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Abstract: - This study introduces and tests a new right-truncated Shanker distribution (RT-SD) that has specific 
statistical properties on four real datasets. The results showed that RT-SD is more consistent with the real 
dataset than the existing Shanker distribution. Furthermore, the adaptive multiple dependent state sampling plan 
(AMDSSP) implements the proposed new truncated distribution under the truncated life test. This sampling 
plan is constructed by integrating the principles of the double sampling plans (DSP) and the multiple dependent 
state sampling plans (MDSSP). The AMDSSP has greater inspection efficiency than the existing sampling plan. 
A nonlinear optimization is employed to calculate the optimal plan parameters for minimizing the average 
sample number (ASN) under various conditions for producers and consumers. A comparison between the 
AMDSSP under the RT-SD and the AMDSSP under the Weibull distribution (WD) was considered under the 
ASN based on the real dataset. The results showed that the proposed AMDSSP is more effective in terms of 
ASN when used with RT-SD. 
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1  Introduction 
Acceptance sampling plans (ASPs) improve product 
quality control by enabling inspection of a 
representative sample, reducing time and cost 
compared to checking every item. Additionally, 
acceptance sampling plans help identify trends in 
quality, supporting ongoing improvements in 
manufacturing processes. Therefore, ASPs are an 
important tool in product quality control. This 
methodology enables consumers to determine 
whether to accept or reject a product by inspecting a 
sample of items from a lot. Simultaneously, 
manufacturers can leverage ASPs to establish the 
minimum sample size and criteria for accepting or 
rejecting a given lot. Traditionally, single sampling 

plans (SSPs) have been the most widely used across 
industries. The decision to accept or reject a sample 
is based on a single sample. However, SSP often 
results in a higher average sample number (ASN) 
than other sampling plans. In some situations, 
accepting or rejecting a lot cannot be decided 
accurately using SSP. The Double Sampling Plan 
(DSP) [1] is one method that permits further 
sampling in cases where the first sample fails to 
yield conclusive results. In addition, the Multiple 
Dependent State Sampling Plan (MDSSP) is an 
efficient sampling plan that reduces the size of the 
sample, reduces inspection costs, and makes 
decisions about the current lot based on acceptance 
data from previous lots. [2] introduced the MDSSP 
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for continuous manufacturing processes, 
incorporating serial inspections of lots. Based on 
data from previous lots, the MDSSP can determine 
whether to accept or reject the current lot, thereby 
reducing the sample size. Many researchers have 
studied the MDSSP in a variety of contexts. For 
example, [3] suggested designing an MDSSP to 
reduce the risks for both producers and consumers. 
[4] studied the MDSSP using variable sampling 
plans and the assumption of a normal distribution. 
[5] used Bayesian methods to investigate MDSSP. 
The studies, [6], [7], [8], [9] have combined the 
concept of MDSSP with control chart design. 
Additionally, [10] applied the MDSSP to COVID-
19 outbreak data from China, assuming an 
Exponentiated Weibull Distribution for the lifetime 
data. [11] developed a modified MDSSP that they 
indicated was more adaptable and efficient than the 
current MDSSP. [12] presented an adaptive MDSSP 
for accelerated life tests by integrating the DSP 
concept and the existing MDSSP. They claimed that 
their proposed sample plan was more adaptable, 
efficient, and cost-effective than MDSSP and SSP. 

Nowadays, product reliability is important, and 
testing the mean lifetime of each item is not 
possible. A time-truncated life test has become an 
important tool in determining product acceptability 
before exporting to consumers, which is a test of the 
lifetime of samples based on ASPs over a 
predetermined time. After that, a decision is made to 
accept or reject the lot according to the specified 
criteria. To ensure an optimal product lifetime, 
numerous researchers have suggested a variety of 
lifetime distributions for the design of ASP under a 
time-truncated life test. For example, [13] examined 
SSPs and DSPs by analyzing variable data under the 
WD. Their method employed sudden mortality 
testing to decrease the ASN and inspection time. 
Likewise, [14] examined the group ASP to reduce 
the inspection time by employing the generalized 
exponential distribution and WD. [15] suggested the 
MDSSP when the lifetimes of products are cut short 
using an exponentiated half-logistic distribution. 
Furthermore, [16] looked into the median life of 
products for the MDSSP concerning the generalized 
inverted exponential distribution. [17] proposed a 
group MDSSP, which demonstrated that the actual 
mean lifetime exceeded the specified mean lifetime 
based on the WD. [18] used the gamma distribution, 
the Burr type XII distribution, and the Birnbaum-
Saunders distribution to determine the mean lifetime 
for a generalized MDSSP. [19] also employed a 
truncated life test to develop a new ASP for the 
Length-Biased Weighted Lomax distribution. [20] 
introduced a group ASP that uses a truncated life 

