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Abstract: Domination in graphs is a widely studied field, where many different definitions have been introduced

in the last years to respond to different network requirements. This paper presents a new dominating parameter

based on the well-known strong Roman domination model. Given a positive integer p, we call a p-strong Roman

domination function (p-StRDF) in a graphG to a function f : V (G) → {0, 1, 2, . . . ,
⌈
∆+p
p

⌉
} having the property

that if f(v) = 0, then there is a vertex u ∈ N(v) such that f(u) ≥ 1 +
⌈
|B0∩N(u)|

p

⌉
, where B0 is the set of

vertices with label 0. The p-strong Roman domination number γpStR(G) is the minimum weight (sum of labels)

of a p-StRDF on G. We study the NP-completeness of the p-StRD-problem, we also provide general and tight

upper and lower bounds depending on several classical invariants of the graph and, finally, we determine the exact

values for some families of graphs.

Key-Words: graph; NP-complete problem; domination; Roman domination; strong Roman domination; p-strong

Roman domination.
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1 Introduction and Notation
Throughout this paper, G is a simple graph with

vertex set V = V (G) and edge set E = E(G).

For a vertex v ∈ V , the open neighborhood N(v)

is the set {u ∈ V (G) : uv ∈ E(G)} and the closed

neighborhood of v is the set N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is dG(v) = |N(v)|.
The minimum and maximum degree of a graph G are

denoted by δ = δ(G) and ∆ = ∆(G), respectively.

We denote by Pn the path of order n, Cn for the cycle

of length n and Kn for the edgeless graph with n

vertices.

A leaf of G is a vertex of degree one, while a

support vertex of G is a vertex adjacent to a leaf. An

S-external private neighbor of a vertex v ∈ S is a

vertex u ∈ V \ S adjacent to v but no other vertex

of S. The set of all S-external private neighbors of

v ∈ S is called the S-external private neighborhood

of v and is denoted epn(v, S).

A tree is a connected graph containing no cycles.

A tree T is called a double star if it contains exactly

two vertices that are not leaves. A double star with

respectively p and q leaves attached at each support

vertex is denoted by Sp,q.

Given two different graphsG andH , let us denote

by G ∨H the graph obtained by adding to G ∪H all

possible edges joining a vertex in G with a vertex in

H .

A set S ⊆ V in a graph G is called a dominating

set if every vertex of G is either in S or adjacent to a

vertex of S. The domination number γ(G) equals the

minimum cardinality of a dominating set in G.

The concept of Roman domination has arisen as

a solution to a classic problem of military defensive

strategy introduced by [1], [2], having its origin in

the time of Emperor Constantine I. At that moment,

the Roman Empire had more conquered cities than

legions for their defense in case of an attack.
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Defending a city was enough with a legion, which

might be positioned in such a city or moved from

another neighboring city. Then, Emperor Constantine

I decreed a strategy based on two facts: first, any

unprotected city should be able to be defended by a

neighboring city and, second, no legion could come

to defend an attacked neighboring city if such legion

left unguarded its original location. The goal was

to minimize the costs of settlement and mobilization

of the legions while guaranteeing the possibility of

defense of each position of the empire. For this,

they could place up to two legions in each military

settlement.

The first formal definition of Roman domination

was introduced in 2004 by [3], inspired by the works

mentioned above. A function f : V (G) → {0, 1, 2}
is a Roman dominating function (RDF) on G if every

vertex u ∈ V for which f(u) = 0 is adjacent to at

least one vertex v for which f(v) = 2. The weight of

an RDF is the value f(V (G)) =
∑

u∈V (G) f(u). The

Roman domination number γR(G) is the minimum

weight of an RDF on G. Afterwards, the properties

of this invariant have been extensively studied.

In recent years, other variations of Roman

domination have been introduced, generally

modifying the conditions in which the vertices

are dominated, or adding some additional property

to the classic version of the Roman domination.

We highlight, for example: the independent Roman

domination, [4], themaximal Roman domination, [5],

the weak Roman domination, [6], the edge Roman

domination, [7], the total Roman domination, [8],

the signed Roman domination, [9], the mixed Roman

domination, the Roman {2}-domination, [10], or the
work by [11], on parallel algorithms for connected

domination problems on interval and circular-arc

graphs.

In all previous variants of Roman domination,

it is assumed that a legion is enough to defend a

position from individual attacks. However, there may

be situations in which, even for individual attacks,

this defensive strategy is insufficient. Other new

variants are defined in [12], [13], to contemplate other

situations. This approach can have vast applications

in service network modeling such as distribution,

maintenance or provisioning.

The attack capacity is increasingly wider, giving

rise to new situations, for instance, when the attacks

occur simultaneously. In such cases, the previous

defensive strategies are weak and insufficient. Some

works try to solve this problem. The study, [14],

based on weak Roman domination, provides a new

version of the defense of the Roman Empire against

multiple and sequential attacks. Recently, in [15],

the protection of a graph against sequential attacks on

its vertices or edges is studied, by positioning mobile

guards on vertices according to certain structures, for

example, an eternal dominating set.

However, many real situations remain unresolved

with these models, since nowadays, the attacks can be

multiple and also simultaneous as, for instance, fires

with several sources, synchronous natural disasters in

different areas, joint attacks in cybernetics or security

systems, etc. Several works address this approach.

In 2009, the Roman k-domination, for k ≥ 1, was

defined, [16], to provide a reply against k attacks in

different vertices of a graph. A function f : V (G) →
{0, 1, 2} is a Roman k-dominating function on G if

every vertex u ∈ V for which f(u) = 0 is adjacent

to at least k vertices, v1, . . . , vk, with f(vi) = 2, for

i = 1, . . . , k. This defensive strategy is dependable,

as a defenseless vertex is covered by k neighbors, but

it can sometimes be excessive or unnecessary.

