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1 Introduction
The aim of this paper is to propose a uniqueness
result for approximate solution obtained by some
finite volume schemes which approach the following
nonlinear hyperbolic equation:

𝜕𝑢
𝜕𝑡 +

ℓ
∑
𝑘=1

𝜕
𝜕𝑥𝑘

𝑓𝑘(𝑢) = 𝑔 in 𝑄 = (0, 𝑇 ) × IRℓ (1)

Moreover, (1) is supplemented with an initial
condition

𝑢(0, 𝑥) = 𝑢0(𝑥) in IRℓ. (2)

The source term 𝑔 and initial data 𝑢0 satisfy

𝑔 ∈ 𝐿1(0, 𝑇 ; 𝐿∞
𝑙𝑜𝑐(IRℓ)); 𝑢0 ∈ 𝐿∞(IRℓ) (3)

Here the convection flux 𝑓 = (𝑓1; ⋯ , 𝑓ℓ) ∶ IR → IRℓ

is merely continuous not Lipschitz continuous.
Problems like (1)-(2) that are the central point of our
works occur in several applications, including
porous media flow, sedimentation processes,
road traffic, the dispersal of a single species of
animals in a finite territory...For example, batch or
continuous sedimentation processes are utilized in
many industrial applications in which a solid-fluid
suspension is separated into its solid and fluid
components under the influence of gravity [1]. What
we know in the study of hyperbolic problem is the
lack of uniqueness of weak solution for general
continuous flux functions 𝑓𝑖 even if the initial and
source term are regulars. The global problem is : the

infinite speed of propagation makes “infinity points”
be “singular boundary points” for the equation.
Indeed, with the method developed in the celebrate
paper of [2], it is quite easy to show, even for general
continuous flux field 𝑓 , uniqueness of the so-called
entropy solutions that are compactly supported in
IR (uniformly with respect to time); but, in the case
of non locally Lipschitz flux functions, compactly
supported data 𝑓 in (1) or (𝑢0, 𝑔) in (1)-(2) do
not yield in general compactly supported entropy
solution. The authors in [3], under general anisotropic
conditions on the modulus of continuity of the fluxes
𝑓𝑖 insure comparison principle for entropy solution
and then prove uniqueness of entropy solution. For
example in two space dimension, the propose a
following family of flux

𝑓𝑖(𝑢) = |𝑢|𝛼𝑖−1𝑢
𝛼𝑖

; 0 < 𝛼1 < 𝛼2 (4)

In the numerical point of view, let us recall some
non exhaustive results about (1). In recent paper, [4],
employed implicit finite difference schemes for (1)
and investigated about the monotonicity property of
an implicit scheme. They construct a monotonicity
notion that is based on a comparison of data sets
using an induction principle to obtain a discrete
comparison principle. In [1], the authors consider
(1)-(2) with zero-flux boundary conditions imposed
on the boundary of a rectangular multidimensional
domain but the flux 𝑓𝑖 are Lipschitz-continuous
contrarily to our case. They study monotone schemes
applied to this problem and show that the approximate
solutions produced by these schemes converge to
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the unique entropy solution in the sense of [5].
The authors in [6], showed that a front tracking
method [7] converges to a weak solution of (1)-(2)
in a bounded domain in one spatial dimension with
zero-flux boundary condition. This weak solution is
unique in the class of functions that can be constructed
as the 𝐿1 limit of front tracking approximations.
Moreover, they present numerical results for the case
of two spatial dimensions. However, for none of
these cases they present a notion of entropy solution
for which existence and uniqueness is proved. It
should also be noted that many authors inspired by
(1), generalize the study on the parabolic case which
degenerates into hyperbolic according to values of the
unknown 𝑢:[8], [9], [10], [11], [12], [13], [14], [15].
The outline of the paper is the following: in Section
2, we briefly review the main results contained in [3],
in Section 3, we propose our finite volume scheme
to approximates (1). Section 4 will be devoted to the
proofs of uniqueness of approximates solution. In the
last section, we discuss about convergence result.

2 Framework of Uniqueness Result
for Continuous Problem

In this section, let us recall the main result obtained in
[3]. We first give an entropy formulation for (1)-(2)
then recall the Lemma 1.1 and Theorem 2.1 of [3].

Definition 2.1 we say that a bounded measurable
function 𝑢 ∈ 𝐿∞(IRℓ) is called an entropy solution of
(1)-(2) if the following inequality for all non negative
𝜉 ∈ 𝐶∞([0, 𝑇 [×IRℓ), 𝑘 ∈ IR holds:

∫
𝑇

0
∫
IRℓ

|𝑢(𝑡, 𝑥) − 𝑘|𝜉𝑡 + ∫
IRℓ

|𝑢0 − 𝑘|𝜉(0, 𝑥)𝑑𝑥

+ ∫
𝑇

0
∫
IRℓ

𝑠𝑖𝑔𝑛(𝑢 − 𝑘)𝑔𝜉𝑑𝑥𝑑𝑡 ≥ 0. (5)

Recall the following the main Lemma in [3]

Lemma 2.2 Let 𝜆1, ⋯ , 𝜆ℓ be a positive finite
functions on (0, +∞] and assume that for 𝑖 = 1, ⋯ , ℓ

⎧{
⎨{⎩

𝜆𝑖(0) = lim
𝜖→0

𝜆𝑖(𝜖) exists in (0, +∞],

𝐶 = lim inf
𝜖→0

𝜖
ℓ

∏
𝑖=1

𝜆𝑖(𝜖) < ∞.

