
Abstract: The paper deals with the G2 continuity for planar curves. The G2 continuity is considered
as a superior quality of curvature, which is often sought after in high-precision designs and industrial
applications. It ensures a perfectly smooth transition between different parts of a surface or curve, which
can improve the functionality, aesthetics, and durability of the finished object. This article describes an
algorithm to achieve a G2 junction between two sets of data –point, tangent, curvature–. The junction
is based on a rational Bézier curve defined by control mass points. The control mass points generalize
those of classical Bézier curves defined with weighted points with no negative weights. It is necessary as
vectors and points with negative weights are coming out while applying homographic parameter change
on a curve segment or converting any polynomial function into a rational Bézier representation. Here,
from two sets of data –point, tangent and curvature–, a Bézier curve of degree n is built. This curve is
described by control mass points. In most situations, the best degree for G2 connection of those two sets
equals 5.
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1 Introduction
Bézier curves are the simplest control point curves.
They were invented in the same time by [1],
at Renault and, [2], at Citroën. Initially, any
point of these curves is the barycentric locus of
a list of weighted points called control points.
These points are weighted by Bernstein polyno-
mials, [3], [4], [5]. In case of the sum of the
weights equals zero, the barycenter no more ex-
ists, [6], [7], [8]. The result of the calculation
provides a vector. The solution that generalizes
the notion of barycenter consists in using mass
points, [9], [10]. Based on this concept and the
help of a homographic parameter change, it is pos-
sible to determine any conic feature, [11]. This
is impossible by using the concept of projective
geometry, [12]. Furthermore, this model is inde-
pendent of the metric or pseudo-metric structure.
This model can be used in the Minkowski-Lorentz
space to represent canal surfaces, [13].This model
offers also to construct Dupin cyclides as subdi-
vided surfaces, [14].Here, the paper deals with the
G2 continuity. The joints are built from a ratio-
nal Bézier curve with mass control points. The
G2 continuity is considered as a superior quality
of curvature, which is often sought after in high-

precision designs and industrial applications, such
as the production of three-dimensional objects like
molds or automotive parts. It ensures a perfectly
smooth transition between different parts of a sur-
face or curve, which can improve the functionality,
aesthetics, and durability of the finished object. In
lighting, G2 geometric continuity can be applied to
the design of reflectors or lenses that are used to
control the distribution of light emitted by a light
source.

In [15], a parametric cubic spline interpola-
tion scheme for planar curve is given for the con-
struction of C1 bicubic parametric spline surfaces.
They are a generalization of any standard Her-
mite interpolation. The Pythagorean Hodograph
curves were introduced in [16], [17]. In [18], the
arc splines that are triarcs interpolate, match
unit tangents and curvatures at the interpolation
points. In [19], the G2 blend can be achieved by
the curve defined by a pair of polynomial spiral
segments. In [20], the G2 blend is composed of
cubic Bézier spirals. In [21], the G2 blend is built
from a quartic rational curve obtained by an in-
version of a hyperbola. In [22], the inversion is
applied to an arc of spiral. In [23], a cubic ratio-
nal Bézier spiral (planar curves of monotonic cur-
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vature) interpolates end conditions that are posi-
tions, tangents and curvatures.

In [24], using complex numbers, the use
of Pythagorean-Hodograph quintics of monotone
curvature defined in [25], is simplified. In [26], the
G2 blend is computed using planar interpolation
with minimum strain energy. For a G2 conncetion,
in [27], one circle is inside the other circle. In [28],
a Pythagorean-Hodograph Bézier curve, which is
not always a spiral, is used. In [29], the G2 join is
built using curvature variation minimization. In
[30], the G2 join is built with at most spiral seg-
ments. In [31], the authors deal with the reachable
regions for a single segment of parametric rational
cubic Bézier spiral. These curves are computed
from the given G2 Hermite data. This article fo-
cuses on the G2 junction between two curves using
Bézier curve of degree n defined by mass control
points. Mainly, a quintic rational Bézier curve of
that type is one anwer. In our construction, in
addition to the G2 junction, we can enhace the C2

junction, meaning that velocity is taken into ac-
count at the endpoints. When both degenereted
circles are straight lines, the null vector −→0 can be
used to decrease the degree of the Bézier curve.