In 2017, the strong Roman domination was

introduced, [17], as a reinforcement of the Roman

domination against multiple and simultaneous

attacks, where legions are placed in strong vertices

to defend themselves and, at least, half of its unsafe

neighbors. For a graph G of order n and maximum

degree ∆, let f : V (G) → {0, 1, . . . ,
⌈
∆
2

⌉
+ 1}

be a function that labels the vertices of G. Let

Bj = {v ∈ V : f(v) = j} for j = 0, 1 and let

B2 = V r (B0 ∪B1) = {v ∈ V : f(v) ≥ 2}. Then,
f is a strong Roman dominating function (StRDF)

on G, if every v ∈ B0 has a neighbour u, such that

u ∈ B2 and f(u) ≥ 1 +
⌈
|N(u)∩B0|

2

⌉
. The minimum

weight, w(f) = f(V ) =
∑

u∈V f(u), over all the

strong Roman dominating functions for G, is called

the strong Roman domination number of G and

we denote it by γStR(G). An StRDF of minimum

weight is called a γStR(G)-function. After this work,

many relevant contributions on the strong Roman

domination, [18], [19], [20], [21], [22], have been

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.104

J. C. Valenzuela-Tripodoro, M. A. Mateos-Camacho, M. Cera, 
R. M. Casablanca, M. P.  Álvarez-Ruiz

E-ISSN: 2224-2880 1006 Volume 23, 2024



2

0
0

0

0

0

0

0

0

0

0

6

0
0

0

0

0

0

0

0

0

0

4

0
0

0

0

0

0

0

0

0

0

(a) (b) (c)

Fig. 1: For a star graph: (a) a RDF, (b) an StRDF,

and (c) a 4-StRDF.

provided.

Despite the particular interest of the strong Roman

domination strategy and the further development

of this kind of study, we may observe that the

definition is certainly restrictive. In the StRD model,

we consider simultaneous attacks to unprotected

neighbors of strong vertices under the condition that

the stronger vertex may defend, at least, one-half of

its neighbors.

In this paper, we introduce p-strong Roman

domination, a refined strategy of strong Roman

domination that relaxes the definition, allowing

for the development of less expensive defensive

strategies.

Definition 1. Given a positive integer p, a function

f : V (G) → {0, 1, . . . ,
⌈
∆+p
p

⌉
} is a p-strong Roman

dominating function (p-StRDF) if for every vertex

u ∈ B0 there is a vertex v ∈ N(u) such that

f(v) ≥ 1+
⌈
|N(v)∩B0|

p

⌉
. The minimumweight of such

a function is called the p-strong Roman domination

number of the graph and it is denoted by γpStR(G).

In other words, the strong Roman domination

model ensures that each strong vertex is capable of

defending at least half of its undefended neighbors

without leaving its own location unprotected. This

means that it has one unit to protect every group

of two weak neighbors. In this case, the p-StRD

model ensures that each strong position has at least

one legion to defend each group of p undefended

neighbors. Figure 1 shows a clarifying example.

2 Complexity Results
This section aims to establish the NP-completeness of

the p-StRD problem for bipartite and chordal graphs.

The following decision problem is associated with

the optimization problem of calculating the p-StRD

number of a given graph.

pStRD-Number Problem

Instance: Graph G = (V,E) and a positive integer

r.

Question: Does G have a p-StRD function f with

f(V ) ≤ r?

We make use of the Exact Cover by 3-Sets (X3C)

problem [23] to demonstrate that pStRD-Number

Problem is NP-complete. Namely, an instance of

X3C is the following

EXACT 3-Cover (X3C) Problem

Instance: A collection C of 3-element subsets of a

finite set X with |X| = 3q.

Question: Does X have an exact cover in C, that is,

a subcollection C ′ ⊆ C that contains every element

of X in exactly one member?

Example. Let q = 2 and X = {x1, x2, . . . , x6}
be a set of 3q literals, and let C = {(x1, x2, x3),
(x1, x2, x4), (x1, x5, x6), (x2, x3, x4), (x3, x5, x6)}
be a collection of clauses ( subsets of cardinality 3) of

X . Clearly, C ′ = {(x1, x2, x4), (x3, x5, x6)} ⊆ C is

an exact cover of C, because each and every element

of X belongs to exactly one clause in C ′. Note that

|C ′| = q = 2.

The main result of this section is presented in the

following theorem.

Theorem 2. The p-StRD number problem is

NP-complete, even when restricted to bipartite or

chordal graphs.

Proof.

First, this problem belongs to the class of NP

problems since we could verify, in polynomial time

concerning the size n, whether a given possible

solution is indeed a solution or not.

Next, we prove that pStRD-Number Problem is

NP-complete for bipartite graphs by constructing a

polynomial-time transformation from X3C problem,

which is a well-known NP-problem [23].

Assume that I = (X,C) is an arbitrary instance

of X3C, with X = {x1, x2, . . . , x3q} and C =

{C1, C2, . . . , Ct}.
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The key of this proof is that we construct a bipartite

graph B(I) starting from I and provide a positive

integer r such that I contains an exact cover by 3-sets

if and only if B(I) has a p-StRD function f having

weight w(f) ≤ r = 2q + 3t

x1 x2 x3q−1 x3q

xi ∈ Cj =⇒ xiCj ∈ E (B(I))

C1 C2 Ct−1 Ct

B(I)

Cj

Cj

zj

hj1 hj2 hj2p−1Hj

Figure 2: Constructing B(I) and Cj-gadgets.

Let B(I) the bipartite graph with classes X =

{xi : 1 ≤ i ≤ 3q} and C = {Cj : 1 ≤ j ≤ t}
being xi adjacent to Cj if xi ∈ Cj . Next, the vertices

Cj of the bipartite graph will be swapped out for an

appropriate gadget.

For each Cj ∈ C, let Hj be the star with central

vertex zj and leaves {Cj , h
j
1, . . . , h

j
2p−1}. We replace

Cj withHj by identifying Cj with the corresponding

leaf Cj of Hj . The new graph, denoted by B(I), is

bipartite with classes {xi : 1 ≤ i ≤ 3q} ∪ {zj : 1 ≤
j ≤ t} and {Cj : 1 ≤ j ≤ t}∪{hjl : 1 ≤ j ≤ t, 1 ≤
l ≤ 2p − 1}}. We set r = 2q + 3t. Of course, we

can construct B(I) in polynomial time on the size of

the given instance. Figure 2 shows a diagram of the

described construction.