test and an alpha power transformation-inverted 
benefits distribution to determine a product's 
lifetime. Selecting a lifetime distribution that is 
consistent with the real dataset, is one of the ways to 
increase the efficiency of the ASP. Lifetime 
distribution is often used for ASP such as 
Exponential distribution, WD, Lindley distribution, 
etc. [21]. However, there are some limitations to the 
parameters of the lifetime distribution that do not 
correspond to the real dataset. Many researchers 
have developed the distribution for flexibility and 
correspondence with the real dataset by mixing 
distributions ; such as Shanker distribution (SD), a 
mixture of exponential ( ) and gamma distribution 
(2, ) [22] it is used to mimic real lifetime datasets 
from various disciplines of knowledge. Shanker 
distribution fits better than both the Lindley and 
exponential distributions. The probability density 
function (PDF) and the cumulative distribution 
function (CDF) are given as Equations (1) and (2), 
respectively, [22]. 
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where   is the scale parameter. The first moment 
about origin (the expected value) is presented in 
Equation (3). 
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Developing a lifetime distribution for more 

consistency with real data will further enhance the 
effectiveness of ASP. One of the improvements to 
the lifetime distribution is truncation. A conditional 
distribution known as a truncated distribution is 
produced when the domain of baseline distribution 
is constrained, [23]. Truncated distributions can be 
applied to expedite the asymptotic theory of robust 
estimators. A conditional distribution that arises 
from limiting the domain of another probability 
distribution is known as a truncated distribution in 
statistics. In practical statistics, truncated 
distributions emerge when the range of values that 
fall inside or beyond a specific threshold are the 
only ones that may be used to record or even know 
about occurrences. Consequently, values outside the 
data set are not considered, making the model more 
consistent with real data. In real-world statistics, the 
lifetime distributions are truncated on both left and 
right sides, or they may only be truncated on the left 
or right side. SD is one alternative distribution that 
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is more consistent with lifetime data. If SD is 
developed by truncation, it will be more consistent 
with the actual data. A truncated lifetime 
distribution has been applied for ASP and the results 
showed that it improved the efficiency of the 
sampling plan. For example, [24] proposed the 
application of a truncated Weibull-X family for ASP 
based on run lengths of conforming items. The 
effectiveness of the developed plan was established 
by comparison with the existing plan, based on the 
average number of checklists. The results showed 
that the developed plan could help to save 
inspection costs and effort while protecting from 
producer and consumer risks. [25] presented a 
continuous ASP for truncated Lomax distribution 
based on cumulative sum (CUSUM) schemes. The 
product lifetime is distributed according to Lomax 
distribution. When there were restrictions on the 
lower and upper bounds of the variable being 
studied, truncated distributions were utilized in 
numerous real-world scenarios. They used the 
Gauss-Chebyshev integration method to optimize 
CASP-CUSUM schemes through the truncated 
Lomax distribution, based on these understandings. 
The suggested plan offered the optimal CASP-
CUSUM schemes, allowing the average run 
length (ARL) and the probability of acceptance 
(P(A)) values to reach their maximums. For these 
reasons, we propose developing AMDSSP under a 
truncated Shanker distribution. Since the lifetime of 
the product starts from zero to t , this research 
presents the right truncation of the Shanker 
distribution to develop AMDSSP. The rest of this 
article is organized as follows: A brief description of 
the theory of the right-truncated Shanker 
distribution and the Adaptive Multiple Dependent 
State Sampling Plan under right-truncated Shanker 
distribution are discussed in Section 2. In Section 3, 
numerical experiments are discussed. Finally, the 
discussion and conclusion are given in Section 4. 

 
 

2   Theory 
 
2.1  Right-truncated Distribution 

Let X , a continuous random variable, 0 x   , 
be a baseline distribution with the parameter  . The 
PDF and CDF of X  are  ;f x   and  ;F x  , 
respectively. If 0a   and b  , it is called the 
right truncated distribution on the interval [0, b ]. 
Then, the PDF of x is [26], [27], 
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2.2 Right-truncated Shanker Distribution 

with Specific Statistical Properties 
Equations (5) and (6) provide the PDF and CDF of 
the right truncated distribution (RT-SD) of X on the 
interval [0, b ], thereby verifying the properties of 
RT-SD, as detailed in Appendices A and B. Figure 1 
(Appendix D) displays the PDF and CDF plots of 
the RT-SD. 
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2.2.1  Moments 

Moments at the origin of order rth can be used to 
originate the most important characteristics of the 
distribution (e.g., mean, variance, skewness, 
kurtosis, etc.). Calculations of the moment regarding 
the origin of RT-SD can be found in Appendix C. 
The expected value or the first moment is as 
Equation (7). 
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2.2.2   Parameter Estimation 

The maximum likelihood estimate (MLE) is used 
for parameter estimation of the RT-SD based on the 
random sample  1 2, , , nx x x x  of n  observation. 
Let  ~ ( , ),ix RT SD b 1,2, ,i n  be an 
independent and identically distributed (i.i.d.) 
random variable. The likelihood function and log-
likelihood function of ix  are shown in Equation (8) 
and (9), respectively. 
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The value of b  in equations (8) and (9) is the 
maximum value of the datasets. The maximum 
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likelihood estimate (MLE) (̂ ) of   can be solved 

by the equation 
  

0
d LL x

d


 . It is a nonlinear 

equation, so it is solved using the Newton-Raphson 
method. 