The section 2 details the background of mass
points and rational Bézier curve with mass control
points.

After a presentation of some results on differ-
ential properties - tangent vector and curvature- of
any rational Bézier curve with control mass points
at t = 0 and t = 1, the section 3, provides a
method for G2 joints. This method takes two sets
of G2 data -point, tangent and curvature for input
and returns the mass control points of a Bézier
curve of degree 5 for output. The section 4 gives
some application examples of the method. A G2

connection between a circle and a straight line is
proposed. In some situation, the curve degree may
be down to 4. An example of a G2 connection be-
tween to circles is detailed. Two straight lines are
also G2 connected by the use of the algorithm.
The section ends with the joints first G2 and C1

and second G2 et C2 doing a connection between a
Bernouilli Lemniscate loop and a Descartes Folium
as they present particular examples: some control
mass-point are vectors, including the null vector.
Conclusion and perspectives are given in section 5.

2 Rational Bézier curves in P̃
In the following (O; −→ı ; −→ȷ ) denotes a direct refer-
ence frame in the usual Euclidean affine plane P
and −→P is the set of vectors of the plane. The set

of mass points is defined by

P̃ = (P × R∗) ∪
(−→P × {0}

)
On the mass point space, the addition, de-

noted ⊕, is defined as follows

• ω 6= 0 =⇒ (M ; ω) ⊕ (N ; −ω) =
(
ω

−−→
NM ; 0

)
;

• ω µ (ω + µ) 6= 0 =⇒ (M ; ω) ⊕ (N ; µ) =(
Bar

{
(M ; ω) ; (N ; µ)

}
; ω + µ

)
where

Bar
{

(M ; ω) ; (N ; µ)
}

denotes the barycenter
of the weighted points (M ; ω) and (N ; µ);

• (−→u ; 0) ⊕ (−→v ; 0) = (−→u + −→v ; 0);

• ω 6= 0 =⇒ (M ; ω) ⊕ (−→u ; 0) =
(
T 1

ω
−→u (M) ; ω

)
where T−→

W
is the translation of P of vector −→

W .

In the same way, on the space P̃ , the multipli-
cation by a scalar, denoted �, is defined as follows

• ω α 6= 0 =⇒ α � (M ; ω) = (M ; α ω)

• ω 6= 0 =⇒ 0 � (M ; ω) =
(−→0 ; 0

)
• α � (−→u ; 0) = (α−→u ; 0)

One can note that
(
P̃ , ⊕, �

)
is a vector

space, [9], [10], [11]. So, a mass point is a weighted
point (M, ω) with ω 6= 0 or a vector (−→u , 0).

The Bernstein polynomials of degree n

Bi,n (t) =
(

n
i

)
(1 − t)n−i ti

define rational Bézier curve of degree n.

Definition 1 [Rational Bézier curve (BR curve)
in P̃ ]

Let (Pi; ωi)i∈[[0;n]] n + 1 mass points in P̃ .
Define two sets

I = {i | ωi 6= 0} and J = {i | ωi = 0}

Define the weight function ωf as follows

ωf : [0; 1] −→ R
t 7−→ ωf (t) =

∑
i∈I

ωi × Bi (t)

A mass point (M ; ω) or (−→u ; 0) lays to the ratio-
nal Bézier curve defined by the control mass points
(Pi; ωi)i∈[[0;n]] if there is a real t0 in [0; 1] such that:
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• if ωf (t0) 6= 0 then

ω = ωf (t0)

−−→
OM = 1

ω

(∑
i∈I

ωi Bi (t0)
−−→
OPi

)

+ 1
ωf (t0)

(∑
i∈J

Bi (t0)
−→
Pi

) (1)

• if ωf (t0) = 0 then
−→u =

∑
i∈I

ωiBi (t0)
−−→
OPi +

∑
i∈J

Bi (t0)
−→
Pi

Such a curve is denoted BR
{

(Pi; ωi)i∈[[0;n]]

}
Using ⊕ and �, the mass point (M ; ω) is writ-

ten as

(M ; ω) =
⊕∑

i∈I∪J

Bi (t) � (Pi; ωi)

where
⊕∑

i∈I∪J

denotes a sum of ⊕.

