
A Boundary Value Problem with Strong Degeneracy and Local Splines 

 
I. G. BUROVA, G. O. ALCYBEEV 

The Department of Computational Mathematics, 
St. Petersburg State University, 

7-9 Universitetskaya Embankment, St.Petersburg,  
RUSSIA 

 
Abstract: - A new method for solving the singular one-dimensional boundary value problem with a strong 
degeneracy is proposed in this paper. In the case of the strong degeneration of the differential equation, the 
boundary condition is set only at one end of the interval. This method is based on the use of the polynomial and 
non-polynomial Lagrangian and Hermitian type local splines and the variational method. The use of splines of 
Hermitian type with the first level is convenient if it is needed to obtain simultaneously a solution and the first 
derivative of the solution at the grid nodes. Next, it is possible to construct the solution between the grid nodes 
using the same spline approximation formulas. The non-polynomial splines help us to construct a more accurate 
solution. The results of solving a one-dimensional boundary value problem with strong degeneracy are 
presented in this paper. 
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1  Introduction 
Degenerate equations arise when solving many 
applied problems, for example, in gas dynamics [1], 
in modeling the motion of viscous droplets 
spreading over a solid surface [2], [3], the study of 
isoperimetric problems for probability measures, 
[4]. Results for a class of nonlinear degenerate 
Navier problems associated with the degenerate 
nonlinear elliptic equations are given in [5]. 

In paper [6], the nonlinear degenerate elliptic 
differential problem: −𝑥2𝑢” =  𝑎 𝑢 + |𝑢|(𝑝−1), 𝑢 in 
(0, 1), 𝑢(0) = 𝑢(1) = 0, is discussed. This equation 
is a simplified version of the nonlinear Wheeler 
DeWitt equation. The Wheeler DeWitt equation 
appears in quantum cosmological models and it is 
used to model quantum states of the universe and 
study the qualitative behavior of the universe wave 
function. 

The question of the existence of solutions for 
degenerate equations was studied in detail in [7], 
[8].  

Among the papers published recently, we note 
[9], [10]. 

The novelty of the paper [9] is that the authors 
find proper weights under which the existence, 
uniqueness, and regularity of solutions in Sobolev 
spaces are established. 

The main result of the paper [10] is the 
establishment of the conditions for the existence or 
not of eigenvalues of the linearization. 

Boundary value problems for a degenerate 
elliptic equation are often studied in the theory of 
partial differential equations. The study of 
differential equations with a coefficient at the 
highest derivative that vanishes has been carried out 
in many works. Such equations are obtained by 
studying variable-type partial differential equations, 
as well as by establishing asymptotic expansions of 
bisingular problems. In the paper [11], the authors 
consider a degenerate parabolic problem occurring 
in the spatial diffusion of a biological population. In 
paper [12], the authors consider a degenerate 
parabolic equation occurring in the gas filtration 
problems. 

When modeling physical processes, we often 
come to the need to numerically solve boundary 
value problems and initial boundary value problems 
with degeneracy. 

When solving boundary value problems, the B-
splines or piecewise linear functions are often used, 
[13], [14], [15].  

In paper [14] the solution to the one-
dimensional Stationary Transport Equation is given. 
Here, for the construction of the approximate 
solution, a piecewise linear function and 
trigonometrical polynomials are used.  
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The [15], is devoted to the construction of the 
Hermitian- type-splines. 

Paper [16] is devoted to the solution of the 
nonstationary integro-differential equation with a 
degenerate elliptic differential operator. 

Special difficulties arise in the case when 
solving degenerate equations. Problems connected 
with solving degenerate equations are discussed in 
[17], [18], [19], [20]. 

In paper [21], a new approach to the local 
improvement of an approximate solution which has 
been obtained with the finite element method is 
developed. 

In paper [22], an algorithm of the adaptive-grid 
for one-dimensional boundary value problems of the 
second order is constructed and the corresponding 
approximation theorems are established. 

The cases are known when the difference 
approximation of an elliptic differential equation 
turns out to be non-elliptic. When applying 
projection and variational methods, orthogonal 
polynomials are often used as the basis functions. In 
this case, it is necessary to distinguish between the 
main and natural boundary conditions. The basis 
functions must satisfy the main boundary conditions 
but may not satisfy the natural ones.  

We consider the approximation of the solution 
in the degenerate Sobolev spaces. This means that 
the weight function can vanish or go to infinity at 
one of the ends of the interval, [15]. In our work, we 
assume that the weight function can vanish at the 
left end of the interval. 