 
2.3 Adaptive Multiple Dependent State 

Sampling Plan under RT-SD 
The MDSSP requires a continuous sample from 
both the current and previous lots to decide whether 
to accept or reject the current lot under a single 
sampling. This approach leads to a smaller sample 
size. The MDSSP is commonly used in situations 
where manufacturing occurs continuously in 
multiple lots, and each lot is inspected one after the 
other. A single sampling may not be enough to 
accept or reject the current lot, increasing the 
producer's risk and reducing the consumer's risk. 
The AMDSSP, an adaptive MDSSP, was introduced 
in [12]. The ideas of MDSSP and DSP are used in 
this sample plan. It is suggested that if the quality of 
the first sample is uncertain, the second sample 
should be examined before deciding whether to 
accept or reject the current lot. For inspection, the 
AMDSSP uses a smaller sample size than the 
existing MDSSP because current lots will be 
accepted if they are of good or moderate quality. 
The AMDSSP follows the same criteria as the 
existing MDSSP, performing continuous serial lot-
by-lot sample inspections. The current lot has the 
same quality, and consumers trust the producer. 

This research proposes an AMDSSP to design 
an optimal plan parameter when the product lifetime 
follows the RT-SD under a truncated life test. The 
proposed AMDSSP involves five parameters: 

1 2 1 2, , ,n n c c , and m , where 1n  and 2n  represent the 
first sample size and the second sample size. The 
number of previous lots required for the disposition 
of the current lot is m , and the maximum number 
of unconditionally accepted nonconforming items is 

1c  1 0c  , while the maximum number of 
conditionally accepted nonconforming items is 2c

 2 1c c .Unconditional acceptance occurs when 

1 1d c£ , whereas conditional acceptance occurs 
when 1 2 2d d c+ £  and the previous m  lots. 

The operational steps of the AMDSSP are as 
follows: 
      Step 1. Select the first random sample of size 1n  
from the current lot through a life test. Define 1d  as 
the number of nonconforming items that fail before 
the predetermined trial time t0 . 

      Step 2.  If 1 1d c£ , the current lot is considered 
acceptable for good quality, which is called 
unconditionally accepted. Conversely, the lot is 
rejected if 1 2d c>  or if the trial time t0 is reached, 
whichever occurs first. Otherwise, go to Step 3. 
      Step 3 .  If 1 1 2c d c< £ , select a second random 
sample of size 2n  from the current lot and test its 
lifetime. Define 2d  as the number of nonconforming 
items that fail before t0 . If 1 2 2d d c+ £  and the 
previous m  lots are of good quality, accept the 
current lot as being of moderate quality called 
conditionally accepted. Otherwise, the current lot is 
rejected. 
 

Figure 2 (Appendix D) presents a flow chart 
that summarizes the above steps. The following 
Equation (10) denotes the probability of accepting 
the current lot   1aP p when it is of good quality, 
disregarding the quality of m  previous lots: 

   1 1 1aP p P d c  .            (10) 
 

The probability of accepting the current lot 
  2aP p when the current lot is of moderate quality

( )1 2 2d d c+ £  and the m  previous lots were good 
quality  1 1d c . Such probability is obtained using 
Equation (11): 
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The operating characteristic (OC) function of 

the AMDSSP is the function that is provided by 
Equation (12). 
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Let the random variable id  follows the 

binomial distribution, id = 0,1,…, in , where i = 
1,2. The probability mass function (PMF) of id  is 
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From Equation (12), the OC function in term of 

the binomial distribution as shown in Equation (13): 
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Note that specific conditions can reduce the 

AMDSSP to either a single sampling plan (SSP) or 
a DSP. If m® ¥ , the AMDSSP reduces to an SSP 
with an acceptance number of 1c . 0m ®  reduces 
the AMDSSP to the DSP with acceptance numbers 

1c  and 2c . This flexibility allows AMDSSPs to 
encompass the characteristics of both SSPs and 
DSPs, depending on the values assigned to the 
acceptance probabilities. 

The average sample number (ASN) of the 
AMDSSP is a crucial metric that determines the 
efficiency of the sampling plan. The ASN is derived 
using Equation (14): 
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where IP  is the probability of deciding on 
acceptance or rejection of the lot on the first sample.