If J = ∅, this definition leads to the usual ra-
tional Bézier curve.

3 Method to build a G2 junction
curve

The section highlights some tools used to compute
control mass points of the junction curve. The k-
level line of a determinant and formal expressions
of velocity and curvature are applied in the G2

building method. All calculation are detailed in
the Appendix.

3.1 Tools
3.1.1 The k-level line for a determinant
The following result is used for the computation
of the control points.

Proposition 1 : Considering a determinant

det (−→u , −→v )

of two vectors −→u and −→v , if one is fixed, we get a
function of the other vector whose k-level curves
are straight lines.

Proof : Let (0, ı⃗, ȷ⃗) be an orthoromal frame, k
a real number and M(x, y) a point in the plane
such that det

(⃗
ı, O⃗M

)
= k. Then,

det
(⃗
ı, O⃗M

)
= det (⃗ı, yȷ⃗) = y = k

Conversely, any point of the straight line pass-
ing by H such that −−→

OH = kȷ⃗ and directed by ı⃗ is
convenient, see Figure 1.

Figure 1: k-level line of a determinant.

3.1.2 Curvature and joints
Definition 2 (a curve curvature)

Let γ be a plane curve defined by a regular C2

parametrisation γ. The curvature ρ (t0) in a point
γ (t0) of γ satisfies

ρ (t0) =

∣∣∣∣∣∣det

−→
dγ

dt
(t0) ;

−−→
d2γ

dt2 (t0)

∣∣∣∣∣∣∥∥∥∥∥
−→
dγ

dt
(t0)

∥∥∥∥∥
3

The osculating circle to a curve γ, at a point
M0 where the curvature not vanishes is the best
approximation, [7], [32], of curve arc in the neigh-
bourhood of M0. It is the only tangent circle to
γ at M0 possessing three common points with γ.
The curvature radius R (t0) equals the inverse of
curvature ρ (t0) to this curve at that point.

If the curvature ρ (t0) equals zero thus the cur-
vature radius R (t0) is equal to infinity. It implies
that the center of osculating circle is moved at in-

finity, [33]. In the case of
−−→
d2γ

dt2 (t0) is non-collinear

to
−→
dγ

dt
(t0), the osculating curvature center Ω (t0)

at M0 = γ (t0) is given by
−−−−−→
M0Ω (t0) = R (t0)

−→
np (t0)

where −→
np (t0) is the main unit normal vector to γ

at point γ (t0) witch verifies

−→
np (t0) •

−−→
d2γ

dt2 (t0) > 0
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Definition 3 (geometrical joint)
Let γ0 and γ1 be two plane curves respectively

defined on [a; b] and [c; d].
the geometrical joint between γ0 and γ1 is:

• G0 if γ0 (b) = γ1 (c);

• G1 if γ0 (b) = γ1 (c) and
−−→
dγ0

dt
(b) = λ

−−→
dγ1

dt
(c),

with λ ∈ R∗, thus the curve share the same
tangent line at the contact point;

• G2 if the joint is G1 ργ0 (b) = ργ1 (c) and
−→
np

γ0 (t0) = −→
np

γ1 (t0) thus the curve share the
same osculating circle at the contact point.

3.1.3 Velocity, acceleration and curvature at
t = 0 for a rational Bézier curve with
mass control points

Let n be an integer greater or equal to 3. Let
ω0 be non null real number. Let γ be Bézier
curve with control mass points (P0; ω0), (P1; ω1),
· · · , (Pn; ωn).