In this paper, we discuss the numerical solving 
the problem: 

 
(−𝑘(𝑥)𝑢′(𝑥))

′
+  𝑞(𝑥)𝑢(𝑥) =  𝑓 (𝑥),  

𝑥 ∈ (0,1),   𝑢(1) = 𝑢𝑛. 
𝑘(𝑥) =    𝑥𝛼𝑝(𝑥),    𝛼 ∈  [1, 2), 

𝑝(𝑥) ≥  𝛾0 =  const >  0, 𝑞(𝑥) ≥  0, 𝑓 ∈  𝐿2. 
 

In this equation, the function 𝑥𝛼 vanishes only 
at 𝑥 = 0. Thus, this equation degenerates at the 
point 0. If 1 ≤ α < 2, then the degeneration is 
called the strong degeneration and the boundary 
condition must be set only at one end of the interval. 
So we put 𝑢(1) = 𝑢𝑛. 

In our paper in Section 1.1 we give general 
remarks about the variational method, Section 2 is 
devoted to the local splines. Section 3 is about the 
construction of the solution of the boundary value 
problem with the variational method. 
 

1.1  General Remarks 
Consider the equation 

−
𝑑

𝑑𝑥
 𝑘(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑞(𝑥)𝑢 = 𝑓(𝑥) , 0 < 𝑥 < 1,

𝑓 ∈ 𝐿2(0,1). 
 

Here 𝑘 ∈ 𝐶(0,1)⋂𝐶(1)(0,1), the function 𝑞 is 
measurable, bounded and non-negative. Suppose 
that 𝑘(0) = 0, 𝑘(𝑥) > 0 for 𝑥 > 0. Of particular 
interest is the case (𝑥) = 𝑥𝛼𝑝(𝑥), 𝛼 = const > 0, 
𝑝 ∈ 𝐶(1)[0,1],  where: 

𝑝(𝑥) ≥ 𝑝0 = const > 0. 
 
Let us denote by 𝐴0 the operator:  

𝐴0𝑢 = −
𝑑

𝑑𝑥
 𝑘(𝑥)

𝑑𝑢

𝑑𝑥
 . 

 

The domain of the definition of this operator is 
taken to be a set of functions 𝑢(𝑥) satisfying the 
condition: 𝑢(𝑥) and 𝑘(𝑥)

𝑑𝑢

𝑑𝑥
 are absolutely 

continuous on any segment [𝛿, 1] where 0 < 𝛿 < 1. 
If 𝛼 < 1, then these functions are continuous on 
[0, 1].  
 
We will need the following facts, [16].  
 
If the integral  

∫
𝑑𝑥

𝑘(𝑥)

1

0

 

converges, then we take  𝑢(0) = 𝑢(1) = 0. 

 
If the integral 

∫
𝑑𝑥

𝑘(𝑥)

1

0

 

diverges, then we take 𝑢(1) = 0. 

 
Let us denote by 𝐴 the operator 𝐴 = 𝐴0 + 𝑞𝑢. 
If the integral  

∫
𝑥𝑑𝑥

𝑘(𝑥)

1

0

 

converges, then the operator 𝐴0 (and the operator 𝐴) 
is positive definite, [16]. 
 
If the integral  

∫
𝑥𝑑𝑥

𝑘(𝑥)

1

0

 

diverges, then the operator 𝐴0 is positive, [16]. 
 

It is known that if the operator A is a positive 
definite, then the equation Au=f has a unique 
generalized solution. This solution belongs to the 
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energy space 𝐻𝐴. This solution also belongs to 
𝐿2(0,1). In our case, 𝐻𝐴 consists of functions that 
are absolutely continuous on any segment [𝛿, 1], 
0 < 𝛿 < 1 and satisfy the condition 𝑢(1) = 0. The 
energy scalar production and norm are calculated 
using the formula 

[𝑢, 𝑣]𝐴 = ∫(𝑘 𝑢
′𝑣′ + 𝑞𝑢𝑣)𝑑𝑥

1

0

  , 

∥  𝑢 ∥𝐴
2= ∫(𝑘 𝑢′2 + 𝑞

1

0

𝑢2)𝑑𝑥 . 

 
On the interval (0,1) we will solve the following 

boundary value problem with strong degeneracy: 
(−𝑘(𝑥)𝑢′(𝑥))

′
+  𝑞(𝑥)𝑢(𝑥) =  𝑓 (𝑥),  

𝑢(1) =  0,                                   (1) 
where 

𝑘(𝑥) =    𝑥𝛼𝑝(𝑥),    𝛼 ∈ [1, 2), 
𝑝(𝑥) ≥  𝑝0 =  const >  0, 𝑞(𝑥) ≥  0,

𝑓 ∈  𝐿2. 
 