By assuming that C ′ is an exact cover forX in C,

we define the following function over V (B(I)):

f(v) =



0 if v ∈ {xi : 1 ≤ i ≤ 3q}

0 if v ∈ {hj
l : 1 ≤ j ≤ t, 1 ≤ l ≤ 2p− 1}

0 if v ∈ {Cj : Cj 6∈ C′, 1 ≤ j ≤ t}

2 if v ∈ {Cj : Cj ∈ C′, 1 ≤ j ≤ t}

3 if v ∈ {zj : 1 ≤ j ≤ t}

Clearly, C ′ has cardinality equal to q,

because C ′ covers C, |C| = 3q, and each

clause in C ′ has cardinality equal to 3. Besides,

f ({Cj : Cj ∈ C ′, 1 ≤ j ≤ t}) = 2q.

Since C ′ is an exact cover for X in C, we know

that for all 1 ≤ i ≤ 3q there exists Cj ∈ C ′ with

xi ∈ Cj . Therefore f(Cj) = 2 ≥ 1+
⌈
|N(Cj)∩B0|

p

⌉
=

1 +
⌈
3
p

⌉
= 2 for p ≥ 3. Furthermore, for each v ∈

{Cj : Cj 6∈ C ′, 1 ≤ j ≤ t} ∪ {hjl : 1 ≤ j ≤ t, 1 ≤
l ≤ 2p − 1}, there exists k ∈ {1 . . . , t} with zk ∈
N(v) and f(zk) = 3 ≥ 1 +

⌈
|N(zk)∩B0|

p

⌉
= 1 + 2.

So, f is a p-StRD function with f(V (B(I))) =

2q + 3t = r.

On the other hand, suppose now that there exists

a p-StRD function f with f(V (B(I))) ≤ r. Without

loss of generality, let f be one of those functions that

assigns as much label value as feasible to the set {zj :
1 ≤ j ≤ t}.

Under these conditions, we may readily verify that

f(zj) = 3 and f(hjl ) = 0 for all 1 ≤ j ≤ t and

1 ≤ l ≤ 2p − 1. On the contrary, if there exists j ∈
{1, . . . , t} and l ∈ {1, . . . , 2p − 1} with f(hjl ) ≥ 1

then either f(hjl ) ≥ 1 for all 1 ≤ l ≤ 2p − 1 or

f(zj) ≥ 2 because not all f(hjl ) ≥ 1. Anyhow, we

can define f∗ such that f∗(zj) = 3 and f∗(hjl ) = 0.

Hence, it follows that

f
(
{zj : 1 ≤ j ≤ t}) ∪ {hj

l : 1 ≤ j ≤ t, 1 ≤ l ≤ 2p− 1}
)

is equal to 3t, and then

f ({cj : 1 ≤ j ≤ t}) ∪ {xi : 1 ≤ i ≤ 3q}) ≤ r − 3t.

Let us denote by Ai = {x ∈ X : f(x) =

i} and ai = |Ai|, for i = 0, 1; A2 = {x ∈ X :

f(x) ≥ 2} and a2 = |A2|;Di = {Cj ∈ C : f(Cj) =

i} and di = |Di|, for i = 0, 1; D2 = {Cj ∈ C :

f(Cj) ≥ 2} and d2 = |D2|.
The following equalities, a0 + a1 + a2 = 3q and

d0 + d1 + d2 = t, are an immediate consequence

of this notation. Note that a1 + 2a2 + d1 + 2d2 ≤
a1 + f(A2) + d1 + f(D2) ≤ 2q because f(V ) ≤ r.

Additionally, for all x ∈ A0 there exists Cj ∈ D2

with x ∈ N(Cj) and then d2 ≥ a0

3 . We have that

2q ≥ a1+2a2+d1+2d2 = 3q−a0+a2+d1+2d2 ≥
3q−3d2+a2+d1+2d2 and therefore d2−(a2+d1) ≥
q. So, d2 ≥ q, and since a1+2a2+d1+2d2 ≤ 2q, it is

verified that d2 = q and f(Cj) = 2 for all Cj ∈ D2

and, finally a1 = a2 = d1 = 0. As a result, we get

that d1 = 0 and d0 = t− q. Since |X| = 3q = 3|D2|,
we have that the set C ′ = {Cj : Cj ∈ D2} is a

subcollection C ′ ⊆ C that contains every element of
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X in exactly one member ofC ′, and the result follows

for bipartite graphs.

By adding all the edges between the vertices Cj’s,

we obtain a chordal graph. Consequently, by using

a similar proof to the one developed to arrive at the

previous result, we can derive the one for chordal

graphs.

�

3 General bounds
This section is dedicated to presenting general and

different bounds for the p-strong Roman domination

number in graphs, which is a natural step after

checking the NP-completeness of the p-StRD Roman

domination problem in the previous section.

First of all, let us see which values of parameter p

have to be considered.

Let G be any graph of order n. Let p be a

positive integer and let f be a p-StRD function having

minimum weight in the graph G. Let us see that

3 ≤ p ≤ ∆− 1 have to be assumed.

If p = 1, then

w(f) =
∑

v∈B1∪B2

f(v) =
∑
v∈B1

f(v) +
∑
v∈B2

f(v)

≥ |B1|+
∑
v∈B2

(
1 +

⌈
|N(v) ∩B0|

p

⌉)
= |B1|+ |B2|+

∑
v∈B2

|N(v) ∩B0|.

Since f is a p-StRD function of minimum weight,

each v ∈ B2 must have a private neighbor in B0 and

therefore w(f) ≥ |B1| + |B2| + |B0| = |V (G)| =
n. Hence, for p = 1, the function f(u) = 1 for all

u ∈ V (G) is a 1-strong Roman domination function

of minimum weight and γpStR(G) = n.

If p = 2, taking into account the definition of a

p-StRD function, we may derive that the strategy of

2-strong Roman domination is just the same as the one

of the strong Roman domination model.

Finally, if p ≥ ∆, then
⌈
∆
p

⌉
= 1. Hence we have

that f : V (G) → {0, 1, 2} and the condition f(v) ≥
1 +

⌈
|N(v)∩B0|

p

⌉
is equivalent to f(v) = 2, because

1 < 1 +

⌈
|N(v) ∩B0|

p

⌉
≤ 1 +

⌈
∆

p

⌉
= 2

Therefore, p-strong Roman domination corresponds

to the original Roman domination model when p ≥
∆.

