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Abstract: - We introduce a definition of intrinsically quasi-symmetric sections in metric spaces and we prove the
Ahlfors-David regularity for this class of sections. We follow a recent result by Le Donne and the author where
we generalize the notion of intrinsically Lipschitz graphs in the sense of Franchi, Serapioni and Serra Cassano.
We do this by focusing our attention on the graph property instead of the map one.
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1 Introduction
The notion of Lipschitz maps is a key one for recti-
fiability theory in metric spaces [1] that is a key one
in Calculus of Variations and in Geometric Measure
Theory. The reader can see [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. On the other hand, in [13] and [14] the
authors prove that the classical Lipschitz definition
not work in the context of SubRiemannian Carnot
groups [15, 16, 17]. Then in a similar way of Eu-
clidean case, Franchi, Serapioni and Serra Cassano
[18, 19, 20, 21, 22, 23] introduce a suitable definition
of intrinsic cones which is deep different to Euclidean
cones and then they say that a map ϕ is intrinsic Lips-
chitz if for any p ∈ graph(ϕ) it is possible to consider
an intrinsic cone C with vertex on p such that

C ∩graph(ϕ) = /0. (1)

In [24], we generalize this concept in general met-
ric spaces. Roughly speaking, in our new approach a
section ψ is such that graph(ϕ) = ψ(Y ) ⊂ X where
X is a metric space and Y is a topological space.
We prove some important properties as the Ahlfors
regularity, the Ascoli-Arzelá Theorem, the Exten-
sion theorem for so-called intrinsically Lipschitz sec-
tions. Following this idea, the author introduce other
two natural definitions: intrinsically Hölder sections
[25] and intrinsically quasi-isometric sections [26]
in metric spaces. Yet, thanks to the seminal papers
[27] [28, 29] it is possible to found suitable sets of
this class of sections in order to get the convexity
and vector space over R and C. Finally, in [30] we
study the link between the continuous sections and
the Hamilton-Jacobi equation.

Following [31], the purpose of this note is to give a

natural intrinsically quasi-symmetric notion and then,
following again [24], to prove the Ahlfors-David reg-
ularity result for this class of sections which includes
intrinsically Lipschitz sections. More precisely, the
main result of this paper is Theorem 2.1.

1.1 Quasi-symmetric sections
Before to give a suitable definition of quasi-
symmetric sections, we recall the classical notion of
quasi-conformal maps [32, 33, 34, 35, 36]. Let X
and Y be two metric spaces and let f : Y → X be an
homeomorphism (i.e., f and its inverse are continu-
ous maps). For ȳ ∈ Y,r > 0 we define

L f (ȳ,r) := sup{d( f (ȳ), f (y)) : d(ȳ,y)≤ r}, (2)

ℓ f (ȳ,r) := inf{d( f (ȳ), f (y)) : d(ȳ,y)≥ r}, (3)

and the ratio H f (ȳ,r) := L f (ȳ,r)/ℓ f (ȳ,r) which mea-
sures the eccentricity of the image of the ball B(ȳ,r)
under f . We say that f is H-quasiconformal if

limsup
r→0

H f (ȳ,r)≤ H, ∀ȳ ∈ Y. (4)

A good point of our research is that Y is just a topo-
logical space because, in many cases, we just con-
sider the metric on X . On the other hand, we can not
do a automatically choice of ℓ f and the reason will be
clear after to present our setting. We have a metric
space X , a topological space Y , and a quotient map
π : X →Y , meaning continuous, open, and surjective.
The standard example for us is when X is a metric Lie
group G (meaning that the Lie group G is equipped
with a left-invariant distance that induces the mani-
fold topology), for example a subRiemannian Carnot
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group, and Y is the space of left cosets G/H, where
H < G is a closed subgroup and π : G → G/H is the
projection modulo H, g 7→ gH.

In [24], we consider a section ϕ : Y → X of π :
X → Y (i.e., π ◦ϕ = idY ) such that π produces a foli-
ation for X , i.e., X = π−1(y) and the Lipschitz prop-
erty of ϕ consists to ask that the distance between two
points ϕ(y1),ϕ(y2) is not comparable with the dis-
tance between y1 and y2 but between ϕ(y1) and the
fiber of y2. Following this idea, the corresponding
notion given in 4 becomes

limsup
r→0

Hϕ(ȳ,r)≤ H, ∀ȳ ∈ Y, (5)

where

Lϕ(ȳ,r) := sup{d(ϕ(ȳ),ϕ(y)) : d(ϕ(ȳ),π−1(y))≤ r},

ℓϕ(ȳ,r) := inf{d(ϕ(ȳ),ϕ(y)) : d(ϕ(ȳ),π−1(y))≥ r},
and the intrinsic ratio H f (ȳ,r) := Lϕ(ȳ,r)/ℓϕ(ȳ,r).