To solve this problem, we construct a uniform 
grid 𝑥𝑗, 𝑗 = 0,1,… , 𝑛. Divide the interval [0,1] into 𝑛 
parts. Thus, we have constructed a grid of nodes 𝑥𝑗, 
𝑗 = 0, 1, … , 𝑛,  
𝑎 = 𝑥0 < ⋯ < 𝑥𝑗−1 < 𝑥𝑗 < 𝑥𝑗+1 < ⋯ < 𝑥𝑛 = 𝑏. 

 
We will look for an approximate solution 𝑢̃(𝑥) 

of problem (1) as shown below: 

𝑢̃(𝑥) =∑𝑐𝑗𝜔𝑗(𝑥)

𝑛

𝑗=1

,                (2) 

where 𝜔𝑗(𝑥) are the basis splines, and 𝑐𝑗 are some 
parameters determined from the condition of the 
minimum of the functional: 

𝐼 = ∫(𝑘(𝑥)𝑢̃′2(𝑥) +  𝑞(𝑥)𝑢̃2(𝑥)

1

0

 

− 2𝑓 (𝑥)𝑢̃(𝑥) )𝑑𝑥.             (3) 
 

The problem of minimizing this functional (3) 
on the space of functions of the form (2) leads to the 
system of equations: 

∑𝑐𝑖

𝑁

𝑖=1

[𝜔𝑘 , 𝜔𝑗]𝐴 = (𝑓,𝜔𝑗), 𝑗 = 1,2, … , 𝑛. 

 
It can be written in the short form: 

𝑀𝐶 = 𝐹 . 
 
In more detail, this system can be written as: 

∑𝑐𝑘

𝑛

𝑘=1

𝑚𝑘𝑗 = 𝑓𝑗, 𝑗 = 1,2, … , 𝑛,   

 
The coefficients and the right side of which are 
calculated using the formulas: 

𝑚𝑘𝑗 = ∫[𝑘(𝑥)𝜔𝑘′(𝑥)𝜔𝑗′(𝑥)

1

0

+  𝑞(𝑥)𝜔𝑘(𝑥)𝜔𝑗(𝑥)]𝑑𝑥 ,  

𝑓𝑗 = ∫[𝑓(𝑥)𝜔𝑗(𝑥)]𝑑𝑥  .

1

0

 

 
 
2  Local Spline Application 
Next, we consider the application of Lagrangian-
type splines and Hermitian-type splines to the 
solution of a boundary value problem with the 
strong degeneracy. 
 
2.1 The Application of Splines of the Second 

 Order of Approximation 
First, we apply the polynomial basis splines of the 
second order of approximation.  
 
2.1.1  The Polynomial Basis Splines  

The support of the basis spline 𝜔𝑗(𝑥) consists of two 
parts: [𝑥𝑗−1, 𝑥𝑗] and [𝑥𝑗, 𝑥𝑗+1]: 

𝜔𝑗(𝑥) =

{
 

 
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
,   𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],

𝑥 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑗−1
  𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗] ,

 

and 
𝜔𝑗(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+1]. 

 
Obviously, the derivatives of the basis splines 𝜔𝑗 
have the form: 

𝜔′𝑗(𝑥) =

{
 
 

 
 

1

𝑥𝑗 − 𝑥𝑗+1
,   𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],

1

𝑥𝑗 − 𝑥𝑗−1
  𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗],

 

and  𝜔′𝑗(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+1] . 
 
The solution of the equation on the grid interval 
[𝑥𝑗, 𝑥𝑗+1] we take in the form: 

𝑢̃(𝑥) =∑𝑐𝑘 𝜔𝑘(𝑥)

𝑗+1

𝑘=𝑗

 , 

where the polynomial basis splines of the second 
order of approximation 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) on every grid 
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interval [𝑥𝑗, 𝑥𝑗+1] have the following form 

𝜔𝑗(𝑥) =
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
 , 

𝜔𝑗+1(𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+1 − 𝑥𝑗
 . 

 

2.1.2 The Application of the Polynomial Basis 

Splines to the Boundary Value Problem 

Let us take the equation:  

−
𝑑

𝑑𝑥
𝑥𝛼
𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑞(𝑥)𝑢(𝑥) = 𝑓(𝑥),       (4) 

0 < 𝑥 < 1, 1 ≤  𝛼 < 2, 𝑢(1) = 0 .  
 