   1 1 1 2IP P d c P d c    and 

 1 1 21 IP P c d c    . 
 

In the context of quality control, sample size 
plays a critical role in the inspection process. It is 
well-established that effective economic sampling 
plans can reduce the sample size required for 

inspection, thereby improving efficiency and 
reducing costs. The AMDSSP has been designed to 
minimize the average sample number compared to 
existing sampling plans, while maintaining a desired 
level of quality assurance.  

The proposed sampling plan aims to ensure that 
the mean ratio  0  is critical to the quality of the 
product. If 0  is increased, the actual mean 
lifetime exceeds the specified mean lifetime
 0 1   . Assuming that the mean lifetime of the 
product is represented by Equation (15) 
following the RT-SD: 
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The failure probability of a product before t0

under the RT-SD is expressed by the following 
formula (16): 
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The value of  t0  can be expressed in terms of 

0 and  an experiment termination ratio( )a  by 

t a=0 0 . Consequently, the failure probability of 
the product before t0  can be rewritten as Equation 
(17): 
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Equation (17) determines the failure probability 

of the product in terms of a ,  , b  and 0  based 
on RT-SD.  

In terms of quality control, ASP cannot 
guarantee the quality of all products. Therefore, the 
choice of ASP should be considered in accordance 
with both the producer's risk    and the 
consumer's risk   . The mean ratio of a product is 
influenced by its failure probability, which in turn 
affects its quality level. The requirements for   and 
  are determined by taking into account the 
acceptable quality level (AQL or 1p ) and the 
limiting quality level (LQL or 2p ). The AMDSSP is 
practical and will be considered for modifications to 
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the OC curve due to two points ( 1p ,1 )  and ( 2p ,
) . A producer considers that at 1p , there is a 

higher probability of current lot acceptance than at 
1  . However, a consumer also expects that at 2p , 
the probability of current lot acceptance should be 
lower than  . Figure 2 (Appendix D) displays the 
AMDSSP algorithm. 

 
 

3   Numerical Experiments 
 

3.1   Parameter Estimation and Goodness-Of-

Fit Test 
The developed distribution is applied for the three 
datasets a long with parameter estimation and the 
goodness-of-fit test. To compare WD, SD and RT-
SD, Akaike Information Criterion (AIC) and 
Kolmogorov–Smirnov test (K–S test) for the four 
datasets are presented in Table 1 (Appendix D). The 
formula for computing the AIC and K-S test include 
Equation (18) and (19), respectively. 
 

2 2AIC LL k    ,                            (18) 
                       

   0n
x

K S Sup F x F x    ,                 (19) 

 
where     nF x   is the empirical distribution 
function nF  for n  independent and identically 
distributed (i.i.d.) ordered observations 

ix ,  0F x  
is the null distribution,  n   is the sample size and k   
is the number of parameters. The distribution with 
minimum AIC and K-S values is chosen as the best 
distribution to fit the data. The details of the four 
datasets are as follows: 
 

Dataset 1: Failures can occur in microcircuits 
because of the movement of atoms in the conductors 
in the circuit; this is referred to as electromigration. 
The data below are from an accelerated life test of 
59 conductors [28]. Failure times are expressed in 
hours:    6.545      9.289  7.543   6.956    6.492     
5.459  
8.12   4.706    8.687   2.997    8.591     6.129  
11.038    5.381   6.958   4.288     6.522      4.13  
7.459   7.495    6.573   6.538    5.589      6.087    
5.807    6.725   8.532   9.663    6.369       7.024 
8.336    9.218   7.945   6.869    6.352       4.7  
6.948    9.254    5.009   7.489      7.398       6.033    
10.092    7.496    4.531    7.974     8.799     7.683    
7.224    7.365    6.923    5.64     5.434      7.93  
6.515    6.476    6.071    10.491    5.923. 

Dataset 2: The data consists of 30 observations of 
March precipitation (in inches) in Minneapolis/St 
[29]:   
0.77     1.74     0.81     1.20     1.95     1.20      
0.47     1.43     3.37     2.20     3.00     3.09 
1.51     2.10     0.52     1.62     1.31     0.32   
0.59     0.81     2.81     1.87     1.18     1.35   
 4.75     2.48     0.96     1.89     0.9     2.05. 
 

Dataset 3: The number of million revolutions to 
failure for 23 ball bearings is considered to illustrate 
the proposed GASIP [30]. The details of the 
information are as follows: 17.88, 28.92, 33, 41.52, 
42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 
67.80, 68.64,68.64, 68.88, 84.12, 93.12, 98.64, 
105.12, 105.84, 127.92, 128.04, 173.40. 
 

Dataset 4: The failure times of 63 aircraft 
windshield [31] : The data are measured in 1000 
hours for ready reference as follows : 0.046, 1.436, 
2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 
0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313, 
1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 
2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 
0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 
2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 
3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 
1.183, 2.341,4.628, 1.244, 2.435, 4.806, 1.249, 
2.464, 4.881, 1.262, 2.543, 5.140. 
 