Let ℎ ∈ 𝐿1
𝑙𝑜𝑐(𝑄) with ℎ+ = max(0; ℎ) ∈ 𝐿1(𝑄),

𝑤0 ∈ 𝐿1(IRℓ) and 𝑤 ∈ 𝐿1
𝑙𝑜𝑐(𝑄), 𝑤 ≥ 0 with

𝑒−𝛿|𝑥|𝑤 ∈ 𝐿1(𝑄) for any 𝛿 > 0. (6)

Assume that for some constant 𝜆 > 0

∬
𝑄

𝑢𝜉𝑡 + ∬
𝑄

∑
𝜆𝑖(0)=∞

(𝑤 + 𝜖)𝜆𝑖(𝜖)|𝜉𝑥𝑖
|

+ ∬
𝑄

𝜆𝑤 ∑
𝜆𝑖(0)<∞

|𝜉𝑥𝑖
| + ∬

𝑄
ℎ𝜉 ≥ 0 (7)

for any 𝜖 > 0 and 𝜉 ∈ 𝐷(𝑄); 𝜉 ≥ 0 and

(𝑤(𝑡, .) − 𝑤0)+ → 0 in 𝐿1(IRℓ) as 𝑡 → 0 (8)

Then

∫
IRℓ

𝑤(𝜏, 𝑥)𝑑𝑥 ≤ ∫
IRℓ

𝑤0𝑑𝑥 + ∫
𝜏

0
∫
IRℓ

ℎ(𝑡, 𝑥)𝑑𝑡𝑑𝑥
(9)

for a.e. 𝜏 ∈ (0, 𝑇 )
Using the Lemma above in [3], the authors propose
the following theorem
Theorem 2.3 Let𝜔𝑓1

, ⋯ , 𝜔𝑓ℓ
be moduli of continuity

of 𝑓1; ⋯ , 𝑓ℓ that is sub-additive increasing continuous
functions from [0; +∞) into (0, +∞] with

⎧{
⎨{⎩

𝜔𝑓1
(0) = ⋯ = 𝜔𝑓ℓ

= 0

lim inf
𝑟→0

𝑟1−ℓ
ℓ

∏
𝑖=1

𝜔𝑓𝑖
(𝑟) < ∞

Let 𝑢, 𝑢̂ entropy solution of (1)-(2) corresponding to
data (𝑢0, 𝑔) and (𝑢̂0, ̂𝑔0) in 𝐿1(IRℓ) × 𝐿1

𝑙𝑜𝑐(𝑄) with
𝑤 = (𝑢 + 𝑢̂)+ ∈ 𝐿1(𝑄) satisfying (6), 𝑤0 ∈ 𝐿1(IRℓ)
and 𝑤 ∈ 𝐿1

𝑙𝑜𝑐(𝑄) , 𝑤 ≥ 0. Assume that for some
constant 𝑖 = 1, ⋯ , ℓ

|𝑓𝑖(𝑢) − 𝑓𝑖(𝑢̂)| ≤ 𝑤𝑓𝑖
(𝑢 − 𝑢̂) a.e. on {𝑢 > 𝑢̂}

(10)

If (𝑢0 + 𝑢̂0)+ ∈ 𝐿1(IRℓ) and (𝑔 − ̂𝑔)+𝐼𝑑{𝑢>𝑢̂} ∈
𝐿1(𝑄) for 𝑖 = 1, ⋯ , ℓ. Then, (𝑢 + 𝑢̂)+ ∈
𝐿1(0, 𝑇 ; 𝐿1(IRℓ)), (𝑔 − ̂𝑔)𝐼𝑑{𝑢>𝑢̂} ∈ 𝐿1(𝑄) and

∫
IRℓ

(𝑢(𝜏, 𝑥) − 𝑢̂(𝜏, 𝑥))+ ≤ ∫
IRℓ

(𝑢0(𝑥) − 𝑢̂0(𝑥))+

(11)

+ ∬
𝑄𝜏∩{𝑢>𝑢̂}

(𝑔 − ̂𝑔) + ∬
𝑄𝜏∩{𝑢=𝑢̂}

(𝑔 − ̂𝑔)+ (12)

for a.e. 𝜏 ∈ (0, 𝑇 ) in particular if 𝑢0 ≤ 𝑢̂0 on IRℓ

and 𝑓 ≤ ̂𝑓 a.e. {𝑢 > 𝑢̂} then 𝑢 ≤ 𝑢̂ on 𝑄
An immediate consequence of Theorem 2.3 is
a uniqueness result of entropy solution. The
assumption on the moduli of continuity of the flux 𝑓𝑖
is in some sense sharp to obtain uniqueness of entropy
solution.
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3 Implicit Finite Volume Scheme to
Approach (1)-(2)