We construct the right part 𝑓(𝑥) of the equation 
in accordance with the exact solution 𝑢(𝑥) =
((𝑥3− 𝛼) − 1)/(3 −  𝛼) . We are interested in the 
values of the function in the internal nodes 𝑥𝑗, 𝑗 =
1,… , 𝑛 − 1. We know the value of the function in 
the node  𝑥𝑛. Let's consider the case, 𝑞 = 1, 𝛼 = 1. 

We need to solve the system 𝑀𝐶 = 𝐹, where 
the matrix 𝑀 has elements 𝑚𝑗𝑖. The matrix 𝑀 turns 
out to be a symmetric one and it has a banded 
tridiagonal form. 

In order to solve this problem with the 

variational-difference method, we have to calculate 
the integrals:  

     𝑚𝑗𝑗 = [𝜔𝑗, 𝜔𝑗] = 

∫ (
1

𝑥𝑗 − 𝑥𝑗−1
)

2

 𝑑𝑥
𝑥𝑗

𝑥𝑗−1

+∫ (
1

𝑥𝑗 − 𝑥𝑗+1
)

2

 𝑑𝑥
𝑥𝑗+1

𝑥𝑗

+ 

∫ (
𝑥 − 𝑥𝑗−1

𝑥𝑗 − 𝑥𝑗−1
)

2

 𝑑𝑥
𝑥𝑗

𝑥𝑗−1

+∫ (
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1
)

2

 𝑑𝑥
𝑥𝑗+1

𝑥𝑗

, 

𝑚𝑗𝑗+1 = [𝜔𝑗, 𝜔𝑗+1]

= ∫ 𝜔′𝑗 (𝑥)𝜔
′
𝑗+1(𝑥) 𝑑𝑥

𝑥𝑗+1

𝑥𝑗

+∫ 𝜔𝑗(𝑥)𝜔𝑗+1 (𝑥) 𝑑𝑥
𝑥𝑗+1

𝑥𝑗

= ∫
1

𝑥𝑗 − 𝑥𝑗+1

1

𝑥𝑗+1 − 𝑥𝑗
 𝑑𝑥

𝑥𝑗+1

𝑥𝑗

+∫
𝑥 − 𝑥𝑗+1

𝑥𝑗 − 𝑥𝑗+1

𝑥 − 𝑥𝑗+1

𝑥𝑗+1 − 𝑥𝑗
 𝑑𝑥

𝑥𝑗+1

𝑥𝑗

. 

 
The right side 𝐹 of the system 𝑀𝐶 = 𝐹 has the 
elements as followed: 

𝑓𝑗 = ∫ 𝑓(𝑥)𝜔𝑗(𝑥)
𝑥𝑗+1

𝑥𝑗−1

𝑑𝑥. 

 
Next, we need to solve the system of equations 
𝑀𝐶 = 𝐹. 

2.1.3 The Trigonometrical Basis Splines 

The support of the basis spline 𝜔𝑗(𝑥)  consists of the 
two parts: [𝑥𝑗−1, 𝑥𝑗] and [𝑥𝑗, 𝑥𝑗+1] : 
 

𝑤𝑗(𝑥) =

{
 
 

 
 

 

sin(𝑥 − 𝑥𝑗+1)

sin(𝑥𝑗 − 𝑥𝑗+1)
,   𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],

sin (𝑥 − 𝑥𝑗−1)

sin (𝑥𝑗 − 𝑥𝑗−1)
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗] ,

 

and 𝜔𝑗(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+1]. 
 
Also, we have the relation: 

𝜔𝑗+1(𝑥) =
sin(𝑥 − 𝑥𝑗)

sin(𝑥𝑗+1 − 𝑥𝑗)
, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

 
The trigonometric splines are convenient for solving 
equations of the form: 

−
𝑑

𝑑𝑥
sin𝛼(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑢(𝑥) = 𝑓(𝑥),       

0 < 𝑥 < 1, 1 <  𝛼 < 2, 𝑢(1) = 0 . 
 

Next, we consider the application of Hermitian-
type splines to the solution of a boundary value 
problem with strong degeneracy.  

In the next section we will discuss the use of 
local splines of a non-zero level for solving 
boundary value problems with degeneracy. We 
would like to recall the construction of the fourth-
order splines of the first level. By the level we mean 
the number of derivatives of a function used to 
construct the approximation. The peculiarity of 
using these local splines is that we obtain a 
continuously differentiable approximation to the 
solution to boundary value problems. In addition, it 
is easy to construct the first and the second 
derivatives of this approximate solution. 
 