Summing up, the p-StRD model is trivial for p =

1, matches the StRD strategy for p = 2 and coincides

with the original Roman domination problem for all

p ≥ ∆. Therefore, from now on, we will only

consider 3 ≤ p ≤ ∆ − 1. Observe that the latter

implies that ∆ ≥ 4.

As an immediate consequence of the definition,

we can point out the following remark.

Remark 3. Let G be a connected graph having

maximum degree∆ ≥ 4. Let p, q be positive integers

such that 3 ≤ p ≤ q ≤ ∆− 1. Then,

γpStR(G) ≥ γqStR(G).

Of course, it is not difficult to relate our

new parameter to some of the most well-known

parameters in domination. As an initial bound for the

p-StRD number, we prove the following result.

Remark 4. Let G be a connected graph having

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆− 1. Then,

γR(G) ≤ γpStR(G) ≤
(⌈

∆

p

⌉
+ 1

)
γ(G).

Proof. For the lower bound, let f = (B0, B1, B2) be

any γpStR(G)-function on G and define the function

g : V (G) → {0, 1, 2}, such that g(u) = 2 whenever

u ∈ B2 and g(u) = f(u) otherwise. Hence,

γR(G) = |V1| + 2|V2| = |B1| + 2|B2| ≤ γpStR(G).

On the other hand, let D be a dominating set and let

f : V (G) → {0, 1, . . . ,
⌈
∆
p

⌉
+ 1} be the function

defined as follows f(u) =
⌈
∆
p

⌉
+ 1 for all u ∈ D

and f(u) = 0 otherwise. The function f is a p-StRD

function, which leads us to the upper bound.

�
Next, we prove an upper bound that only depends

on the order and the maximum degree of the graph.

Proposition 5. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆− 1. Then

γpStR(G) ≤ n−∆+

⌈
∆

p

⌉

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.104

J. C. Valenzuela-Tripodoro, M. A. Mateos-Camacho, M. Cera, 
R. M. Casablanca, M. P.  Álvarez-Ruiz

E-ISSN: 2224-2880 1009 Volume 23, 2024



Proof. Let u be a vertex with degree ∆. Let us define

the function f : V (G) → {0, 1, . . . ,
⌈
∆
p

⌉
+ 1} as

follows: f(u) =
⌈
∆
p

⌉
+1, f(v) = 0 for all v ∈ N(u)

and f(v) = 1 otherwise. Taking into account that

B2 = {u}, B0 = N(u) and B1 = V \ N [u], then f

is a p-StRD function and therefore

γpStR(G) ≤ w(f)

= |B1|+
∑
x∈B2

f(x)

= |V \N [u]|+ f(u)

= (n−∆− 1) +
⌈
∆
p

⌉
+ 1

= n−∆+
⌈
∆
p

⌉
.

�
It is worth noting that the upper bound given by

Proposition 5 is sharp, for example, for every star

K1,n−1 with 3 ≤ p ≤ n− 2.

Corollary 6. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆− 1. Then

γpStR(G) ≤ n− 2

Proof. By applying Proposition 5, we have that

γpStR(G) ≤ n−∆+
⌈
∆
p

⌉
≤ n−∆+ ∆

p + 1

≤ n+ 1− 2∆
3 ≤ n+ 1− 8

3 ≤ n− 2.

�
Our next result concerns improving the previous

bound for r-regular graphs.

Proposition 7. Let 3 ≤ p ≤ ∆ − 1 be a positive

integer and letG be a r-regular graph, with r ≥ p+1

and girth g ≥ 5. Then

γpStR(G) ≤ n− r2 +

(⌈
r − 1

p

⌉
+ 1

)
r

Proof. Consider any vertex u ∈ V (G). Since G

is an r-regular graph, we have that N(u) is a set of

r vertices, say N(u) = {w1, . . . , wr}. Moreover,

each one of the sets N(wj) − u, for j = 1 . . . r, is

formed by r− 1 different vertices, say N(wj)− u =

{zj1, . . . , z
j
r−1}.Note that, due to the girth ofG,N(u)

is an independent set; each set N(wj) − u is also an

independent set; and they are disjoint set of vertices

of V (G).

Let us define a function f as follows: f(u) = 1,

f(wj) = 1 +
⌈
r−1
p

⌉
for all 1 ≤ j ≤ r, f(zjk) = 0

for all 1 ≤ k ≤ r − 1, and f(v) = 1 for any non

yet labelled vertex v, if any. As we have observed

before, the vertices u,wj , z
j
k are all different, since

the girth of G is at least 5. Finally, any vertex zjk
is dominated by a vertex wj labelled with a label

equal to 1 +
⌈
r−1
p

⌉
= 1 +

⌈
|N(wj)∩B0|

p

⌉
, therefore,

the defined function f = (B0, B1, B2) is a p-StRD

function on G and it holds

γpStR(G) ≤ w(f) = |B1|+
∑
x∈B2

f(x)

≤ 1 + [n− (1 + r + (r − 1)r)]

+
(
1 +

⌈
r−1
p

⌉)
r

= n− r2 +
(⌈

r−1
p

⌉
+ 1

)
r.

�

Corollary 8. Let 3 ≤ p ≤ ∆−1 be a positive integer

and letG be a (p+1)-regular graph with girth g ≥ 5.

Then

γpStR(G) ≤ n− p2 + 1

To check the tightness of this upper bound for

regular graphs, we first prove a technical result which

will be useful later.

Lemma 9. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆ − 1. Let f = (B0, B1, B2) be

any p-StRD function on G. Hence

γpStR(G) ≥ n+

⌈
1− p

p
|B0|

⌉
.

Proof. Observe that each vertex in B1 ∪B2 adds one

unit, by itself, to the weight of f . In addition, since

every vertex inB0 has, at least, a neighbor inB2, each

vertex in B0 adds, at least,
1
p units to the weight of f .