Finite volume schemes are used to compute an
approximation of the solution of a system of equations
set on a certain domain. In this paper, we
propose a finite volume scheme whose unknowns
are the discrete values of the volume ratio on
Cartesian meshes. The principle for example,
to construct a finite volume scheme for a Partial
Differential Equation (PDE) is to decompose the
domain into small parts (the control volumes) and
to integrate the equation on these volumes. The
way is to decompose the time-space domain using
small rectangles and integrating the PDE on each
rectangle. Cartesian meshes are admissible meshes.
The last step consists in using the fact that the
approximate solution is bounded and using the
nonlinear weak-star convergence to show that the
sequence of approximate solutions converges towards
the notion of the entropy process solution and show
by the doubling of the Kruzkov variables that this
notion of the entropy process solution coincides
with the entropy solution the control volumes of
which satisfying an orthogonality property between
the “centers” of the control volumes and the edges.).
The reader may consult: [8], [13], [16], [17], [18],
[19], [20]. Introduce a constant (for simplicity) time
step 𝛿𝑡 > 0, and for a control volume 𝐾𝑖 with
center coordinate 𝑥 ⃗𝑖, ⃗𝑖 ∶= (𝑖1, 𝑖2, ..., 𝑖ℓ) ∈ ℤℓ and

⃗𝑒𝑘 ∶=
1 at position 𝑘

⏞⏞⏞⏞⏞⏞⏞(0, ..., 0, 1, 0, ..., 0), take 𝛿𝑥𝑘 the space step in
the direction ⃗𝑒𝑘. Let 𝑢𝑛

⃗𝑖 and 𝑔𝑛
⃗𝑖 denote the value of the

numerical solution and the value of the source term at
the point which is a center of volume 𝐾 ⃗𝑖 at the time
level 𝑛𝛿𝑡. We define the numerical convection fluxes
which approach the fluxes 𝑓𝑘 by 𝐹𝑘 ∶ IR2 ⟶ IR
for 𝑘 = 1, ..., ℓ, (𝑎, 𝑏) ↦ 𝐹𝑘(𝑎, 𝑏). The numerical
convection fluxes are monotone (non-decreasing with
respect to the first variable and non-increasing with
respect to the second variable) i.e: for all 𝑘 = 1, ..., ℓ,

𝜕𝑏𝐹𝑘(𝑎, 𝑏) ≤ 0 ≤ 𝜕𝑎𝐹𝑘(𝑎, 𝑏). (13)

The traditional Lipschitz continuity of 𝐹𝑘
makes no sense in our framework, because
𝑓𝑘 are non-Lipschitz; therefore, the classical
Courant-Friedrichs-Levy (CFL) condition for
explicit schemes is impossible to satisfy. We will
formulate an implicit scheme, which does not require
Lipschitz continuity of 𝐹𝑘 for the sake of stability
and convergence analysis.

The discretization of (1) is performed with the
classical upwind Finite Volume scheme for the
convection term. Finite volume implicit scheme for

(1) on uniform rectangular meshes is:

𝑢𝑛+1
⃗𝑖 = 𝑢𝑛

⃗𝑖 − 𝛿𝑡
ℓ

∑
𝑘=1

ℱ(𝑢𝑛+1
⃗𝑖− ⃗𝑒𝑘

, 𝑢𝑛+1
⃗𝑖 , 𝑢𝑛+1

⃗𝑖+ ⃗𝑒𝑘
)

𝛿𝑥𝑘

+ 𝛿𝑡𝑔𝑛+1
⃗𝑖 (14)

where

ℱ(𝑢𝑛+1
⃗𝑖− ⃗𝑒𝑘

, 𝑢𝑛+1
⃗𝑖 , 𝑢𝑛+1

⃗𝑖+ ⃗𝑒𝑘
)

∶= 𝐹𝑘 (𝑢𝑛+1
⃗𝑖 , 𝑢𝑛+1

⃗𝑖+ ⃗𝑒𝑘
) − 𝐹𝑘 (𝑢𝑛+1

⃗𝑖− ⃗𝑒𝑘
, 𝑢𝑛+1

⃗𝑖 )

and this gives

𝑢𝑛+1
⃗𝑖 = 𝑢𝑛

⃗𝑖 −
ℓ

∑
𝑘=1

𝜆𝑘ℱ(𝑢𝑛+1
⃗𝑖− ⃗𝑒𝑘

, 𝑢𝑛+1
⃗𝑖 , 𝑢𝑛+1

⃗𝑖+ ⃗𝑒𝑘
)

+ 𝛿𝑡𝑔𝑛+1
⃗𝑖 (15)

with 𝜆𝑘 = 𝛿𝑡
𝛿𝑥𝑘

.