2.2 The Application of Splines of the Fourth 

 Order of Approximation of the First 

 Level 
Let us recall how the approximation is constructed 
using local splines of a non-zero level. We call the 
approximation level the number of derivatives that 
are used to construct the approximation. 
The approximation using local splines of a non-zero 
level is constructed on every grid interval in the 
following form:  

𝑢̃(𝑥) =∑∑𝑢(𝑠)(𝑥𝑗
𝑗

) 𝜔𝑗,𝑠(𝑥)

𝑠

, 𝑥 ∊ [𝑥𝑘 , 𝑥𝑘+1]. 

 
Here 𝜔𝑗,𝑠(𝑥) are the basis splines. If 𝑠 =
0,1, …𝑚, then the level of the approximation is 𝑚. 
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We assume that the support of each of the basis 
splines consists of two grid intervals.   Let us 
assume that at each grid node 𝑥𝑘 the values of the 
function 𝑢(𝑥) and its first derivative are known.  

In this case, we construct an approximation of 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑘 , 𝑥𝑘+1],  in the form: 

𝑢̃(𝑥) = ∑ 𝑢(𝑥𝑗
𝑗=𝑘,𝑘+1

) 𝜔𝑗,0(𝑥) + 𝑢′(𝑥𝑗)𝜔𝑗,1(𝑥). 

 
We assume that supp 𝜔𝑘,0=supp 𝜔𝑘,1 =

[𝑥𝑘−1, 𝑥𝑘+1]. Let the basis functions 𝜔𝑘,𝑖 be 
determined from the conditions: 

𝑢 ≡ 𝑢̃, 𝑢 = 1, 𝑥, 𝑥2, 𝑥3. 
 

From these conditions we obtain a system of 
equations for determining the basis functions on the 
interval [𝑥𝑗, 𝑥𝑗+1]: 

𝜔𝑗,0(𝑥) +  𝜔𝑗,1(𝑥) = 1 , 
 𝑥𝑗𝜔𝑗,0(𝑥) +  𝑥𝑗+1𝜔𝑗+1,0(𝑥) +  𝜔𝑗,1(𝑥) +  𝜔𝑗+1,1(𝑥)

= 𝑥 , 
 𝑥𝑗
2  𝜔𝑗,0(𝑥) +  𝑥𝑗+1

2 𝜔𝑗+1,0(𝑥) + 2 𝑥𝑗 𝜔𝑗,1(𝑥)

+ 2 𝑥𝑗+1 𝜔𝑗+1,1(𝑥) = 𝑥
2 , 

 𝑥𝑗
3  𝜔𝑗,0(𝑥) +  𝑥𝑗+1

3 𝜔𝑗+1,0(𝑥) + 3 𝑥𝑗
2 𝜔𝑗,1(𝑥)

+ 3 𝑥𝑗+1
2  𝜔𝑗+1,1(𝑥) = 𝑥

3 . 
 

Having solved the system of equations, we find 
the basis splines on the grid interval [𝑥𝑗, 𝑥𝑗+1]. 
The basis splines of the first level have the form: 

𝜔𝑗,0(𝑥) =
(𝑥 − 𝑥𝑗+1)

2

(𝑥𝑗+1 − 𝑥𝑗)
2 +

2(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)
2

(𝑥𝑗+1 − 𝑥𝑗)
3 , 

𝜔𝑗+1,0(𝑥) =
(𝑥 − 𝑥𝑗)

2

(𝑥𝑗+1 − 𝑥𝑗)
2 +

2(𝑥𝑗+1 − 𝑥)(𝑥 − 𝑥𝑗)
2

(𝑥𝑗+1 − 𝑥𝑗)
3 , 

𝜔𝑗,1(𝑥) =
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

2

(𝑥𝑗+1 − 𝑥𝑗)
2 , 

𝜔𝑗+1,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

2

(𝑥𝑗+1 − 𝑥𝑗)
2 . 

 
The plots of basis splines 𝜔𝑗,𝑖(𝑥) on the interval 
[𝑥𝑗, 𝑥𝑗+1] are presented in Figure 1, Figure 2, Figure 
3 and Figure 4. 