Table 1 (Appendix D) shows parameter 
estimations and goodness- of- fit tests for WD, SD, 
and RT-SD for the four real datasets. The results 
show that the RT-SD offers a better fit than SD for 
modelling real lifetime datasets, because it provides 
K-S tests with higher p-values. In addition, both 
distributions are compared with the Weibull 
distribution, which is a distribution regularly used 
for lifetime data. All three distributions are 
consistent with the real datasets, except for dataset 
1, which is consistent with the Weibull distribution 
but not with the SD and RT-SD. For datasets 3 and 

4, the RT-SD is found to be slightly more consistent 
with the real datasets than the SD due to the lower 
K-S values. 

 
3.2  Numerical Examples of the AMDSS 

under the RT-SD 
In this section, the AMDSS is applied for RT-SD 
with  0.3, 50 1b    and  1.5, 50 1b     
which represent unimodal and decreasing  functions 
(Figure 1, Appendix D), respectively. The 
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determination of plan parameters for the AMDSSP 
is undertaken by considering varying levels of the 
mean ratio of the producer's risk 0  = 2, 4, 6, 
8,10, while assuming a constant mean ratio for the 
consumer's risk 0  =1. The failure probability of 
product  p  corresponding to the mean ratios 0 

= 2, 4, 6, 8,10 is considered as 1p  and the 
probability of failure at the ratio 0  =1 is taken as 

2p . The optimal plan parameters ( )1 2 1 2, , , ,n n c c m  of 
the AMDSSP are determined based on the RT-SD 
criterion to effectively manage both producer and 
customer risks while minimizing the ASN. 
Specifically, the producer's risk is set at   = 0.05, 
with different consumer' risk values of   = 0.25, 
0.10, and 0.05. Two cases of the experiment 
termination ratio are set as a  = 0.5 and 1.0. The 
values for parameters under the RT-SD are  ,b  = 
(0.3, 50), and (1.5, 50). We use the following 
nonlinear optimization problem to determine the 
optimal plan parameters of the AMDSSP for 
minimization: 
 
Objective function:  Minimize 

    
2

1 11

1 1

1
1 1 2 11

11
1

c
n dd

d c

n
ASN p n n p p

d



 

 
   

 
              

Subject to:  
 a 1 1P p    and   a 2P p  .  

1 2 1,n n  1,m  2 1 0c c  . 
The steps to determine the optimal parameters for 
minimizing ASN are outlined below: 

1) Input parameters: 0, , , ,b a     and  . 
2) Compute 1p  and 2p  using Equation (17) 

for different values 0  . 
3) Formulate constraints  a 1 1P p    and  

 a 2P p   using  Equation (13) based on 
two points ( 1p ,1 )  and ( 2p , ) . 

4) Set up bounds of ( )1 2 1 2, , , ,n n c c m  and 
formulate objective function using Equation 
(14) with 1p . 

5) The nonlinear optimization method was   
used to determine the optimal parameters 
for minimizing ASN under the given 
constraints.  

 
In Appendix D, Table 2 and Table 3 represent 

the optimal parameters  1 2 1 2, , , ,n n c c m , ASN and 
the probability of current lot acceptance at 1p  and 

2p  for the AMDSSP under the RT-SD. We observe 
a decrease in ASN as 0   rises if a  and   remain 
fixed. If a  and 0  fixed, we observe an increase 
in ASN as  decreases. Manufacturers typically set 
the  at 0.05, whereas consumers have varying 
values for   

We found that, decrease in   results in an 
increase in ASN, indicating that consumers are less 
likely to encounter low-quality products. This is 
because manufacturers are increasingly using ASNs 
for inspection. Furthermore, when we fix a ,   and 

0  , the RT-SD with 0.3   yields smaller ASN 
values than 1.5  . 

The OC curves with m  = 1, 2, 3, and 4 propose 
a range of m  values based on the probability of 
current lot acceptance with the same values 

1 2 1 2, , andn n c c . From Table 2 (Appendix D), for 
fixed a = 0.05,  = 0.10 and 0  = 6, the optimal 
parameter is  1 2 1 2, , , ,n n c c m = (18, 7, 2, 3, 1) and 
the OC function for the AMDSSP with m  = 1, 2, 3 
and 4 are shown in Figure 3 (Appendix D). The 
results show that the probability of current lot 
acceptance provided by m  = 2, 3, and 4 is equal to 
or less than m  = 1. As a result, there is a high 
probability of accepting the current lot based on the 
acceptance of only one previous lot. 