To complete the discretization, we have to
approximate initial datum. One can consider for
example for given 𝑢0 ∈ 𝐿1(IRℓ), the approximation
value

𝑢0
⃗𝑖 = 1

ℓ
∏
𝑘=1

𝛿𝑥𝑘

∫
𝐾 ⃗𝑖

𝑢0(𝑥)𝑑𝑥 (16)

or for 𝑢0 ∈ 𝐿∞(IRℓ), the approximation value

𝑢0
⃗𝑖 = 𝑢0(𝑥 ⃗𝑖). (17)

Scheme (15) appears to be implicit, using the
Godunov scheme for the convection term (which is
the upstream weighting scheme in the present case
where 𝑓 is non decreasing). It is then possible to
show that the implicit scheme (15) has at least one
solution, which allows to define the function by the
value 𝑢𝑛+1

⃗𝑖 for a.e. 𝑥 ⃗𝑖 center of control volume 𝐾 ⃗𝑖
and 𝑡 ∈ (𝑛𝛿𝑡, (𝑛 + 1)𝛿𝑡).

4 Uniqueness of Approximate
Solution

Since the components 𝑓𝑖 of the flux 𝑓 are not
Lipschitz continuous, the numerical flux is also not
Lipschitz continuous. We suppose that 𝜔𝐹𝑘

; for all
𝑘 = 1, ⋯ , ℓ are the modulus of continuity of 𝐹𝑘(., .)
and

{ |𝐹𝑘(𝑐, 𝑑) − 𝐹𝑘( ̂𝑐, ̂𝑑)|≤ 𝜔𝐹𝑘
(|𝑐 − ̂𝑐|)+ 𝜔𝐹𝑘

(|𝑑 − ̂𝑑|),
for 𝑘 = 1, ..., 𝑁 and (𝑐, 𝑑), ( ̂𝑐, ̂𝑑) ∈ IR2

(H1)
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Moreover, since 𝜔𝐹𝑘
is sub additive and increasing,

for 𝑎 = 𝑏𝑞 + 𝑟 with 𝑞 ∈ IN and for 0 ≤ 𝑟 < 𝑏,
𝜔𝐹𝑘

(𝑎) < (𝑞 + 1)𝜔𝐹𝑘
(𝑏).

We introduce now the following notation for all
(𝑎, 𝑏) ∈ IR2:

𝑎⊤𝑏 = max(𝑎, 𝑏), 𝑎⊥𝑏 = min(𝑎, 𝑏)

and for 𝑘, 𝑙 ∈ IN, ⃗𝑖 ∶= (𝑖1, 𝑖2, ..., 𝑖ℓ) ∈ ℤℓ, we let:

𝑄 ⃗𝑖+ 1
2 ⃗𝑒𝑘

∶= 𝐹𝑘(𝑢̂𝑛+1
⃗𝑖 ⊤𝑢𝑛+1

⃗𝑖 , 𝑢̂𝑛+1
⃗𝑖+ ⃗𝑒𝑘

⊤𝑢𝑛+1
⃗𝑖+ ⃗𝑒𝑘

)
− 𝐹𝑘(𝑢̂𝑛+1

⃗𝑖 ⊥𝑢𝑛+1
⃗𝑖 , 𝑢̂𝑛+1

⃗𝑖+ ⃗𝑒𝑘
⊥𝑢𝑛+1

⃗𝑖+ ⃗𝑒𝑘
),

𝑄 ⃗𝑖− 1
2 ⃗𝑒𝑘

∶= 𝐹𝑘(𝑢̂𝑛+1
⃗𝑖− ⃗𝑒𝑘

⊥𝑢𝑛+1
⃗𝑖− ⃗𝑒𝑘

, 𝑢̂𝑛+1
⃗𝑖 ⊥𝑢𝑛+1

⃗𝑖 )
− 𝐹𝑘(𝑢̂𝑛+1

⃗𝑖− ⃗𝑒𝑘
⊤𝑢𝑛+1

⃗𝑖− ⃗𝑒𝑘
, 𝑢̂𝑛+1

⃗𝑖 ⊤𝑢𝑛+1
⃗𝑖 ),

Δ𝑙
⃗𝑖 = |𝑢𝑙

⃗𝑖 − 𝑢̂𝑙
⃗𝑖|,

𝒢𝑙
⃗𝑖 = 𝑠𝑖𝑔𝑛(𝑢𝑙

⃗𝑖 − 𝑢̂𝑙
⃗𝑖)(𝑔

𝑙
⃗𝑖 − ̂𝑔𝑙

⃗𝑖).