 
Fig. 1: The plot of the basis spline 𝜔𝑗,0(𝑥),  
𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1] 

 
Fig. 2: The plot of the basis spline 𝜔𝑗+1,0(𝑥), 
 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1] 
 

 
Fig. 3: The plot of the basis spline 𝜔𝑗,1(𝑥),  
𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1] 
 

 
Fig. 4: The plot of the basis spline 𝜔𝑗+1,1(𝑥), 
 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1] 
 
Now we get formulas for the approximation 
function 𝑢(𝑥),  

 𝑢̃(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗,0(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1,0(𝑥) +
𝑢′(𝑥𝑗)𝜔𝑗,1(𝑥) + 𝑢′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥),   (5) 

 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 
 

Similarly, we construct basis splines on the 
adjacent grid interval [𝑥𝑗−1, 𝑥𝑗]. 

To construct a solution, we also need formulas 
for basis splines on the interval 𝑥 ∊ [𝑥𝑗−1, 𝑥𝑗]  

𝜔𝑗−1,0(𝑥) +  𝜔𝑗−1,1(𝑥) = 1 , 
 𝑥𝑗−1𝜔𝑗−1,0(𝑥) +  𝑥𝑗𝜔𝑗,0(𝑥) +  𝜔𝑗−1,1(𝑥) +  𝜔𝑗,1(𝑥)

= 𝑥 , 
 𝑥𝑗−1
2   𝜔𝑗−1,0(𝑥) +  𝑥𝑗

2𝜔𝑗,0(𝑥) + 2 𝑥𝑗−1 𝜔𝑗−1,1(𝑥)

+ 2 𝑥𝑗 𝜔𝑗,1(𝑥) = 𝑥
2 , 

 𝑥𝑗−1
3   𝜔𝑗−1,0(𝑥) +  𝑥𝑗

3𝜔𝑗,0(𝑥) + 3 𝑥𝑗−1
2  𝜔𝑗−1,1(𝑥)

+ 3 𝑥𝑗
2 𝜔𝑗,1(𝑥) = 𝑥

3 . 
 

We assume that the support of the basis spline is 
supp𝜔𝑗,0 = supp𝜔𝑗,1 = [𝑥𝑗−1, 𝑥𝑗+1].  

The superlative point of the basis spline 𝜔𝑗,𝑖(𝑥) 
will be called the point with coordinates 
(𝑥𝑗, 𝜔𝑗,𝑖(𝑥𝑗)).   
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Fig. 5: The plot of the basis spline 𝜔𝑗,0(𝑥),  
𝑥 ∊ [𝑥𝑗−1, 𝑥𝑗+1] 
 

 
Fig. 6: The plot of the basis spline 𝜔𝑗,1(𝑥),  
𝑥 ∊ [𝑥𝑗−1, 𝑥𝑗+1] 
 
We have the formulas: 

𝜔𝑗−1,1(𝑥) =
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)

2

(𝑥𝑗−1 − 𝑥𝑗)
2 , 

 

𝜔𝑗−1,0(𝑥) =
(𝑥 − 𝑥𝑗)

2

(𝑥𝑗+1 − 𝑥𝑗)
2 +

2(𝑥𝑗+1 − 𝑥)(𝑥 − 𝑥𝑗)
2

(𝑥𝑗+1 − 𝑥𝑗)
3 . 

 
By combining basis splines with a common 

superlative point and taking into account the support 
of the basis spline, we obtain local basis splines 
shown in Figure 5 and Figure 6. 

We use the constructed splines to solve the 
boundary value problems. 

If the function 𝑢 ∈ 𝐶4[𝑥𝑗−1, 𝑥𝑗+1], then the next 
estimation of the approximation of function 𝑢(𝑥) is 
valid when 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1] 

| 𝑢̃(𝑥) − 𝑢(𝑥)| ≤  𝐾ℎ4  ∥  𝑢(4)  ∥[𝑥𝑗−1,𝑥𝑗+1] . 
 
Here  ℎ = 𝑥𝑗+1 − 𝑥𝑗, 𝐾 = 1/384. 
 

Splines of the fourth order of approximation and 
the first level were applied in the Least Squares 
Method, [23]. In the next section we discuss the 
application the splines of the fourth order of 
approximation and the first level for the solving the 
boundary value problem. 
 

 

 

3 The Construction of the Solution of 

 the Boundary Value Problem 
Let us consider the following problem: 

− 
𝑑

𝑑𝑥
𝑥𝛼𝑝(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑞(𝑥)𝑢(𝑥) = 𝑓(𝑥), 

0 < 𝑥 < 1, 1 ≤  𝛼 < 2, 𝑢(1) = 0,
𝑢′(1) = 0, 𝑝(𝑥) > 0.   

 
Note that to solve this problem using splines of 

the first level, we will need the value of the first 
derivative at the right end of the interval [0, 1]: here 
we have  𝑢′(1) = 0.  