Therefore

γpStR(G) = w(f) ≥ |B1|+ |B2|+
⌈
1
p

⌉
|B0|

= n− |B0|+
⌈
|B0|
p

⌉
≥ n+

⌈
1−p
p |B0|

⌉
�
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Figure 3: A graph for which the lower bound

(Lemma 9) is attained, with p = 3.

Notice that this lower bound is sharp, as seen in

the graph of Figure 3.

Corollary 10. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆ − 1. Let f = (B0, B1, B2) be

any p-StRD function on G. Then

|B0| ≥
p

p− 1

(
n− γpStR(G)

)
Now, we prove the tightness of the upper bound

provided by Corollary 8. To do that, it is sufficient

to consider the (4, 5)-cage graph, known as the

Robertson graph. It is a 4-regular graph with n = 19,

and girth g = 5. Since ∆ = 4 then p must be 3. The

next example shows that γ3StR(G) = n−p2+1 = 11.

Example 11. LetG be the (4, 5)-cage, the Robertson

graph. For this graph, it can be shown that

γ3StR(G) = 11.

Proof. It is readily to prove that γ3StR(G) ≤ 11 by

following the construction described in the proof of

Proposition 7.

To see that γ3StR(G) ≥ 11, we reasoning by

contradiction. Assume that γ3StR(G) ≤ 10. Let

f = (V0, V1, V2, V3) be a γ
3
StR(G)-function such that

V1 has maximum cardinality. By Proposition 13, we

have that γ3GStR(G) ≥ 7. Therefore, γ3StR(G) ∈
{7, 8, 9, 10}. Since n = 19 and p = 3, by

Corollary 10, we deduce that

|V0| ≥
⌈
3

2

(
19− γ3StR(G)

)⌉
.

Clearly, |V1| + |V2| + |V3| = 19 − |V0|. If 7 ≤
γ3StR(G) ≤ 8 then 17 ≤ |V0| ≤ 18 which implies

|V1| + |V2| + |V3| ≤ 2 and hence γ3StR(G) ≤ 6, a

contradiction. Therefore, 9 ≤ γ3StR(G) ≤ 10.

Since f is a γ3StR(G)-function such that V1 has

maximum cardinality, the only possibilities are either

γ3StR(G) = 10 with |V1| = |V3| = 2, |V2| = 1, |V0| =
14 or either γ3StR(G) = 9 with |V1| = |V2| =

1, |V3| = 2, |V0| = 15.

Clearly, every vertex with a label 0 must have

a strong neighbor because f is a 3-StRDF. Besides,

each vertex with a label 3 is adjacent to, at most, 4

vertices labeled with 0 and each vertex with a label 2

is adjacent to, at most, 3 vertices labeled with 0. If

|V1| = |V3| = 2, |V2| = 1, |V0| = 14 then we have

that n = 19 ≤ |N [V3]|+ |N [V2]|+ |V1| ≤ (2 + 8) +

(1 + 3) + 2 = 16, a contradiction. In other case, if

|V1| = |V2| = 1, |V3| = 2, |V0| = 15 then n = 19 ≤
|N [V3]|+ |N [V2]|+ |V1| ≤ (2+8)+(1+3)+1 = 15,

again a contradiction.

�
Next, we present a result with a probabilistic

approach providing an upper bound. It is described

in terms of the order, the maximum and minimum

degree of the graph and the value of p.

Proposition 12. Let G be a graph with order n,

minimum degree δ and maximum degree ∆ ≥ 4. Let

p be a positive integer such that 3 ≤ p ≤ ∆− 1, such

that
⌈
∆
p

⌉
< δ. Then,

γpStR(G) ≤

(
1 +

⌈
∆
p

⌉)
n

1 + δ

ln

 1 + δ

1 +
⌈
∆
p

⌉
+ 1

 .

Proof. Let A ⊆ V (G) be a subset of vertices of G

and let ξ ∈ (0, 1) be the probability that a vertex

v ∈ V (G) belongs to the set A. We assume that two

vertices can independently belong to the set A. Let

B ⊆ V (G) be the subset of vertices ofG such that do

not belong to set A neither have neighbors in A, that

is B = V (G) − N [A] = (N [A])c = Ac ∩ N(A)c.

Then, for each vertex v ∈ V (G) we have that

P [v ∈ B] = (1− ξ)(1− ξ)d(v)

= (1− ξ)1+d(v) ≤ (1− ξ)1+δ(G),

since 0 < ξ < 1 and δ(G) ≤ d(v), for any v ∈ V (G).

Now, for each vertex v ∈ V (G), we define the

following random variable

X(v) =


1 +

⌈
∆
p

⌉
si v ∈ A,

0 si v ∈ N(A)−A,

1 si v ∈ B = V (G)−N [A].
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It is not difficult to upper bound its expected value,

for any v ∈ V (G), as follows

E[X(v)] = (1 +
⌈
∆
p

⌉
)P [v ∈ A] + P [v ∈ B]

= (1 +
⌈
∆
p

⌉
)ξ + P [v ∈ B]

≤ (1 +
⌈
∆
p

⌉
)ξ + (1− ξ)1+δ(G)

Then, the value that X(v) assigns to each vertex

v ∈ V (G), leads us to a function f : V (G) →
{0, 1, . . . , 1+

⌈
∆
p

⌉
}, such that f(v) = X(v) for each

v ∈ V (G). Since for every vertex w ∈ V (G), with

f(w) = 0, it has at least one neighbor u in A such

that f(u) = 1+
⌈
∆
p

⌉
≥ 1+

⌈
1
p |N(u) ∩B0|

⌉
the f is

a p-StRD function. As a consequence, we have that

E[f(V )] =
∑

v∈V (G)

E[f(v)] =
∑

v∈V (G)

E[X(v)]

≤
∑

v∈V (G)

(
(1 +

⌈
∆

p

⌉
)ξ + (1− ξ)1+δ(G)

)
= (1 +

⌈
∆
p

⌉
)nξ + n(1− ξ)1+δ(G)

Since 0 < ξ < 1, it follows that (1 − ξ) < e−ξ and

then

E[f(V )] ≤
(
1 +

⌈
∆

p

⌉)
nξ + ne−ξ(1+δ(G)) (1)

For each value ξ ∈ (0, 1)minimizing the value of the

expression (1) it must be(
1 +

⌈
∆

p

⌉)
n− n(1 + δ(G))e−ξ(1+δ(G)) = 0.