As an example, assume that the producer plans 
to apply the AMDSSP throughout the inspection 
process where the lifetime is based on the RT-SD 
with  ,b  = (1.5, 50). Let 0 500t  h and 

0 1,000  h; then 0.5a  . We assume that 0.05 

, 0.05  and 0  = 10. Table 3 (Appendix D) 
gives the optimal plan parameters for the AMDSSP 
as 1 19,n  2 8,n  1 23, 5, 2c c m   with a 
probability of current lot acceptance of 0.9991 and 
an ASN of 19.07. The process for the inspection is as 
follows: 
 
Step 1:  Select the first random sample of 19 items 
and deliver it to the life test. Count 1d  that occur 
before 0t = 500 h. 
Step 2: Accept the current lot as 1 3d  , regardless 
of the quality of the previous lot. 1 5d   rejects the 
current lot. If not, proceed to Step 3. 
Step 3: Select a second sample size of 8 items and 
put it on a life test. Then, 2d  is count that fail before 

0t = 500 h. The current lot is accepted as being of 
moderate quality. If 1 2 5d d   and two previous 
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lot   2m  are of good quality  1 3 .d  If not, the 
current lot is rejected. 

In this study, we use the third real dataset to 
compare the performance of the AMDSSP under the 
WD and the AMDSSP under the RT-SD. Table 1 
(Appendix D) shows parameter estimates for the 
third real dataset over both distributions. The results 
indicate that the parameter estimate for RT-SD is 

 ˆˆ,b = (0.02,173.40), while the parameter estimate 

for WD is  ˆˆ,  = (81.87, 2.10). To compare the 

efficiency of the two sampling plans, set   = 0.05,
  = 0.25, 0.10, 0.05, and a  = 0.5 and 1.0, 
respectively. We determine the optimal plan 
parameters and ASN of the AMDSSP under RT-SD 
and the AMDSSP under WD by following the 
previously mentioned steps to minimize ASN, as 
shown in Table 4 (Appendix D). For additional 
details regarding the procedures for identifying the 
optimal parameters for minimizing ASN, as 
determined by the AMDSSP in WD, [12]. 

The result indicates that the AMDSSP under the 
RT-SD has a smaller ASN than the AMDSSP under 
WD. For example, for fixed a = 0.5,  = 0.25 and 

0  = 6, the ASN of the AMDSSP under the WD is 
12.34 while the ASN of the AMDSSP under the RT-
SD is 9.41. Because of its smaller ASN value, the 
AMDSSP under RT-SD performed better than the 
AMDSSP under WD.  

It was also found that the optimal parameters of 
the AMDSSP under RT-SD are 1 9,n  2 3,n 

1 20, 2, 3c c m   with a probability of current lot 

acceptance of 0.9501. Substituting  ˆˆ,b = 

(0.02,173.40) into Equation (15) then we get ̂  as 
116.16. Given that 0 is 116.16 and a  is 0.5 then 0t

is 58.08. To illustrate, we select the first random 
sample from a set of 9 items and then conduct a life 
test on the samples from the current lot in the trial 
time as follows: 
17.88 41.52 68.88 45.60 48.40  
51.96 54.12 55.56 84.12 
Before the trial time of 58.08, we record 2 failures 
 1 2d   out of 9 items, and the results indicate an 

10 2d  . Therefore, the second sample was 
chosen with 3 items, put on the life test, and counted 
for the nonconforming item during the trial time of 
58.08 as follows: 
28.92  42.12  51.84 
Upon the second inspection, we found no failures 
 2 0d   in the current lot. The results show that 

1 2 2.d d  Then, the current lot is accepted if three 
previous lot  3m  are of good quality  1 0 .d   
 
 
4   Discussion and Conclusion 
This study developed the AMDSSP with truncated 
lifetime distributions, which focus on the lifetime of 
the product of interest in the inspection. This allows 
the proposed acceptance sampling plan to focus on 
the relevant quality range, allowing for more 
targeted, reliable, and cost-effective decision-
making. A new right-truncated Shanker distribution 
and specific statistical properties are presented with 
the application of four real datasets. The goodness-
of-fit tests show that RT-SD is more consistent with 
the real dataset than the Shanker distribution, a 
baseline distribution, and WD. Further, the 
AMDSSP was developed under right -truncated 
Shanker distribution. The optimal values of 
 1 2 1 2, , , ,n n c c m and ASN were calculated using a 
nonlinear optimization method under the difference 
a ,   and 0  . Moreover, a performance 
comparison between the AMDSSP under the RT-SD 
and the AMDSSP under the WD was considered 
based on ASN under the real datasets. From the 
study, the AMDSSP under RT-SD provided a 
smaller ASN than the AMDSSP under WD. Thus, it 
can be concluded that the AMDSSP under RT-SD is 
more flexible and efficient than the AMDSSP under 
WD. Future research should consider the extension 
of the proposed sampling plan in other truncated 
distribution cases. 
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APPENDICES 

