: 

                      (61) 
or omitting ei to lighten the model. These models are 
given by the sum of Xβ, with β the vector of fixed 
effects and w independent random terms Zi = 
(Zi,1,...,Zi,ci), i = 1,...,w, with E(Zi) = 0, i = 1,...,w. 

Matrices X and Xi, i = 1,...,w, are design matrices, 
and we admit that the components of Zi are iid, 

having rth cumulants that now, for notation purposes, 
we will call χr,i, i = 1,...,w, r > 2. 

In particular χ1,i = 0, i = 1,...,w, when the mean 
values of the components vector are zero and σi

2 = 
χ2,i, i = 1,...,w. We will integrate the location 
parameters in the vector of coefficients β, as in [18], 
so when we estimate β, we are estimating λ1, ... ,λw. 

Note that here we present an important and 
substantial advancement in distribution research, 
that is it can be perfectly assumed that the 
components distribution of the Z1,...,Zw, belong to 
different types, [18]. 

Let us proceed with our analysis considering the 
orthogonal complement, Ω⊥, of the range space Ω = 
R(X) of matrix X. The dimension of Ω⊥ is n˙ = n − k 

and 

                        (62) 
with an orthonormal basis (α1  ,..., αn˙). 
 
 
Now, with 

  (63) 

l = 1, ..., n, i= 1, ..., w, and, according to [17] and 
[18], the cumulant vector has components  

χr = (χr,1, ,..., χr,w),i = 1,...,w, r = 2,3,                    (64) 
and we will call Or (Yl

0), l = 1, ..., n, r= 2,3, the rth 

cumulant of Yl
0 as 

 (65) 
with 

(66) 
 
Considering r=2,3, B(r) = [br,l,i],i=1, ..., w, and the 
vector Or with components: 

 (67) 
we can write 

 Or = B(r) χr, r = 2,3.                         (68) 
 
For Or we have the estimator: 

 (69) 
what gives rise to LSE  

 (70) 
where + stands for Moore-Penrose inverse of a 

matrix. Let us consider , since the 
mean vector of  is Or  and 

                                            (71) 
 
In particular χ1,i = 0, i=1,...,w, when the mean values 
of the components are null and we have: 

 ,                        (72) 
considering the variance 
components of Zi, i=1, ..., w. Taking the estimators 

 we have for Y the 
estimated variance-covariance matrix, [19] 

 ,                 (73) 
for which we have the estimator: 

 ,            (74) 
and, according to [19], gives the Generalized Least 
Squares Estimator, GLSE, for β 
  . (75) 
If we take 

  , (76) 
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we have 

    (77) 
with the components of Z0

i = Z − 1ci λi, i=1, ..., w, 

having null location parameters. 
 

If the components of vectors Zi, i=1, ..., w, have 
location, dispersion and shape parameters their rth 

order cumulants will be, following equation (51), we 
have: 

 χr,i( |0,δi,τi) = δi
rχr,i( |0,1,τi),                       (78) 

r = 2,3,4, i=1, ..., w. For r=2, we have  
χ2,i( |0,δi,τi) = δi

2χ2,i( |0,1,τi), i = 1,...,w, therefore 

 , (79) 
 
To estimate τi we consider gr,i(τi) = χr,i( |0,1,τi) and 

(80) 
thus 

                                          (81) 
and 

  .       (82) 
 
It should be noted that, after estimating τi, the 
estimator  is: 

 , (83) 

 

(84) 
 
If the distribution does not have a shape parameter, 
expression (79) lightens into: 

  (85) 
 
and the estimator is: 

  (86) 
 

If the distribution has no location parameter but 
has two shape parameters, ρi  and δi, for example, we 
consider χ2,i( |ρi, δi, τi) = δi

2 χ2,i( |1,1,τi), i=1,...,w. The 
components of Z0

i,i=1,...,w, see equation (77), will 
have parameters (0,δi,τi) or (λi,δi), i = 1,...,w. In the 
last case, we do not consider the shape parameter. 

The vectors Z0
i,i=1,...,w,have the same 

cumulants of order r > 1 as Zi, i=1,...,w, and we can 
estimate these cumulants from equations (69) and 
(70). Considering equation (76) we see that λ1, ..., λw 

are estimated by estimating β0. 
On the other hand, proceeding as in equation 

(70), we only have to estimate the cumulants χr,i, 

i=1,...,w, r=2,3,... to obtain the GLSE for  

 (87) 
as seen earlier in equation (75). 
 
5.1 Moment-generating Function for 

Generalized Gamma Distribution 

In the following, we shall operate as before, in 
(19), but now consider three parameters. Under the 
assumption that   exists, [14], i.e., α +τ/ β  > 0. 