Lemma 4.1 Let 𝑔 ∶ IR2 ⟶ IR; (𝑎, 𝑏) ↦ 𝑔(𝑎, 𝑏) such
that, 𝑔 satisfies (13). Then, for all (𝑎, 𝑏, 𝑐, ̂𝑎, ̂𝑏, ̂𝑐) ∈
IR6

𝑠𝑖𝑔𝑛(𝑎 − ̂𝑎)(𝑔(𝑎, 𝑏)−𝑔( ̂𝑎, 𝑏̂)) − (𝑔(𝑐, 𝑎) − 𝑔( ̂𝑐, ̂𝑎))

≥ (𝑔( ̂𝑎⊤𝑎, 𝑏̂⊤𝑏) − 𝑔(𝑎⊥ ̂𝑎, 𝑏⊥ ̂𝑏))

− (𝑔( ̂𝑐⊤𝑐, ̂𝑎⊤𝑎) − 𝑔( ̂𝑐⊥𝑐, 𝑎⊥ ̂𝑎)). (18)

Proof. Let 𝐴 the left hand side term of inequality
(18) and𝐵, the right hand side term of inequality (18).
Suppose 𝐴 = 𝐴1 + 𝐴2 and 𝐵 = 𝐵1 + 𝐵2 where

𝐴1 = 𝑠𝑖𝑔𝑛(𝑎 − ̂𝑎)(𝑔(𝑎, 𝑏) − 𝑔( ̂𝑎, 𝑏̂));

𝐴2 = −𝑠𝑖𝑔𝑛(𝑎 − ̂𝑎)(𝑔(𝑐, 𝑎) − 𝑔( ̂𝑐, ̂𝑎)),

𝐵1 = (𝑔( ̂𝑎⊤𝑎, ̂𝑏⊤𝑏) − 𝑔(𝑎⊥ ̂𝑎, 𝑏⊥ ̂𝑏));

𝐵2 = −(𝑔( ̂𝑐⊤𝑐, ̂𝑎⊤𝑎) − 𝑔( ̂𝑐⊥𝑐, 𝑎⊥ ̂𝑎)).

In first time, we prove that 𝐴1 ≥ 𝐵1 and after 𝐴2 ≥
𝐵2. We examine three situations.
Case 1: 𝑎 < ̂𝑎, then 𝐴1 = 𝑔( ̂𝑎, 𝑏̂) − 𝑔(𝑎, 𝑏) and
𝐵1 = 𝑔( ̂𝑎, 𝑏⊤ ̂𝑏) − 𝑔(𝑎, 𝑏⊥𝑏̂). As 𝑏⊤𝑏̂ ≥ 𝑏̂; 𝑏⊥ ̂𝑏 ≤ 𝑏
and 𝜕𝑏𝑔(𝑎, 𝑏) ≤ 0, we get 𝐴1 ≥ 𝐵1.
Case 2: 𝑎 > ̂𝑎, then 𝐴1 = 𝑔(𝑎, 𝑏) − 𝑔( ̂𝑎, 𝑏̂) and
𝐵1 = 𝑔(𝑎, 𝑏⊤ ̂𝑏) − 𝑔( ̂𝑎, 𝑏⊥𝑏̂). As 𝑏⊤𝑏̂ ≥ 𝑏; 𝑏⊥ ̂𝑏 ≤ 𝑏̂

and 𝜕𝑏𝑔(𝑎, 𝑏) ≤ 0, we get also 𝐴1 ≥ 𝐵1.
Case 3: 𝑎 = ̂𝑎, then 𝐴1 = 0 and 𝐵1 = 𝑔(𝑎, 𝑏⊤𝑏̂) −
𝑔(𝑎, 𝑏⊥𝑏̂). As 𝑏⊤ ̂𝑏 ≥ 𝑏̂⊥𝑏; and 𝜕𝑏𝑔(𝑎, 𝑏) ≤ 0, we get
𝐵1 ≤ 0 = 𝐴1.
From now, the proof of the second inequality is
similarly, because of 𝜕𝑎𝑔(𝑎, 𝑏) ≥ 0.
Lemma 4.2
If (𝑢𝑛

⃗𝑖 ) ⃗𝑖∈ℤℓ,𝑛∈IN and (𝑢̂𝑛
⃗𝑖 ) ⃗𝑖∈ℤℓ,𝑛∈IN are two discrete

solutions of (1)-(2) with initial data 𝑢0
⃗𝑖 , 𝑢̂0

⃗𝑖 . Then,
for all ⃗𝑖 ∈ ℤℓ,

Δ𝑛+1
⃗𝑖 +

ℓ
∑
𝑘=1

𝜆𝑘 (𝑄 ⃗𝑖+ 1
2 ⃗𝑒𝑘

− 𝑄 ⃗𝑖− 1
2 ⃗𝑒𝑘

) − 𝛿𝑡𝒢𝑛+1
⃗𝑖 ≤ Δ𝑛

⃗𝑖 .