Now we can understand why we can not choice
ℓϕ . Indeed, in this case,

r ≤ d(ϕ(y1),π
−1(y2))≤ d(ϕ(y1),ϕ(y2))

and so
ℓ f (ȳ,r) = r, ∀ȳ ∈ Y.

Because of this, we follow Pansu in [31], and we
give the following non-trivial definition.

Definition 1.1 We say that a map ϕ : Y → X is an
intrinsically η-quasi-symmetric section of π , if it is a
section, i.e.,

π ◦ϕ = idY , (6)

and if there exists an homeomorphism η : (0,∞) →
(0,∞) (i.e., η and its inverse are continuous maps)
measuring the intrinsic quasi-symmetry of ϕ. This
means that for any y1,y2,y3 ∈ Y distinct points of Y
which not belong to the same fiber, it holds

d(ϕ(y1),ϕ(y2))

d(ϕ(y1),ϕ(y3))
≤ η

(
d(ϕ(y2),π

−1(y1))

d(ϕ(y3),π−1(y1))

)
. (7)

Here d denotes the distance on X, and, as usual, for
a subset A ⊂ X and a point x ∈ X, we have d(x,A) :=
inf{d(x,a) : a ∈ A}.

Equivalently to equation10aprile, we are request-
ing that

d(x1,x2)

d(x1,x3)
≤ η

(
d(x2,π

−1(π(x1)))

d(x3,π−1(π(x1)))

)
, (8)

for all x1,x2,x3 ∈ ϕ(Y ) where we ask that x2,x3 /∈
π−1(π(x1)).

We give some examples of this class of maps.

Exemple 1.1 (Intrinsically Lipschitz section of π)
Following [24], we say that a map ϕ : Y → X is an
intrinsically Lipschitz section of π with constant L,
with L ∈ [1,∞), if it is a section and

d(ϕ(y1),ϕ(y2))≤ Ld(ϕ(y1),π
−1(y2)),

for all y1,y2 ∈ Y.
Here, η(x) = Lx for every x ∈ (0,∞). In fact,

d(ϕ(y1),ϕ(y2))

d(ϕ(y1),ϕ(y3))
=

d(ϕ(y1),ϕ(y2))

d(ϕ(y2),π−1(y1))

d(ϕ(y3),π
−1(y1))

d(ϕ(y1),ϕ(y3))

d(ϕ(y2),π
−1(y1))

d(ϕ(y3),π−1(y1))

≤ L
d(ϕ(y2),π

−1(y1))

d(ϕ(y3),π−1(y1))
,

where in the last inequality we used the simple fact
ϕ(y1) ∈ π−1(y1) and so

d(ϕ(y3),π
−1(y1))

d(ϕ(y1),ϕ(y3))
≤ 1.

Exemple 1.2 (BiLipschitz embedding) BiLipschitz
embedding are examples of intrinsically η-quasi-
symmetric sections of π. This follows because in
the case π is a Lipschitz quotient or submetry
[37, 38], being intrinsically Lipschitz is equivalent to
biLipschitz embedding, (see Proposition 2.4 in [24]).

Exemple 1.3 (Intrinsically Hölder section of π (in
the discrete case)) Let X be a metric space with the
additional hypothesis that there is ε > 0 such that
d(ϕ(y1),ϕ(y2)) ≥ ε > 0 for any y1,y2 ∈ Y. Follow-
ing [25], we say that a map ϕ : Y → X is an intrinsi-
cally (L,α)-Hölder section of π , with L ∈ [1,∞) and
α ∈ (0,1), if it is a section and

d(ϕ(y1),ϕ(y2))≤ Ld(ϕ(y1),π
−1(y2))

α ,

for all y1,y2 ∈ Y.
Here, η(x) = Lεα−1xα for any x ∈ (0,∞). Indeed,

d(ϕ(y1),ϕ(y2))

d(ϕ(y1),ϕ(y3))

=
d(ϕ(y1),ϕ(y2))

d(ϕ(y2),π−1(y1))α

d(ϕ(y3),π
−1(y1))

α

d(ϕ(y1),ϕ(y3))

d(ϕ(y2),π
−1(y1))

α

d(ϕ(y3),π−1(y1))α

≤ Lε
α−1 d(ϕ(y2),π

−1(y1))
α

d(ϕ(y3),π−1(y1))α
,

as desired.
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2 Ahlfors-David regularity
Regarding Ahlfors-David regularity in metric setting,
the reader can see [24] for intrinsically Lipschitz sec-
tions; [25] for Hölder sections; [26] for intrinsically
quasi-isometric sections.