Therefore, e−ξ(1+δ(G)) =
1+

⌈
∆

p

⌉
1+δ(G) and we deduce that

ξ = 1
1+δ(G) ln

(
1+δ(G)

1+
⌈

∆

p

⌉) .

It is readily to see that ξ < 1 because

ln

(
1+δ(G)

1+
⌈

∆

p

⌉) < ln
(
1+δ(G)

2

)
< 1 + δ(G), for any

δ(G). Observe also that ξ > 0 since
⌈
∆
p

⌉
< δ(G).

Finally, since n(1 + δ(G))2e−ξ(1+δ(G)) > 0, we may

derive that the critical value of ξ is a local minimum.

Hence, by using (1), we obtain

γpStR(G) ≤
(
1 +

⌈
∆
p

⌉)
n

1+δ ln

(
1+δ

1+
⌈

∆

p

⌉)
+
(
1 +

⌈
∆
p

⌉)
n

1+δ ,

which concludes the proof.

�
Let us conclude this section with a lower bound

expressed in terms of p and the order of the graph and

a direct consequence for graphs containing a universal

vertex.

Proposition 13. Let G be a connected graph with

order n and maximum degree ∆ ≥ 4. Let p be a

positive integer such that 3 ≤ p ≤ ∆− 1. Then

γpStR(G) ≥
⌈
n+ p− 1

p

⌉
.

If n ≡ 1 (mod p) then equality holds if and only if

∆ = n− 1.

Proof. Let f = (B0, B1, B2) be a γ
p
StR(G)-funcion.

Let us denote byB1
0 the set of vertices inB0 that have,

at most, p − 1 neighbors in B2 and B2
0 = B0 − B1

0 .

Clearly, n = |B1
0 | + |B2

0 | + |B1| + |B2|. Observe

that each vertex inB1∪B2 contributes with one unit,

by itself, to the weight of f and each vertex v ∈ B0

contributes with
|N(v)∩B2|

p to the total weight of f .

Hence

γpStR(G) ≥ |B1|+ |B2|+
∑
v∈B1

0

|N(v) ∩B2|
p

+
∑
v∈B2

0

|N(v) ∩B2|
p

≥ |B1|+ |B2|+
1

p
|B1

0 |+ |B2
0 |

= n− |B1
0 |+ 1

p |B
1
0 |

= n−
(
1− 1

p

)
|B1

0 |

≥ n− p−1
p (n− 1) =

n+ p− 1

p
,

since |B1
0 | ≤ |B0| ≤ n−1 and γpStR(G) is an integer.

Now, let us assume that n ≡ 1 (mod p). On the

one hand, if γpStR(G) = n+p−1
p , then all previous

inequalities became equalities and therefore |B1
0 | =

n−1 and |B2| = 1, which implies that∆ = n−1. On

the other hand, if∆ = n−1we know that γpStR(G) ≥⌈
n+p−1

p

⌉
. To see the other inequality we define the

function f such that f(u) =
⌈
n−1
p

⌉
+ 1, for a vertex

u such that dG(u) = n − 1, and f(v) = 0 for all
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v ∈ N(u). Then, γpStR(G) ≤ w(f) =
⌈
n−1
p

⌉
+ 1 =⌈

n+p−1
p

⌉
.

�

Corollary 14. LetG be a connected graph with order

n and maximum degree ∆ ≥ 4. Let p be a positive

integer such that 3 ≤ p ≤ ∆− 1. If∆ = n− 1, then

γpStR(G) =

⌈
n+ p− 1

p

⌉
= n−

⌊
p− 1

p
∆

⌋
.

4 Exact values
This section is devoted to studying the exact value

of the p-strong Roman domination number in certain

families of graphs of interest. We start with the

complete bipartite graphs.

Proposition 15. Let p be a positive integer such that

3 ≤ p ≤ ∆ − 1. Let 2 ≤ r ≤ s be two positive

integers such that s ≥ 4. Then

γpStR(Kr,s) =


2 +

⌈
s
p

⌉
if r = 2,⌈

r+p−1
p

⌉
+
⌈
s+p−1

p

⌉
if r ≥ 3.

Proof. Let us denote by n = n(K2,s) = s + 2.

To begin with, let us assume that r = 2. By

applying Proposition 5 we have that γpStR(K2,s) ≤
n−∆(K2,s)+

⌈
∆(K2,s)

p

⌉
= s+2−s+

⌈
s
p

⌉
=

⌈
s+2p
p

⌉
.

If γpStR(K2,s) ≤
⌈
s
p

⌉
+1 then there must be a p-StRD

function f having weight w(f) ≤
⌈
s
p

⌉
+ 1. Then, by

Corollary 10, the number of vertices labeled with a 0

can be bounded as follows

|B0| ≥ p

p− 1

(
n−

⌈
s

p

⌉
− 1

)
=

p

p− 1

(⌊
p− 1

p
s

⌋
+ 1

)
≥ p

p− 1

p− 1

p
s = n− 2.

Hence, |B1| + |B2| ≤ 2, with B2 6= ∅ because B0 is

non-empty. We have to consider several situations.

Case 1. If |B1| = 0 and |B2| = 1 then |B0| =
n− 1 and ∆(K2,s) = n− 1, a contradiction.

Case 2. If |B1| = |B2| = 1 then |B0| =

s and N(B2) = B0 which implies that w(f) ≥

f(B1) + f(B2) = 1 + 1 +
⌈
s
p

⌉
= 2 +

⌈
s
p

⌉
, again a

contradiction.

Case 3. Assume that |B1| = 0, |B2| = 2 and let

us denote by B2 = {u, v}. If u, v are adjacent then

f(u) + f(v) ≥ 1+
⌈
s−1
p

⌉
+2 implying that w(f) ≥

3+
⌈
s−1
p

⌉
≥ 2+

⌈
s
p

⌉
which is not possible. If u, v are

not adjacent then |N({u, v})| = s andB0 = N(u) =

N(v), because f is a p-StRDF. Hence, f(u)+f(v) ≥
2
(
1 +

⌈
s
p

⌉)
> 2 +

⌈
s
p

⌉
, which is a contradiction.