 
Appendix A:  Verifying the properties of RT-SD. 
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Appendix B:  Finding the CDF value of RT-SD. 
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Appendix C:  Moment rth of RT-SD. 
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Appendix D   
 

 
Fig. 1: PDF and CDF plots of RT-SD at b =50 
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Fig. 2: Flow diagram of the AMDSSP  

 
 

 
Fig. 3: OC curves for the AMDSSP under the RT-SD with different m  values 
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Table 1. MLE estimates and goodness-of-fit tests of WD, SD and RT-SD for the four datasets 

Data Para-
meter 

WD 

Para- 
meter 

SD RT-SD 
 

Paramete
r 

Estimatio
n 

 

AIC K-S 
(p-value) 

Paramete
r 

Estimatio
n 

AIC K-S 
(p-value) 

Parameter 
Estimation AIC K-S 

(p-value) 

1 
  
  

7.6130 
4.6988 228.9946 0.0957 

(0.6176) 
𝜃 
b 

0.2723 
- 310.95 0.3163 

(<0.01) 
0.045257 

11.038 261.99 0.2074 
(0.0105) 

2 
  
  

1.8418 
1.7926 81.3510 0.0753 

(0.9923) 
𝜃 
b 

0.8984 
- 87.9748 0.1595 

(0.3888) 
0.7747 
4.75 86.2028 0.1328 

(0.6181) 

3 
  
  

81.8746 
2.1018 231.3839 0.1510 

(0.6170) 
𝜃 
b 

0.0277 
- 233.0601 0.1891 

(0.3395) 
0.02333 
173.4 232.0805 0.1470 

(0.6518) 

4 
 

  
  

2.3098 
1.6290 204.6354 0.1087 

(0.4167) 
𝜃 
b 

0.7666 
- 209.9488 

0.1439 
(0.1332) 

 

0.6186 
5.14 199.7206 0.08813 

(0.6788) 

Note:   and   are scale and shape parameters 

 

 
Table 2. Optimal plan parameters of the AMDSSP under RT-SD with 0.3  and 50b   

a    
0




 1n  2n  1c  2c  m  ASN   1aP p   2aP p  

 
 
 
 
 
 
 

0.5 

 
 

0.25 

2 26 13 5 7 2 26.49 0.9512 0.2265 
4 18 7 2 5 3 18.23 0.9964 0.2497 
6 16 7 1 4 1 16.35 0.9973 0.1831 
8 13 5 1 3 1 13.08 0.9996 0.2233 
10 8 5 0 2 2 8.44 0.9847 0.2291 

 
 

0.10 

2 44 19 8 9 2 44.53 0.9583 0.0979 
4 23 11 3 5 1 23.13 0.9983 0.0999 
6 18 7 2 3 1 18.05 0.9983 0.0981 
8 16 8 1 3 1 16.20 0.9990 0.0780 
10 13 5 0 2 1 13.70 0.9796 0.0526 

 
 

0.05 

2 51 30 9 10 2 51.78 0.9555 0.0446 
4 26 15 3 5 2 26.30 0.9955 0.0367 
6 21 15 2 5 1 21.16 0.9991 0.0484 
8 17 10 1 3 1 17.28 0.9986 0.0484 
10 15 7 0 1 1 15.04 0.9762 0.0496 

 
 
 
 
 

1 

 
 

0.25 

2 * * * * * * * * 
4 11 5 2 4 1 12.66 0.9616 0.0094 
6 9 5 1 2 2 9.43 0.9512 0.0044 
8 7 4 1 2 1 7.11 0.9932 0.0225 
10 5 3 1 2 1 5.04 0.9976 0.1070 

 
 

0.10 

2 * * * * * * * * 
4 12 6 2 4 1 12.76 0.9536 0.0039 
6 11 3 2 3 1 11.41 0.9733 0.0041 
8 9 5 1 2 1 9.22 0.9857 0.0045 
10 7 4 1 2 1 7.06 0.9972 0.0225 

 
 

0.05 

2 * * * * * * * * 
4 14 6 3 5 1 14.33 0.9841 0.0052 
6 12 6 2 3 1 12.17 0.9862 0.0032 
8 9 5 2 3 1 9.02 0.9989 0.0280 
10 7 4 0 2 1 7.75 0.9620 0.0064 

Note: *There is no optimal plan parameter 
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Table 3. Optimal plan parameters of the AMDSSP under RT-SD with 1.5  and 50b   

a    
0




 1n  2n  1c  2c  m  ASN   1aP p   2aP p  

 
 
 
 
 
 
 

0.5 

 
 

0.25 

2 * * * * * * * * 
4 20 12 4 5 1 20.49 0.9525 0.0789 
6 18 8 2 4 1 19.06 0.9517 0.0200 
8 18 8 2 4 1 18.57 0.9842 0.0205 
10 12 6 2 3 1 12.08 0.9952 0.1228 

 
 