(19)

The inequality (19) is called discrete entropy
inequality.
Proof. Let (𝑢̂ ⃗𝑖) ⃗𝑖∈ℤℓ and (𝑢 ⃗𝑖) ⃗𝑖∈ℤℓ two discrete
solutions of (1)-(2). To simplify the notations, let
𝑢𝑛+1

⃗𝑗 = 𝑢 ⃗𝑗, 𝑢𝑛
⃗𝑗 = 𝑠 ⃗𝑗 and 𝑢̂𝑛+1

⃗𝑗 = 𝑢̂ ⃗𝑗, 𝑢̂𝑛
⃗𝑗 = ̂𝑠 ⃗𝑗. Then,

they satisfy (15) and we have

𝑢 ⃗𝑖 − 𝑢̂ ⃗𝑖 = −
ℓ

∑
𝑘=1

𝜆𝑘ℱ(𝑢 ⃗𝑖, 𝑢 ⃗𝑖+ ⃗𝑒𝑘
, 𝑢̂ ⃗𝑖, 𝑢̂ ⃗𝑖+ ⃗𝑒𝑘

)

+
𝑁

∑
𝑘=1

𝜆𝑘ℱ(𝑢 ⃗𝑖− ⃗𝑒𝑘
, 𝑢 ⃗𝑖, 𝑢̂ ⃗𝑖− ⃗𝑒𝑘

, 𝑢̂ ⃗𝑖))

+ (𝑠 ⃗𝑖 − ̂𝑠 ⃗𝑖) − 𝛿𝑡(𝑔𝑛+1
⃗𝑖 − ̂𝑔𝑛+1

⃗𝑖 ). (20)

where

ℱ(𝑢 ⃗𝑖, 𝑢 ⃗𝑖+ ⃗𝑒𝑘
, 𝑢̂ ⃗𝑖, 𝑢̂ ⃗𝑖+ ⃗𝑒𝑘

) = 𝐹𝑘(𝑢 ⃗𝑖, 𝑢 ⃗𝑖+ ⃗𝑒𝑘
)−𝐹𝑘(𝑢̂ ⃗𝑖, 𝑢̂ ⃗𝑖+ ⃗𝑒𝑘

),

ℱ(𝑢 ⃗𝑖− ⃗𝑒𝑘
, 𝑢 ⃗𝑖, 𝑢̂ ⃗𝑖− ⃗𝑒𝑘

, 𝑢̂ ⃗𝑖) = 𝐹𝑘(𝑢 ⃗𝑖− ⃗𝑒𝑘
, 𝑢 ⃗𝑖)−𝐹𝑘(𝑢̂ ⃗𝑖− ⃗𝑒𝑘

, 𝑢̂ ⃗𝑖)
Multiplying the relation (20) by 𝑠𝑖𝑔𝑛(𝑢 ⃗𝑖 −𝑢̂ ⃗𝑖), we get

Δ𝑛+1
⃗𝑖 = −

ℓ
∑
𝑘=1

𝜆𝑘𝑠𝑖𝑔𝑛(𝑢 ⃗𝑖 − 𝑢̂ ⃗𝑖)ℱ𝑘(𝑢 ⃗𝑖, 𝑢 ⃗𝑖+ ⃗𝑒𝑘
, 𝑢̂ ⃗𝑖, 𝑢̂ ⃗𝑖+ ⃗𝑒𝑘

)

+
ℓ

∑
𝑘=1

𝜆𝑘𝑠𝑖𝑔𝑛(𝑢 ⃗𝑖 − 𝑢̂ ⃗𝑖)ℱ𝑘(𝑢 ⃗𝑖− ⃗𝑒𝑘
, 𝑢 ⃗𝑖, 𝑢̂ ⃗𝑖− ⃗𝑒𝑘

, 𝑢̂ ⃗𝑖)

+ 𝑠𝑖𝑔𝑛(𝑢 ⃗𝑖 − 𝑢̂ ⃗𝑖)(𝑠 ⃗𝑖 − ̂𝑠 ⃗𝑖)
− 𝑠𝑖𝑔𝑛(𝑢 ⃗𝑖 − 𝑢̂ ⃗𝑖)(𝑔𝑛+1

⃗𝑖 − ̂𝑔𝑛+1
⃗𝑖 ).

Using (18), we get (19).
From now, we follow the techniques and approach

of [3], to prove the main result (Theorem 4.3) which
is a key of the uniqueness of discrete solution.

Theorem 4.3
Let (𝑢 ⃗𝑖) ⃗𝑖∈ℤℓ and (𝑢̂ ⃗𝑖) ⃗𝑖∈𝑍ℓ be two discrete solutions of
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(1). Let 𝜔𝐹1
, 𝜔𝐹2

,...,𝜔𝐹ℓ
the modulus of continuity of

components (𝐹𝑘)1≤𝑘≤ℓ satisfy (H1), (13). Then

∑
⃗𝑖∈ℤℓ

Δ𝑛+1
⃗𝑖 ≤ ∑

⃗𝑖∈ℤℓ

Δ0
⃗𝑖 . (21)

Proof. From now, for 𝜖 > 0 multiply the entropy
inequality (19) by 𝑝 ⃗𝑖(𝜖) with positive sequence
(𝑝 ⃗𝑖(𝜖)) ⃗𝑖∈ℤℓ such that ∑ ⃗𝑖∈ℤℓ 𝑝 ⃗𝑖(𝜖) < ∞ and sum on
⃗𝑖 ∈ ℤℓ, we have

∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖 +

𝑁
∑
𝑘=1

𝜆𝑘∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖) (𝑄 ⃗𝑖+ 1
2 ⃗𝑒𝑘

− 𝑄 ⃗𝑖− 1
2 ⃗𝑒𝑘

)