So, it must be γpStR(K2,s) ≥ 2 +
⌈
s
p

⌉
and the

equality is proven.

Now, let us suppose that r ≥ 3. Let u be a

vertex belonging to the r-class and v be a vertex of

the s-class. The function defined as f(u) = 1 +⌈
s−1
p

⌉
, f(v) = 1 +

⌈
r−1
p

⌉
is a p-StRD function in

Kr,s. Therefore γ
p
StR(Kr,s) ≤

⌈
r+p−1

p

⌉
+
⌈
s+p−1

p

⌉
.

Reasoning by contradiction, let us assume

that γpStR(Kr,s) ≤
⌈
r−1
p

⌉
+

⌈
s−1
p

⌉
+ 1. Let

f = (B0, B1, B2) be a γpStR-function. Again by

Corollary 10, we have that

|B0| ≥ p
p−1

(
r + s−

⌈
r−1
p

⌉
−
⌈
s−1
p

⌉
− 1

)
= p

p−1

(⌊
p−1
p (s− 1)

⌋
+ 1

+
⌊
p−1
p (r − 1)

⌋
+ 1− 1

)
≥ p

p−1

(
p−1
p (s− 1) + p−1

p (r − 1)− 1
)

= r + s− 2− p
p−1

As the function h(p) = p
p−1 is a non-increasing

function for positive values of p, and since h(3) = 3
2

we deduce that |B0| ≥ r + s − 7
2 , which in turn

lead us to |B1| + |B2| ≤ 3. Since B2 6= ∅ then

we have to consider different cases: |B1| = j and

1 ≤ |B2| ≤ 3− j, for all j ∈ {0, 1, 2}.
Case 1. If |B1| = 2, |B2| = 1 then there must be

r = 3, N(B2) = B0 and the 3-class ofK3,s coincides

with B1 ∪B2. But in this case, it would be

w(f) = 2 + 1 +

⌈
s

p

⌉
>

⌈
r − 1

p

⌉
+

⌈
s− 1

p

⌉
+ 1

Case 2. |B1| = 1 and 1 ≤ |B2| ≤ 2. If |B1| =
|B2| = 1 then |B0| = n − 2 which is impossible
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because r ≥ 3 and f is an StRDF. Hence, |B1| = 1

and |B2| = 2. Let us denote by B1 = {z}, B2 =

{u, v}. If u, v are not adjacent then it must be r = 3

and B1 ∪ B2 is the 3-class of K3,s, because f is an

StRDF. Then, we deduce thatw(f) = 2
(
1 +

⌈
s
p

⌉)
+

1 >
⌈
r−1
p

⌉
+

⌈
s−1
p

⌉
+ 1, a contradiction. If u, v

are adjacent then, without loss of generality, we may

assume that d(z) = s. Hence, w(f) = f(z)+f(u)+

f(v) = 1 +
⌈
s−1
p

⌉
+ 1 +

⌈
r−2
p

⌉
+ 1 >

⌈
r−1
p

⌉
+⌈

s−1
p

⌉
+ 1.

Case 3. |B1| = 0 and 1 ≤ |B2| ≤ 3. As

r ≥ 3 then ∆ ≤ n − 3 and therefore B2 ≥ 2.

If the induced subgraph by the vertices of B2 is an

edgeless subgraph then r = |B2| = 3 and w(f) =

3
(
1 +

⌈
s
p

⌉)
+1 >

⌈
r−1
p

⌉
+
⌈
s−1
p

⌉
+1. Then, there

must be adjacent vertices in the set B2. If |B2| = 2

then w(f) = f(B2) ≥ 1 +
⌈
s−1
p

⌉
+ 1 +

⌈
r−1
p

⌉
,

a contradiction. If |B2| = 3 then w(f) = f(B2) ≥
1+

⌈
s−1
p

⌉
+1+

⌈
r−2
p

⌉
+1 = 2+

⌈
s−1
p

⌉
+
⌈
r+p−2

p

⌉
≥

2 +
⌈
s−1
p

⌉
+

⌈
r−1
p

⌉
, again a contradiction. So the

result holds.

�
Our next result provides the exact value of

the p-strong Roman domination number for bi-star

graphs. The proof is quite similar to that of

Proposition 15, so we leave the details to the reader.

Proposition 16. Let r, s be two integers such that 1 ≤
r ≤ s. Let Tr,s be the bi-star graph with order n =

r + s + 2 and maximum degree ∆ ≥ 4. Let p be a

positive integer such that 3 ≤ p ≤ ∆− 1. Then,

γpStR(Tr,s) = 2 +

⌈
r

p

⌉
+

⌈
s

p

⌉
.

We conclude by characterizing those graphs

having the smallest possible values of the p-strong

Roman domination number.

Proposition 17. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆ − 1. Then γpStR(G) = 3 if and

only if G = K1 ∨ H , where p + 2 ≤ n ≤ 2p + 1,

∆ = n− 1 and H is any graph with n− 1 vertices.

Proof. Assume that γpStR(G) = 3. Let f =

(B0, B1, B2) be a p-StRD function on G with

minimum weight w(f) = 3. Since w(f) = |B1| +∑
v∈B2

f(x), hence there are only two possibilities:

(i) B1 = ∅ and B2 = {v}, with f(v) = 3 or (ii)

|B1| = 1 and B2 = {v}, with f(v) = 2.

(i) If B1 = ∅ and B2 = {v}, with f(v) = 3, then

B0 = V r {v}, that is, every vertex in B0 must be

adjacent to v and p+1 ≤ |B0| ≤ 2p, since f(v) = 3.

Therefore, p + 2 ≤ n ≤ 2p + 1 and ∆ = n − 1,

and then, G = {v} ∨ H, where H is a subgraph on

p+ 1 ≤ |V (H)| ≤ 2p vertices.

(ii) If B1 = {u} and B2 = {v}, with f(v) = 2,

then B0 = V r {u, v} and all vertices in B0 must be

adjacent to v, hence 1 ≤ |B0| ≤ p, since f(v) = 2,

and 3 ≤ n ≤ p + 2. Now, we distinguish two

subcases: |N(v)| = n− 1 or |N(v)| = n− 2.