On the interval [0, 1] we construct an ordered 
grid of nodes. First, let the grid nodes be equally 
spaced with step ℎ. The matrix 𝑀 of the system of 
equations 𝑀𝐶 = 𝐹 (according to (5)) will have a 
block form: 

𝑀 = (
𝑀11 𝑀12
𝑀21 𝑀22

) , 

 
where every 𝑀𝑖𝑗 has a band structure. Non-zero 
elements are those lying on the main diagonal, 
supradiagonal and subdiagonal. 
 
We take 𝑝(𝑥) = 1, 𝑞(𝑥) = 1. The elements of the 
matrix 𝑀11 have the following form: 

[𝜔𝑗,0, 𝜔𝑗,0] = ∫ (𝑥𝛼

𝑥𝑗

𝑥𝑗−1

 𝜔′𝑗−1,0
2 (𝑥) + 𝜔𝑗−1,0

2 (𝑥))𝑑𝑥 

+ ∫ (𝑥𝛼

𝑥𝑗+1

𝑥𝑗

 𝜔′𝑗,0
2
(𝑥)  + 𝜔𝑗,0

2 (𝑥))𝑑𝑥 , 

 

[𝜔𝑗,0, 𝜔𝑗+1,0] = ∫ (𝑥𝛼𝜔′𝑗,0(𝑥) 𝜔
′
𝑗+1 ,0

𝑥𝑗+1

𝑥𝑗

(𝑥)   

+𝜔𝑗,0(𝑥) 𝜔𝑗+1 ,0(𝑥))𝑑𝑥 . 

 
Note that the minimum number 𝑛 of nodes to solve 
our problem is 𝑛 = 2. If 𝑛 = 2 then we have: 

𝑀11 = (
[𝜔1,0, 𝜔1,0] [𝜔1,0, 𝜔2,0]

[𝜔2,0, 𝜔1,0] [𝜔2,0, 𝜔2,0]
) . 

 
In this case we have: 

[𝜔1,0, 𝜔1,0] = ∫ (𝑥𝛼

𝑥1

𝑥0

 𝜔′1,0
2
(𝑥)  + 𝜔1,0

2 (𝑥))𝑑𝑥 , 

 
If 𝑛 = 2 then we have: 

𝑀12 = (
[𝜔1,0, 𝜔1,1] [𝜔1,0, 𝜔2,1]

[𝜔2,0, 𝜔1,1] [𝜔2,0, 𝜔2,1]
)  . 
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Similarly we have,  

𝑀21 = (
[𝜔1,1, 𝜔1,0] [𝜔1,1, 𝜔2,0]

[𝜔2,1, 𝜔1,0] [𝜔2,1, 𝜔2,0]
) 

and 

𝑀22 = (
[𝜔1,1, 𝜔1,1] [𝜔1,1, 𝜔2,1]

[𝜔2,1, 𝜔1,1] [𝜔2,1, 𝜔2,1]
). 

 
We calculate the right side 𝐹 of the system of 
equations using the formulas: 

𝐹 = (
𝐹1
𝐹2
). 

 
The elements of vector 𝐹1 = (𝑓1,0, … , 𝑓𝑛−1,0)𝑇 have 
the form: 

𝑓𝑖,0 = ∫ 𝑓(𝑥)𝜔𝑗−1,0(𝑥)

𝑥𝑗

𝑥𝑗−1

𝑑𝑥

+ ∫ 𝑓(𝑥)𝜔𝑗,0(𝑥)

𝑥𝑗+1

𝑥𝑗

𝑑𝑥 . 

 
The elements of vector 𝐹2 = (𝑓1,1, … , 𝑓𝑛−1,1)𝑇 have 
the form: 

𝑓𝑖,1 = ∫ 𝑓(𝑥)𝜔𝑗−1,1(𝑥)

𝑥𝑗

𝑥𝑗−1

𝑑𝑥

+ ∫ 𝑓(𝑥)𝜔𝑗,1(𝑥)

𝑥𝑗+1

𝑥𝑗

𝑑𝑥 . 

Next, we have to solve the system 
 

𝑀𝐶 = 𝐹, 
where 
 

𝐶 = (𝑐1,0 , … , 𝑐𝑛,0 , 𝑐1,1 , … , 𝑐𝑛,1 )
𝑇 . 

 
To construct a continuously differentiable 

smoothing solution of the boundary value problem, 
we use the solution 𝑐𝑗,𝑖, 𝑗 = 1, 2, … , 𝑛, 𝑖 = 0,1, of 
and the splines of the fourth order of approximation 
of the first level  𝜔𝑗,𝑖.  
 