0.10 

2 * * * * * * * * 
4 23 15 2 4 1 23.38 0.9965 0.0022 
6 19 6 2 4 1 19.74 0.9525 0.0238 
8 18 8 2 3 1 18.47 0.9604 0.0149 
10 15 6 2 4 1 15.23 0.9797 0.0460 

 
 

0.05 

2 * * * * * * * * 
4 28 15 5 7 1 29.00 0.9509 0.0216 
6 24 12 3 5 1 25.14 0.9584 0.0073 
8 23 10 3 5 3 23.34 0.9902 0.0115 
10 19 8 3 5 2 19.07 0.9991 0.0487 

 
 
 
 
 

1 

 
 

0.25 

2 * * * * * * * * 
4 15 7 3 4 1 15.26 0.9699 0.0011 
6 12 6 2 3 1 12.09 0.9942 0.0018 
8 11 5 1 2 1 11.17 0.9914 0.0005 
10 10 6 1 2 1 10.17 0.9926 0.0011 

 
 

0.10 

2 * * * * * * * * 
4 15 5 4 5 2 15.32 0.9627 0.0262 
6 13 8 3 5 3 13.45 0.9603 0.0055 
8 12 6 2 4 1 12.76 0.9543 0.0021 
10 12 6 2 3 1 12.47 0.9806 0.0021 

 
 

0.05 

2 * * * * * * * * 
4 16 10 5 7 1 16.84 0.9504 0.0015 
6 15 8 4 5 2 15.30 0.9596 0.0059 
8 13 7 4 5 2 13.05 0.9943 0.0223 
10 12 8 2 4 2 12.63 0.9713 0.0018 

Note: *There is no optimal plan parameter. 

 
 

Table 4. Optimal plan parameters of the AMDSSP under RT-SD and the AMDSSP under WD. 

a    
0




 
WD RT-SD 

Optimal parameter 

 1 2 1 2, , , ,n n c c m  ASN   1aP p   2aP p  
Optimal parameter 

 1 2 1 2, , , ,n n c c m  ASN   1aP p   2aP p  

 
 
 
 

0.5 
 

 
 

0.25 

2 (27,15,2,4,3) 28.41 0.9567 0.1962 (15,9,3,5,4) 15.73 0.9501 0.2446 
4 (15,8,0,2,3) 16.09 0.9500 0.1851 (13,12,1,2,3) 13.76 0.9608 0.0420 
6 (12,7,0,1,5) 12.34 0.9871 0.1738 (9,3,0,2,3) 9.41 0.9501 0.1322 
8 (12,10,0,1,5) 12.27 0.9957 0.1531 (9,4,0,1,5) 9.32 0.9674 0.0437 

10 (10,9,0,1,2) 10.13 0.9993 0.2261 (8,4,0,1,5) 8.19 0.9876 0.0666 
 
 

0.05 

2 (44,22,3,5,1) 46.16 0.9518 0.0500 (34,8,6,8,2) 34.62 0.9512 0.0493 
4 (30,7,1,2,5) 30.22 0.9900 0.0485 (16,8,1,3,5) 16.82 0.9515 0.0233 
6 (27,22,1,2,6) 27.22 0.9991 0.0498 (14,5,0,2,1) 15.02 0.9549 0.0222 
8 (22,18,0,1,5) 22.86 0.9866 0.0212 (12,11,0,1,4) 13.13 0.9504 0.0087 

10 (18,15,0,1,5) 18.38 0.9961 0.0467 (10,2,0,1,4) 10.23 0.9843 0.0329 
 
 
 
 

1 

 
 

0.25 

2 (16,4,4,6,2) 16.40 0.9507 0.0296 * * * * 
4 (13,3,1,2,3) 13.25 0.9556 0.0010 (11,5,2,4,2) 11.60 0.9501 0.0006 
6 (10,3,0,1,1) 10.46 0.9553 0.0008 (7,5,1,2,6) 7.26 0.9693 0.0034 
8 (9,6,0,1,8) 9.49 0.9531 0.0010 (6,4,0,2,1) 6.76 0.9606 0.0016 

10 (8,6,0,1,7) 8.28 0.9841 0.0022 (6,4,0,1,2) 6.49 0.9546 0.0007 
 
 

0.05 

2 * * * * * * * * 
4 (28,8,2,4,4) 28.82 0.9515 0.0001 (14,7,3,4,2) 14.37 0.9501 0.0002 
6 (18,7,1,2,4) 18.26 0.9870 0.0002 (10,7,1,4,5) 10.77 0.9500 0.0002 
8 (14,5,0,2,3) 14.64 0.9559 0.0001 (10,5,1,2,10) 10.20 0.9769 0.0001 

10 (11,8,0,1,6) 11.51 0.9748 0.0002 (8,4,0,2,1) 8.67 0.9695 0.0002 
Note: *There is no optimal plan parameter 
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