Suppose that |N(v)| = n − 1. If |B0| < p, then, we

can label the vertex u with 0 and we have γpStR(G) =

2, which is a contradiction. Hence, |B0| = p and

there exists a p-StRD function f onG with minimum

weight w(f) = 3, where f(v) = 3, which lead us to

case (i).

Suppose now that |N(v)| = n− 2. Since 1 ≤ |B0| ≤
p, then n ≤ p + 2. Due to 3 ≤ p ≤ ∆ − 1, then

p+1 ≤ ∆. We deduce that n−1 ≤ ∆ and, therefore,

n − 1 = ∆, which means that there exists a vertex

w ∈ B0 such that d(w) = ∆ = n−1, which describes

the graph of the case (i). The reciprocal is trivial. �

Proposition 18. Let G be a graph with order n and

maximum degree ∆ ≥ 4. Let p be a positive integer

such that 3 ≤ p ≤ ∆ − 1. Then γpStR(G) = 4 if and

only if one of the following conditions hold

1. ∆ = n−1, 2p+2 ≤ n ≤ 3p+1 andG = K1∨H
whereH is any graph on 2p+1 ≤ |V (H)| ≤ 3p

vertices.

2. ∆ = n− 2, 4 ≤ n ≤ 2p+ 2 and G = H1 ∨H2,

where H1 ⊆ K2 and H2 is a subgraph on 2 ≤
|V (H2)| ≤ 2p vertices.

3. ∆ = n−2, p+3 ≤ n ≤ 2p+2 andG = K1∨H ,

where K1 = {z}, with d(z) = ∆(G), and H is

a subgraph on |V (H)| = n− 1 vertices.

Proof. Assume that γpStR(G) = 4. Let f =

(B0, B1, B2) be a p-StRD function on G with

minimum weight w(f) = 4. Since w(f) =

|B1| +
∑

v∈B2
f(x), hence there exists different
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possibilities.

Case 1: Assume that B1 = ∅.
Subcases 1a: Suppose that B2 = {v}, with

f(v) = 4. Then every vertex in B0 must be adjacent

to v and 2p + 1 ≤ |B0| ≤ 3p, since f(v) = 4.

Therefore, 2p + 2 ≤ n ≤ 3p + 1 and ∆ = n − 1,

and then, G = {v} ∨ H , where H is a subgraph on

2p+ 1 ≤ |V (H)| ≤ 3p.

Subcase 1b: Suppose that B2 = {v, w}, with
f(v) = f(w) = 2. Then every vertex in B0 must be

adjacent to v and w, then 2 ≤ |B0| ≤ 2p. Therefore,

4 ≤ n ≤ 2p + 2 and ∆ = n − 2, and then,

G = H1∨H2, whereH1 ⊆ K2 andH2 is a subgraph

on 2 ≤ |V (H2)| ≤ 2p vertices.

Case 2: Assume that B1 6= ∅.
Subcase 2a: Suppose that B1 = {u} and B2 =

{v},with f(v) = 3. Then every vertex inB0 must be

adjacent to v and p+1 ≤ |B0| ≤ 2p, since f(v) = 3,

and p + 3 ≤ n ≤ 2p + 2. If w ∈ N(v), then ∆ =

n− 1 and there exists a p-StRD function f onG with

minimum weight w(f) = 4, where f(v) = 4, which

lead us to case (1a). If w /∈ N(v), then |B0| ≤ n− 2,

since f(v) = 3,∆ = n− 2 and G = K1 ∨H , where

K1 = {z}, with d(z) = ∆(G) = n − 2, and H is a

subgraph on |V (H)| = n− 1 vertices.

Subcase 2b: Suppose thatB1 = {u,w} andB2 =

{v},with f(v) = 2. Then every vertex inB0 must be

adjacent to v and 1 ≤ |B0| ≤ p, since f(v) = 2,

and 4 ≤ n ≤ p + 3. If u,w ∈ N(v), then d(v) =

n − 1 = p + 2 and n = p + 3, therefore, |B0| = p,

which implies that there exists a p-StRD function f on

G with minimum weight w(f) = 3, where f(v) = 3,

which is a contradiction, since we are assuming that

γpStR(G) = 4. If u,w /∈ N(v), then 1 ≤ |B0| ≤ p

and ∆ = n − 3, hence, p ≤ ∆ − 1 = n − 4, that is,

p + 4 ≤ n, which is a contradiction, since 4 ≤ n ≤
p + 3. If u ∈ N(v) and w /∈ N(v), then necessarly

|B0| = p, since f(v) = 2. Therefore n = p + 3 and

∆ = p+ 1 = n− 2, which leads us to case (2a).

The reciprocals are trivial. �

5 Conclusion

Recently, many definitions of Roman domination

models for graphs have been proposed. In this

work, we introduce the concept of p-strong Roman

domination, which enables the development of

newer, more adaptable, and less expensive defensive

strategies.

The NP-completeness of the problem has been

explored for bipartite and chordal graphs by linking it

to the Exact 3-Cover problem. Various general upper

and lower bounds have been examined, along with

an upper bound derived using probabilistic methods.

Concerning the study of exact values, specific cases

like Robertson’s (4,5)-cage, where 3-StR equals 11,

and extensive families of graphs such as complete

bipartite graphs or bi-stars have been investigated.

6 Future research directions.

This work opens several compelling avenues

for future research, particularly in light of the

NP-completeness of the p-strong Roman domination

problem.

Several promising directions warrant

investigation. Firstly, seeking tighter bounds,

either by improving existing ones or by considering

other graph invariants, would be valuable. Another

interesting possibility is exploring new inequalities

that relate this parameter to parameters of other

domination types beyond those mentioned in

Remark 4.

Regarding Remark 4, characterizing the graphs

that achieve lower and upper bounds would be

a significant contribution. Determining the exact

value of the p-strong Roman domination number in

other graph families and graph products is also a

worthwhile pursuit.

Furthermore, studying the exact value of the

p-strong Roman domination number in trees with

specific structures is of interest. Based on these

findings, an attempt to establish a general bound for

any tree of order n≥5 could be undertaken.
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