Let us define the function χ by

χ : R −→ R∗

0 7−→ 1
t 7−→ t

(2)

For any k, the vector P̃k =
−−−→
P0Pk if ωk 6= 0

or P̃k =
−→
Pk if ωk = 0, using the function of For-

mula (2), the equation (1) is thus written

M̃0 = 1
n∑

k=0
ωkBk,n (t)

n∑
k=1

χ (ωk) Bk,n (t) P̃k

with M̃0 =
−−→
P0M if

n∑
k=0

ωkBk,n (t) 6= 0 and M̃0 =
−→
M0 otherwise.

Velocity at t = 0
If ω1 = 0 the velocity at t = 0 equals

n

ω0

−→
P1

If ω1 6= 0 the velocity at t = 0 equals

n
ω1

ω0

−−→
P0P1

Curvature at t = 0
The acceleration vector at t = 0 equals

d2−−→
P0γ

dt2 (0) = 2n

(
ω0 − nω1

ω2
0

)
χ (ω1) P̃1

+ 1
ω0

n (n − 1) χ (ω2) P̃2

(3)

The curvature ρ (0) at t = 0 is given by∣∣∣∣∣∣∣∣∣∣∣∣∣

ω0 (n − 1) χ (ω2) det

 1∥∥∥P̃1

∥∥∥ P̃1; P̃2


nχ (ω1)2

∥∥∥P̃1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
The curvature at t = 0 equals zero if

det
(
P̃1; P̃2

)
= 0

3.1.4 Velocity, acceleration and curvature at
t = 1 for a rational Bézier curve with
mass control points

Let ω0 be non null real number. Let γ be Bézier
curve with mass control points (P0; ω0), (P1; ω1),
· · · , (Pn; ωn).

Let define P̃k =
−−−→
PnPk if ωk 6= 0 and P̃k =

−→
Pk

if ωk = 0, using the function of Formula (2), the
Equation (1) is written

M̃n = 1
n∑

k=0
ωkBk,n (t)

n∑
k=0

χ (ωk) Bk,n (t) P̃k

with M̃n =
−−−→
PnM if

n∑
k=0

ωkBk,n (t) 6= 0 and M̃n =
−→
Mn otherwise.

Velocity at t = 1
• if ωn−1 = 0, the velocity at Pn is given by

d

dt

−−−−→
Oγ (1) = − n

ωn

−−→
Pn−1

• if ω1 6= 0, the velocity at Pn is given by
d

dt

−−−−→
Oγ (1) = −n

ωn−1

ωn

−−−−→
PnPn−1

The acceleration vector at t = 1 is given by

d2−−→
Pnγ

dt2 (1) = −2n

(
ωn − nωn−1

ω2
n

)
χ (ωn−1) P̃n−1

+ 1
ωn

n (n − 1) χ (ωn−2) P̃n−2
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Curvature at t = 1
Let n be an integer greater or equal to 3. Let

ω0 be a non null real number. Let γ be Bézier
curve with control mass points (P0; ω0), (P1; ω1),
· · · , (Pn; ωn)

The curvature ρ (1) at t = 1 equals∣∣∣∣∣∣∣∣∣∣∣∣∣

αn det

 1∥∥∥P̃n−1

∥∥∥ P̃n−1; P̃n−2


nχ (ωn−1)2

∥∥∥P̃n−1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
where

αn = ωn (n − 1) χ (ωn−2)
The curvature equals zero if

det
(
P̃n−1; P̃n−2

)
= 0

3.2 Method description
Input:

(P0, ω0), (P1, ω1) two first mass control points
and ρ0 the curvature at t = 0.

(Pn−1, ωn−1), (Pn, ωn) two last mass control
points and ρ1 the curvature at t = 1.

Output :
(P2, ω2), (Pn−2, ωn−2) two mass control points for
the Bézier curve of degree n.