The main result of this paper is the following.

Theorem 2.1 (Ahlfors-David regularity) Let
π : X → Y be a quotient map between a metric space
X and a topological space Y such that there is a
measure µ on Y such that for every r0 > 0 and every
x,x′ ∈ X with π(x) = π(x′) there is C > 0 such that

µ(π(B(x,r)))≤Cµ(π(B(x′,r))), (9)

for every r ∈ (0,r0).
We also assume that ϕ : Y → X is an intrinsically

η-quasi-symmetric section of π such that

1. ϕ(Y ) is Q-Ahlfors-David regular with respect to
the measure ϕ∗µ , with Q ∈ (0,∞)

2. it holds

ℓη := sup
g,q∈ϕ(Y )π(g)=π(q)

η

(
d(g,π−1(ȳ))
d(q,π−1(ȳ))

)
< ∞,

(10)
for any ȳ ∈ Y such that g,q /∈ π−1(ȳ)

Then, for every intrinsically η-quasi-symmetric
section ψ : Y → X , the set ψ(Y ) is Q-Ahlfors-David
regular with respect to the measure ψ∗µ , with Q ∈
(0,∞).

Namely, in Theorem 2.1 Q-Ahlfors-David regularity
means that the measure ϕ∗µ is such that for each
point x ∈ ϕ(Y ) there exist r0 > 0 and C > 0 so that

C−1rQ ≤ ϕ∗µ
(
B(x,r)∩ϕ(Y )

)
≤CrQ, (11)

for all r ∈ (0,r0).
We need to a preliminary result.

Lemma 2.1 Let X be a metric space, Y a topological
space, and π : X →Y a quotient map. If ϕ : Y → X is
an intrinsically η-quasi-symmetric section of π such
that equationeta holds, then

π (B(p,r))⊂ π(B(p, ℓηr)∩ϕ(Y ))⊂ π(B(p, ℓηr)),
(12)

for all p ∈ ϕ(Y ) and r > 0.

Proof 1 Regarding the first inclusion, fix p = ϕ(y) ∈
ϕ(Y ),r > 0 and q ∈ B(p,r) with q ̸= p.

We need to show that π(q)∈ π(ϕ(Y )∩B(p, ℓηr)).
Actually, it is enough to prove that

ϕ(π(q)) ∈ B(p, ℓηr), (13)

because if we take g := ϕ(π(q)), then g ∈ ϕ(Y ) and
π(g) = π(ϕ(π(q))) = π(q) ∈ π(ϕ(Y )∩B(p, ℓηr)).

Hence using the intrinsic η-quasi-symmetric
property of ϕ and 10, we have that for any p =
ϕ(y),q,g ∈ ϕ(Y ) with g = ϕ(π(q)),

d(p,g)=
d(p,g)
d(p,q)

d(p,q)≤η

(
d(g,π−1(y))
d(q,π−1(y))

)
r ≤ ℓηr,

(14)
i.e., 13 holds, as desired. Finally, the second inclu-
sion in 12 follows immediately noting that π(ϕ(Y )) =
Y because ϕ is a section and the proof is complete.

At this point, we are able to prove Theorem 2.1.

Proof 2 (Proof of Theorem 2.1) Let ϕ and ψ intrin-
sically η-quasi-symmetric sections. Fix y ∈ Y. By
Ahlfors regularity of ϕ(y), we know that there are
c1,c2,r0 > 0 such that

c1rQ ≤ ϕ∗µ
(
B(ϕ(y),r)∩ϕ(Y )

)
≤ c2rQ, (15)

for all r ∈ (0,r0). We would like to show that there is
c3,c4 > 0 such that

c4rQ ≤ ψ∗µ
(
B(ψ(y),r)∩ψ(Y )

)
≤ c4rQ, (16)

for every r ∈ (0,r0). We begin noticing that, by sym-
metry and 2.2

C−1
µ(π(B(ψ(y),r)))≤ µ(π(B(ϕ(y),r)))

≤Cµ(π(B(ψ(y),r))).