≤ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖 + ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝛿𝑡𝒢𝑛+1
⃗𝑖 . (22)

Thanks to the absolute convergence of the series
(𝑝 ⃗𝑖) ⃗𝑖∈ℤℓ , and (𝑄 ⃗𝑖± 1

2 ⃗𝑒𝑘
) ⃗𝑖∈ℤ𝑁 ∈ 𝑙∞(ℤℓ) one can apply

Abel sum to obtain

∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)(𝑄 ⃗𝑖+ 1
2 ⃗𝑒𝑘

− 𝑄 ⃗𝑖− 1
2 ⃗𝑒𝑘

)

= − ∑
⃗𝑖∈ℤℓ

(𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖))𝑄 ⃗𝑖+ 1

2 ⃗𝑒𝑘
. (23)

So, (22) becomes

∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖 −

ℓ
∑
𝑘=1

𝜆𝑘 ∑
⃗𝑖∈ℤℓ

(𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖)) 𝑄 ⃗𝑖+ 1

2 ⃗𝑒𝑘

≤ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖 + ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝛿𝑡𝒢𝑛+1
⃗𝑖 . (24)

Using the subadditivity property of the modulus of
continuity of 𝐹𝑘 in the quantities 𝑄 ⃗𝑖+ 1

2 ⃗𝑒𝑘
and with

help of (H1) we have

∣𝑄 ⃗𝑖+ 1
2 ⃗𝑒𝑘

∣ ≤ 𝜔𝐹𝑘
(∣𝑢 ⃗𝑖⊤𝑢̂ ⃗𝑖 − 𝑢 ⃗𝑖⊥𝑢̂ ⃗𝑖∣) +

𝜔𝐹𝑘
(∣𝑢 ⃗𝑖+ ⃗𝑒𝑘

⊤𝑢̂ ⃗𝑖+ ⃗𝑒𝑘
− 𝑢 ⃗𝑖+ ⃗𝑒𝑘

⊥𝑢̂ ⃗𝑖+ ⃗𝑒𝑘
∣)

≤ 𝜔𝐹𝑘
(Δ𝑛+1

⃗𝑖 ) + 𝜔𝐹𝑘
(Δ𝑛+1

⃗𝑖+ ⃗𝑒𝑘
)

With the insertion of these inequalities in (24), we

find

−
ℓ

∑
𝑘=1

|𝜆𝑘| ∑
⃗𝑖∈ℤℓ

∣𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖)∣ 𝜔𝐹𝑘

(Δ𝑛+1
⃗𝑖 ) +

−
ℓ

∑
𝑘=1

|𝜆𝑘| ∑
⃗𝑖∈ℤℓ

∣𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖)∣ 𝜔𝐹𝑘

(Δ𝑛+1
⃗𝑖+ ⃗𝑒𝑘

)

+ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖

≤ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖 + ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝛿𝑡𝒢𝑛+1
⃗𝑖 . (25)

In the sequel, the decisive step is to construct an
appropriate discrete test function. So, for 𝑘 = 1, ..., ℓ
and ⃗𝑖 = (𝑖1, ..., 𝑖ℓ) ∈ ℤℓ, we pose:

𝑝 ⃗𝑖(𝜖) =
ℓ

∏
𝑘=1

exp (−𝜖𝜃𝑘 |𝑖𝑘|) (26)

([3], for the continuous case).
With this choice, we have (𝑝 ⃗𝑖(𝜖)) ⃗𝑖∈ℤℓ ∈ 𝑙1(ℤℓ)

since

∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖) = ∑
⃗𝑖∈ℤℓ

(
ℓ

∏
𝑘=1

exp (−𝜖𝜃𝑘 |𝑖𝑘|))

=
ℓ

∏
𝑘=1

2 ∑
⃗𝑖∈𝑁ℓ

(exp (−𝜖𝜃𝑘 |𝑖𝑘|))

=
ℓ

∏
𝑘=1

2 (1 − (exp (−𝜖𝜃𝑘 |𝑖𝑘|))𝛾)
1 − exp (−𝜖𝜃𝑘 |𝑖𝑘|) ; 𝛾 → ∞

=
ℓ

∏
𝑘=1

2
1 − (1 − 𝜖𝜃𝑘 + ̄̄𝑜(1))

≤
ℓ

∏
𝑘=1

2
𝜖𝜃𝑘

= 2ℓ

𝜖∑ℓ
𝑘=1 𝜃𝑘

= 2ℓ

𝜖𝜃1+⋯+𝜃ℓ
.