 
4   The Numerical Experiments 
Example 1. We solve the boundary value problem 

− 
𝑑

𝑑𝑥
𝑥
𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑢(𝑥) = 𝑓(𝑥), 

0 < 𝑥 < 1,    𝑢(1) = 0, 𝑢′(1) = 0.   
where the exact solution is 𝑢(𝑥) = (1 − 𝑥)3 . 
 

We apply the splines of the fourth order of 
approximation and the first level. We take 𝑛 = 20. 

The plot of the error of the solution and its first 
derivative are given in Figure 7 and Figure 8. The 
numbers of the grid nodes are plotted along the axis 
𝑥. 

 
Fig. 7: The plot of the error of the solution 

 

 
Fig. 8: The plot of the error of the first derivative of 
the solution 
 

Example 2. We solve the boundary value problem: 

− 
𝑑

𝑑𝑥
𝑥𝛼
𝑑𝑢(𝑥)

𝑑𝑥
+ 𝑢(𝑥) = 𝑓(𝑥), 

0 < 𝑥 < 1,    𝑢(1) = 0, 𝑢′(1) = 0.   
 
where 𝛼=1.5 and the exact solution 𝑢(𝑥) =
(1 − 𝑥)3 . We apply the splines of the fourth order 
of approximation and the first level. After we solve 
the system of equations and obtain the values 𝑐𝑗,𝑖  
we can connect the points of the grid solution using 
the rule: 

𝑈̃(𝑥) = 𝑐𝑗,0𝜔𝑗,0(𝑥) + 𝑐𝑗+1,0𝜔𝑗+1,0(𝑥) +

𝑐𝑗,1𝜔𝑗,1(𝑥) + 𝑐𝑗,1𝜔𝑗+1,1(𝑥), 
𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 

 
The plot of the error of the solution and its first 

derivative are given in Figure 9 and Figure 10. The 
numbers of the grid nodes are plotted along the axis 
𝑥. 

 
Fig. 9: The plot of the error of the solution 
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Fig. 10: The plot of the error of the first derivative 
of the solution 

 
Example 3. We solve the boundary value problem 

− 
𝑑

𝑑𝑥
(sin𝑥)𝛼

𝑑𝑢

𝑑𝑥
+ 𝑢(𝑥) = 𝑓(𝑥), 

0 < 𝑥 < 1,    𝑢(1) = 0, 𝑢′(1) = 0.   
 

The exact solution is 𝑢(𝑥) = sin ((1 − 𝑥)3). We 
take 𝛼=1.5 and we apply the trigonometric splines. 
The plot of the error of the solution are given in 
Figure 11 and Figure 12. The numbers of the grid 
nodes are plotted along the axis 𝑥. 

 
Fig. 11: The plot of the error of the solution 

 
We obtained an approximate solution at the grid 

nodes (grid solution). Next, we can connect the 
points of the grid solution using the rule: 
𝑈̃(𝑥) = 𝑐𝑗𝜔𝑗(𝑥) + 𝑐𝑗+1𝜔𝑗+1(𝑥), 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 

 
Here we used the trigonometric splines. 
The plot of the error of the solution is shown in 
Figure 12. 

 
Fig. 12: The plot of the error of the solution 

Example 4. We solve the boundary value problem 

− 
𝑑

𝑑𝑥
(sin𝑥)𝛼

𝑑𝑢

𝑑𝑥
+ 𝑢(𝑥) = 𝑓(𝑥), 

0 < 𝑥 < 1,    𝑢(1) = 0, 𝑢′(1) = 0.   
 

The exact solution is 𝑢(𝑥) = (1 − 𝑥)3. We 
apply the trigonometric splines. The plot of the error 
of the solution is given in Figure 13. The numbers 
of the grid nodes are plotted along the axis 𝑥. 

  
Fig. 13: The plot of the error of the solution 

 

 

5   Conclusion 
In the work, polynomial and trigonometric splines 
of the second order of approximation were used to 
solve a boundary value problem with a strong 
degeneracy. Experiments have shown the advantage 
of trigonometric splines if the equation has a 
trigonometric right part and trigonometrical 
coefficients. In the case of using splines of non-zero 
level, we simultaneously find a continuously 
differentiable solution and its derivative. 

The next work will consider the use of spline 
approximation with wide support and a non-uniform 
grid for solving a boundary value problem with a 
strong degeneracy. 
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