Description :
The algorithm provides the two mass control
points that define a Bézier curve of degree n that
joins the data at t = 0 and t = 1. The best degree
equals 5 otherwise the other mass control points
can be arbitrary chosen.

Begin G2 connection
Step 1 : P2 computation
Case ρ0 6= 0
Let us define βn = ω0 (n − 1).

• if ω1 = ω2 = 0, P2 satisfies :

ρ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

βn det

 1∥∥∥−→P1

∥∥∥−→
P1;

−→
P2


n
∥∥∥−→P1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
• if ω1 6= 0 and ω2 = 0, P2 satisfies :

ρ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

βn det

 1∥∥∥−−→
P0P1

∥∥∥−−→
P0P1;

−→
P2


nω2

1

∥∥∥−−→
P0P1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣

• if ω1 = 0 and ω2 6= 0, P2 satisfies :

ρ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

βn ω2 det

 1∥∥∥−→P1

∥∥∥−→
P1;

−−→
P0P2


n
∥∥∥−→P1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
• if ω1ω2 6= 0, P2 satisfies :

ρ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

βn ω2 det

 1∥∥∥−−→
P0P1

∥∥∥−−→
P0P1;

−−→
P0P2


nω2

1

∥∥∥−−→
P0P1

∥∥∥2‘

∣∣∣∣∣∣∣∣∣∣∣∣∣
case ρ0 = 0

• if ω1 = ω2 = 0, both vectors −→
P1 and −→

P2 are
collinear vectors.

• if ω1 6= 0 and ω2 = 0, the vector −→
P2 equals−→0 or a direction vector of the straight line

(P0P1).

• if ω1 = 0 and ω2 6= 0, the vector −→
P1 a direction

vector of the straight line (P0P2).
• if ω1ω2 6= 0, the points P0, P1 and P2 lay on

a same straight line.
Step 2 : Pn−2 calculation
Case ρ1 6= 0
Let us define

δn = ωn (n − 1)

and
σn = ωn (n − 1) ω2

• if ωn−1 = ωn−2 = 0,

ρ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

δn det

 1∥∥∥−−→
Pn−1;

∥∥∥−−→
Pn−1;

−−→
Pn−2


n
∥∥∥−−→
Pn−1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
• if ωn−1 6= 0 and ωn−2 = 0

ρ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

det

 δn∥∥∥−−−−→
PnPn−1

∥∥∥−−−−→
PnPn−1;

−−→
Pn−2


nω2

n−1

∥∥∥−−−−→
PnPn−1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.98 Lionel Garnier, Jean-Paul Bécar, Laurent Fuchs

E-ISSN: 2224-2880 952 Volume 23, 2024



• if ω1 = 0 and ω2 6= 0,

ρ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

det

 σn∥∥∥−−→
Pn−1

∥∥∥−−→
Pn−1;

−−−−→
PnPn−2


n
∥∥∥−−→
Pn−1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
• if ωn−1ωn−2 6= 0,

ρ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

det

 σn∥∥∥−−−−→
PnPn−1

∥∥∥−−−−→
PnPn−1;

−−−−→
PnPn−2


nω2

n−1

∥∥∥−−−−→
PnPn−1

∥∥∥2

∣∣∣∣∣∣∣∣∣∣∣∣∣
Case ρ1 = 0

• if ωn−1 = ωn−2 = 0, the vectors −−→
Pn−1 and−−→

Pn−2 are collinear vectors.

• if ωn−1 6= 0 and ωn−2 = 0, the vector −−→
Pn−2

equals −→0 or a direction vector of the line
(PnPn−1).

• if ωn−1 = 0 and ωn−2 6= 0, the vector −−→
Pn−1 is

one direction vector of the line (PnPn−2).

• if ωn−1ωn−2 6= 0, the points Pn, Pn−1 and
Pn−2 lay on the same straight line.