 . (88) 
 
Using r=1 in (34), the mean   of the GG (α, β, 

τ) is: 

 , (89) 
and the variance of X is given by: 

  (90) 
 
 

6 Standard Distributions 
Regarding PDFs, there are three types of groups: 
location groups, scale groups, and location-scale 
groups. Each group is formed by defining a single 
PDF, denoted as f(x), known as the standard PDF for 
that group. Other PDFs within the group are then 
produced by altering the standard PDF in a specific 
manner. A basic theorem regarding PDFs states 

Theorem 1 [12] Let f(x) be any PDF and let µ 

and σ > 0 be any given constants. Then the function: 

  (91) 
is a PDF. 
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The location parameter µ shifts the PDF f(x) and 
the shape of the graph is unchanged, so the family of 
PDFs f(x-µ), indexed by the parameter µ, ∞ < x < 

∞, is called the location family with standard PDF 
f(x) and µ is called the location parameter for the 
family. The scale parameter effect, considering σ 

that parameter, is either to stretch, when σ > 1 or 
contract, when σ < 1, the graph of f(x) while still 
maintaining the same basic shape of the graph. So, 
we have 

Definition 1 [12] Let f(x) be any PDF. Then for 
any σ > 0, the family of the PDFs  , indexed 
by the parameter σ, is called the scale family with 
standard PDF f(x) and σ is called the scale parameter 
of the family. 

Most often when scale parameters are used, f(x) 
is either symmetric about 0 or positive only for x > 

0. In these cases, the stretching is either symmetric 
about 0 or only in the positive direction. But, in the 
definition, any PDF may be used as the standard. 

If we introduce both the location and scale 
parameters, we shift the graph and the point that was 
above 0 is now above µ and we have stretching (σ > 

1) or contracting (σ < 1). The normal and double 
exponential families are examples of location-scale 
families. The following theorem, which appears in 
[12] relates the transformation of the PDF f(x) that 
defines a location-scale family to the transformation 
of a random variable Z with PDF z. 

Theorem 2 Let f(x) be any PDF, µ any real 
number, and let σ be any positive real number. Then 
X is a random variable with PDF   if and 
only if there exists a random variable Z with PDF 
f(z) and  X = σZ + µ. An important fact to extract 
from Theorem 2 is that the distribution of the 
random variable      is a member of the 
location-scale family corresponding to µ = 0, σ = 1. 

 
6.1 Generalized Standardized Gamma 

 Distribution 
We thus aim to consider the PDF of the generalized 
standardized gamma distribution (GSGD) defined 
by the following PDF, setting τ = 1 and β = 1 in (5), 
we have: 

 . (92) 
 
This explicit expression allows us to calculate the 
PDF for any given value of x and τ. 
 

It is desirable to develop models that have a 
small number of parameters while maintaining a 
high degree of flexibility for modeling data. In our 
case the distribution having fewer parameters than 

the standard gamma distribution (only τ as the shape 
parameter), it might be easier to estimate and 
interpret the distribution, particularly when the 
specific shape is known or expected. 

 
The MGF for the GSGD distribution is given 

now by: 

  (93) 
 

The mean of GSGD distribution is obtained by 
differentiating the MGF to t and then evaluating it at 
t = 0, so µ is given by: 

(94) 
 

The second moment of GSGD distribution can 
be calculated by taking the second derivative of the 
MGF at t = 0 

(95) 
 
The variance of GSGD distribution is given by: 

Var(X) = σ2 = µ2 − µ2 = τ(τ + 1) − τ2 = τ.      (96)  
 

We also have µ3 = 2τ and µ4 = 3τ2 + 6τ. For the 
GSGD distribution, the skewness is 2τ−1/2, and 
kurtosis can also be expressed in terms of the shape 
parameter τ as K = 3 + 6/τ. 
 
The characteristic function is: 
 E[eitX] = (1- it)−τ, (97) 
and the cumulant generation function is defined as 
the logarithm of the MGF 

 . (98) 
 
Using the properties of logarithms, we can obtain 
the cumulant generation function given by: 
 ψ(t|1,1,τ) = −τ ln(1 − t), t < 1. (99) 

 
The moments µr of a distribution can be 

expressed in terms of cumulants, [2] and [21], 
considering kr = ψr(0|1,1,τ), which gives us rth 

cumulants:  
kr = (r − 1)!τ, r = 1,..., τ = 1,... .               (100) 

 
Now, following subsection 4.5, to reduce the 

distribution to a single shape parameter while 
maintaining its essential properties, we consider the 
power transformation that combines the 
original shape parameters. We have a well-known 
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relation between the cumulants of a distribution with 
parameters in terms of cumulants: 

(101) 
 

 
where χ1,i( |0,1, τi

0) = g1,i(τi
0) and χr,i( |0,1,τi

0) = gr,i(τi
0) 

are known. For r=2 we obtain: 

    (102) 
 

which means that, according to [17], we can express 
standard cumulants involving three parameters as a 
linear combination of cumulants involving only one 
parameter. So, the estimator for βi is: 
 

    (103) 
 
where g2,i(τe

0
i) = χ2,i(0,1,τe

0
i) is obtained substituting

 in the expression of the second cumulant 
with δ = 1. Once we estimate βi and  we can obtain 
estimators for

, not only for the second and 
third cumulants but for cumulants of all orders as 
well. 
 
 
7 Conclusion 
This paper has undertaken a comprehensive 
exploration of the Generalized Gamma (GG) family 
shedding light on significant contributions made by 
various authors and researchers in this field. The GG 
family, with its inherent versatility and flexibility, is 
a valuable tool in various domains including 
economics and meteorology. Explicit formulas for 
the higher order cumulants have been derived and a 
number of these findings are novel, namely, the 
components of the random part of the model can 
belong to different types, while others serve to 
complement and augment existing results found 
within the literature. 
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