So, for fixed 𝜖, ∑ ⃗𝑖∈ℤℓ 𝑝 ⃗𝑖(𝜖) < ∞.
For 𝜖 small enough, we see that on the one hand

∣𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖)∣ = 𝑝 ⃗𝑖(𝜖) ∣1 − exp (−𝜖𝜃𝑘)∣

≤ 2𝑝 ⃗𝑖(𝜖) (1 − (1 − 𝜖𝜃𝑘 + ̄̄𝑜(1)))
≤ 2𝑝 ⃗𝑖(𝜖)𝜖𝜃𝑘

and ∣𝑝 ⃗𝑖+ ⃗𝑒𝑘
(𝜖) − 𝑝 ⃗𝑖(𝜖)∣ = 𝑝 ⃗𝑖+ ⃗𝑒𝑘

(𝜖) ∣1 − exp (𝜖𝜃𝑘)∣
≤ 2𝑝 ⃗𝑖+ ⃗𝑒𝑘

(𝜖)𝜖𝜃𝑘 ; (27)

Euclidean division of Δ𝑛+1
⃗𝑖 by 𝜖:

Δ𝑛+1
⃗𝑖 = 𝜖 [

Δ𝑛+1
⃗𝑖
𝜖 ] + 𝑟 with 0 ≤ 𝑟 < 𝜖
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and

𝜔𝐹𝑘
(Δ𝑛+1

⃗𝑖 ) ≤ (
Δ𝑛+1

⃗𝑖
𝜖 + 1)𝜔𝐹𝑘

(𝜖) (28)

Returning to (25) with (28) and inequalities (27) we
get

−
ℓ

∑
𝑘=1

2 |𝜆𝑘| 𝜖𝜃𝑘 ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖) (
Δ𝑛+1

⃗𝑖
𝜖 + 1) 𝜔𝐹𝑘

(𝜖)

−
ℓ

∑
𝑘=1

2 |𝜆𝑘| 𝜖𝜃𝑘 ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖+ ⃗𝑒𝑘
(

Δ𝑛+1
⃗𝑖+ ⃗𝑒𝑘

𝜖 + 1) 𝜔𝐹𝑘
(𝜖)

+ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖

≤ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖 + 𝛿𝑡 ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝒢𝑛+1
⃗𝑖 (29)

from which we say that

[1 −
ℓ

∑
𝑘=1

𝜖𝜃𝑘

𝜖 (4 |𝜆𝑘| 𝜔𝐹𝑘
(𝜖))] ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖

≤
ℓ

∑
𝑘=1

𝜖𝜃𝑘 (4 |𝜆𝑘| 𝜔𝐹𝑘
(𝜖)) ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖) + ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖

+ 𝛿𝑡 ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝒢𝑛+1
⃗𝑖 .

(1 − Λ) ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛+1
⃗𝑖 ≤ 𝜖Λ ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)

+ ∑
⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)Δ𝑛
⃗𝑖 + 𝛿𝑡 ∑

⃗𝑖∈ℤℓ

𝑝 ⃗𝑖(𝜖)𝒢𝑛+1
⃗𝑖 .

where Λ =
ℓ

∑
𝑘=1

𝜖𝜃𝑘−1 (4 |𝜆𝑘| 𝜔𝐹𝑘
(𝜖)). It remains to

see easily that Λ goes to zero when 𝜖 → 0. For
example if 𝜔𝐹𝑘

(𝑎) = 𝑎𝛼𝑘 , just choose 𝛼𝑘 + 𝜃𝑘 > 1.
Now consider the same source term 𝑔 = ̂𝑔 for 𝜖 → 0,
we obtain (21).

5 Discussion on Convergence Result
The question of the convergence of numerical
schemas has always been at the center of the concerns
of numerical analysis. The proof of convergence can
be sketched as follows. First of all, the existence
of the discrete solution. Knowing that we are in
infinite dimension, we have to be careful. We can
use a topological fixed point argument in infinite
dimension, [17]. Then, the result of the uniqueness
of a discrete solution extends to a result of discrete

contraction in 𝐿1 (either directly within the proof;
or, by approximation of the 𝑓 flux by regular fluxes
𝑓𝑛; note that for a regular flux, the contraction 𝐿1 is
demonstrated in a “classical” way). Thanks to this
result of discrete contraction, and to the invariance of
the scheme by translation, we can affirm that there
is a “modulus of uniform continuity in space”, as
in Kruzkov’s founding paper. This comes from the
combination of the two facts:

1. For the discretized initial data (𝑢0
⃗𝑖 ) ⃗𝑖∈ℤℓ , the

continuity modulus in space is uniform because
(𝑢0

⃗𝑖 ) ⃗𝑖∈ℤℓ converges in𝐿1 to the continuous initial
data 𝑢0.

2. The discrete contraction then ensures that for any
𝑡, 𝑢 ⃗𝑖(𝑡, .) has the same continuity module.

It remains, as in Kruzkov’s founding paper, to deduce
“the modulus of uniform continuity in time” from that
in space and from the itself. In a slightly different
context, this is done in the paper, [21], and in more
detail, in the appendix of the paper, [22].
Once the compactness in space-time is obtained, the
passage to the limit in the formulation of the scheme
with a test function does not require much. This is
very standard.
The last step consists in using the fact that the
approximate solution is bounded and using the
nonlinear weak-star convergence to show that the
sequence of approximate solutions converges towards
the notion of entropy process solution and show by the
doubling of the Kruzkov variables that this notion of
entropy process solution coincides with the entropy
solution.
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