End G2 connection
Proof :

For any integer k ≥ 3, and ω0 6= 0, P̃k is defined
as follows:

• if ωk 6= 0 then P̃k =
−−−→
P0Pk;

• if ωk = 0 then P̃k =
−→
Pk.

In the case of a non null curvature, P2 is calcu-
lated from

ρ0 =

∣∣∣∣∣∣∣
ω0 (n − 1) χ (ω2) det

(
P̃1; P̃2

)
nχ (ω1)2

∥∥∥P̃1

∥∥∥3

∣∣∣∣∣∣∣
otherwise from

det
(
P̃1; P̃2

)
= 0

The four cases are coming out from the definition
of the χ function. The algorithm returns the six
points (Pi, ωi) where i ∈ {0, 1, 2, n − 2, n − 1, n}
as output data where n equals the rational Bézier

curve degree. The lower degree can be obtained
when the next control mass point P3 starting from
P0 equals Pn−2 thus n = 5.

From Formula (3.2), it yields

det

 1∥∥∥P̃1

∥∥∥3 P̃1; P̃2

 =
ρ0 n χ (ω1)2

∥∥∥P̃1

∥∥∥2

(n − 1) ω0 χ (ω2)

and the computation of P̃2 depends on the curva-
ture ρ0 of the circle, the weights ω0, ω1 and ω2,
the degree n of the curve and the norm of the vec-
tor P̃1.

4 Examples
4.1 G2 joints between two circles
In this example, both circles match their osculat-
ing circle at any point of the circles. The input
data are a circle, a point of the circle and a point
of the tangent line at the previous point of the
circle. The first set is composed by the points
P0 (−2, 2), P1 (−1, 2) and ρ0 = 4

9
see the magenta

circle on Figure 2. The second set is composed by
the points P5 (3, −1), P4 (3, 0) and ρ1 = 4

3
see the

red circle on Figure 2. All weights are fixed to 1.
The algorithm computes P2(0, 3) and P3(2, 0).

The weight ωi where i ∈ [[0, 5]] can be chosen for
the mass control points P0, P1, P2, P3, P4 and P5.
They define the quintic Bézier curve in blue on
Figure 2 that G2 connects both circles.

4.2 G2 joints between a ciruclar arc and a
straight line

In this case, the circle arc matches the osculating
circle at any point of the arc. At any point of a
straight line the curvature of a straight line equals
zero as the radius of curvature is infinity. The first
set of data are defined by P0 on the circle arc, P1
on the tangent line to the circle at P0. The curva-
ture ρ0 equals the inverse of the radius arc. The
second set of data is composed by the two points
P4 and P5 and a null curvature ρ1 at P5. The par-
ticular situation offers the choice of all weights ωi,
i ∈ [[0, 5]]. After computing the points P2 and P3,
the algorithm achieves the control points (Pi; ωi),
i ∈ [[0, 5]].
Detailed data for the Figure 3.

1. At t = 0, the curvature is ρ0 =
√

2
2

and the
control mass points are given in the Table 1;

2. At t = 1, the curvature is ρ1 = 0 and the
control mass points are given in the Table 2.
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Figure 2: G2 blends between two circles by a ra-
tional Bézier curve of degree 5.

Table 1: Control mass points of the rationel Bézier
curve in Figure 3 at t = 0.

Point P0 (1, −1) P1 (3, 1) P2

(43
16

,
21
16

)
Weight ω0 = 2 ω1 = 1

2
ω2 = 2

Table 2: Control mass points of the rationel Bézier
curve in Figure 3 at t = 1.

Point P3

(9
2

,
3
2

)
P4 (4, 1) P5 (3, 0)

Weight ω3 = 2 ω4 = 3 ω5 = 1

The circle arc is defined by the equation:

γ0 (t) =
(√

2 cos (t) ;
√

2 sin (t)
)

, t ∈
[3π

4
; 7π

4

]

The two points P0 and P1 satisfy P0 = γ0

(7π

4

)
and P1 = P0 + 2

−−→
dγ0

dt

(7π

4

)
. The point H defined

in the preamble equals H

(11
16

, −11
16

)
.