Moreover,

ψ∗µ
(
B(ψ(y),r)∩ψ(Y )

)
= µ(ψ−1(B(ψ(y),r)∩ψ(Y )

)
)

= µ(π
(
B(ψ(y),r)∩ψ(Y )

)
),

and, consequently,

ψ∗µ
(
B(ψ(y),r)∩ψ(Y )

)
≥ µ(π(B(ψ(y),r/ℓη)))≥C−1

µ(π(B(ϕ(y),r/ℓη)))

≥C−1
µ(π(B(ϕ(y),r/ℓη)∩ϕ(Y )))

=C−1
ϕ∗µ

(
B(ϕ(y),r/ℓη)∩ϕ(Y )

)
≥ c1C−1ℓ−Q

η rQ,

where in the first inequality we used the first inclusion
of 12 with ψ in place of ϕ , and in the second one we
used 2. In the third inequality we used the second
inclusion of 12 and in the fourth one we used 2 with
ϕ in place of ψ. Moreover, in a similar way we have
that

ψ∗µ
(
B(ψ(y),r)∩ψ(Y )

)
≤ µ(π(B(ψ(y),r)))
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≤Cµ(π(B(ϕ(y),r)))

≤Cµ(π(B(ϕ(y), ℓηr))∩ϕ(Y )))

=Cϕ∗µ
(
B(ϕ(y), ℓηr)∩ϕ(Y )

)
≤ c2CℓQ

η rQ.

Hence, putting together the last two inequalities we
have that 16 holds with c3 = c1C−1ℓ−Q

η and c4 =

c2CℓQ
η .

2.1 Quasi-conformal sections
In this section we present the definition of quasi-
conformal sections. Regarding the classical quasi-
conformal and quasi-symmetric maps the reader can
see [32, 33, 34, 35].

Definition 2.1 We say that a map ϕ : Y → X is an
intrinsically η-quasi-conformal section of π , if it is a
section, i.e., π ◦ϕ = idY , and there exist H ≥ 0 and
an homeomorphism η : (0,∞) → (0,∞) (i.e., η such
that for any y1,y2,y3 ∈ Y distinct points of Y which
not belong to the same fiber, it holds

d(ϕ(y1),ϕ(y2))

d(ϕ(y1),ϕ(y3))
≤

limsup
x,x′∈ϕ(Y ),π(x)=π(x′)x→x′

η

(
d(x,π−1(y1))

d(x′,π−1(y1))

)
< H.

Here d denotes the distance on X, and, as usual, for
a subset A ⊂ X and a point x ∈ X, we have d(x,A) :=
inf{d(x,a) : a ∈ A}.

Finally, this class of section satisfies the hypothe-
sis equationeta of Theorem 2.1. Hence, we can con-
clude with the following corollary.

Theorem 2.2 (Ahlfors-David regularity) Let
π : X → Y be a quotient map between a metric
space X and a topological space Y such that there
is a measure µ on Y such that for every r0 > 0 and
every x,x′ ∈ X with π(x) = π(x′) there is C > 0
such that µ(π(B(x,r))) ≤Cµ(π(B(x′,r))), for every
r ∈ (0,r0).

We also assume that ϕ : Y → X is an intrinsically
(η ,H)-quasi-conformal section of π such that ϕ(Y )
is Q-Ahlfors-David regular with respect to the mea-
sure ϕ∗µ , with Q ∈ (0,∞) for some fixed ȳ, ȳ1 ∈ Y.

Then, for every intrinsically (η ,H)-quasi-
conformal section ψ : Y → X , the set ψ(Y ) is
Q-Ahlfors-David regular with respect to the measure
ψ∗µ , with Q ∈ (0,∞).
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alence problem for Carnot groups. Annales de la
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dings of metric spaces. Ann. Acad. Sci. Fenn. Ser.
A I Math. 5, pages 97–114, 1980.

[37] S. Bates, W. B. Johnson, J. Lindenstrauss, D.
Preiss, and G. Schechtman, Affine approximation
of Lipschitz functions and nonlinear quotients,
Geom. Funct. Anal. 9, 1092 (1999).

[38] V. N. Berestovskii, Homogeneous manifolds
with intrinsic metric, Sib Math J I, 887 (1988).

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.102 Daniela Di Donato

E-ISSN: 2224-2880 996 Volume 23, 2024



Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself

D.D.D. is supported by the Italian MUR through
the PRIN 2022 project “Inverse problems in PDE:
theoretical and numerical analysis”, project code
2022B32J5C, under the National Recovery and Re-
silience Plan (PNRR), Italy, funded by the European
Union - Next Generation EU, Mission 4 Component
1 CUP F53D23002710006.

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The author contributed in the present research, at all 
stages from the formulation of the problem to the 
final findings and solution. 
    

 
Conflict of Interest
The author has no conflict of interest to declare that 
is relevant to the content of this article.  
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.102 Daniela Di Donato

E-ISSN: 2224-2880 997 Volume 23, 2024


	Introduction
	Quasi-symmetric sections

	Ahlfors-David regularity
	Quasi-conformal sections