Figure 3: G2 joints between a half of circle and a
segment based on a quintic rational Bézier curve

4.3 G2 joints between a circle arc and a
straight line changing weights

P0 (−2; 2), P1 (−1; 2) and ρ0 = 1
2 are chosen. The

Figure 4 shows the position of the line (HP2)
changing the weights, see Table 3 which gives the
coordinates of the point H. The other points
are P3

(5
2 ; 1
)
, P4

(11
4 ; 1

)
and P5 (3; 1) and the other

weights value equals 1.

Table 3: The position of the point H depends on
the weight ω0, ω1 and ω2, see Figure 4.

ω0 ω1 ω2 H

1 1 1 (−2; 2.625)

2 3 2
(

−2; 109
32

= 3.40625
)

1 2 1
(

−2; 9
2

)

The same result is obtained at t = 1.

4.4 G2 joints between half a circle and a
segment based on a quartic rational
Bézier curve

In the Figure 5 the straight line defined by H and−−→
P0P1 cuts the segment [P5P4].
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Figure 4: Three G2 blends with Bézier curves with
several values of weights.

The choice of P2 = P3 at the intersection makes
the curve degree down to 4. From the input data
P0 (1, −1)), ω0 = 2, P1 (3, 1)), ω0 = 0.5, ρ0 =

√
2

2
P4 (3, 0)), ω4 = 3, P5 (3, −1)), ω5 = 1, ρ1 = 0,
the algorithm provides H

(2
3 , −2

3
)
), P2

(
3, 5

3
)

and
P3 = P2.

4.5 G2 joints on two parallel segments
Five mass control points defining a quartic can
be chosen. A null vector is added in the Bézier
representation.

In the Figure 6 the parallel lines are G2 con-
nected by a quartic curve. A mass control point
is replaced by a null vector. P0 (1, 1), ω0 = 1,
P1 (1, 0), ω1 = 1, −→

P2 = −→0 , ω2 = 0, P3 (2, 0),
ω3 = 1, P4 (2, −1) and ω4 = 1.

The data for the Figure 7 follow P0 (1, 1), ω0 =
1, −→

P1
(
0, −1

2
)
, ω1 = 0, −→

P2 = −→0 , ω2 = 0, −→
P3
(
0, 1

2
)
,

ω3 = 0, P4 (2, −1) and ω4 = 1.
These results can be used to define tube con-

nections. As illustrated on Figure 8 and Figure 9
where the tubes are revolution surfaces obtained
from the curves of Figure 6 and Figure 7.

4.6 G2 between a loop of Descartes Folium
and a Bernouilli Lemniscate.

4.6.1 Bézier representation of both loops
On the Figure 10 the Lemniscate loop γP is mod-
eled by the five mass control points: (P0; 1),(−→
P1; 0

)
,
(−→
P2; 0

)
,
(−→
P3; 0

)
, (P4; 1) with P0

(
−1

2 ; 0
)
,

−→
P1
(
−1

4 ; −1
4
)
, −→
P2 (0; 0), −→

P3
(
−1

4 ; 1
4
)

and P4 = P0 ap-
plying the translation of vector −1

2
−→ı .

On the same Figure, the Descartes folium loop
γQ is modeled by a rational Bézier cubic with the
following mass control points : Q0 (0; 2), ωQ0 = 1,

Figure 5: G2 between the half-circle γ0 and the
segment [BC] by a rational quartic Bézier curve γ.

Figure 6: G2 blends between two parallel segments
by a quartic rational Bézier curve: four control
points and the control null vector.

−→
Q1 (2; 0), ωQ1 = 0, −→

Q2 (0; 2), ωQ2 = 0, and Q3 =
Q0, ωQ3 = 1, applying the translation of vector
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Figure 7: G2 blends between two parallel segments
by a quartic rational Bézier curve: two control
points, two control non-null vectors and the con-
trol null vector.

1
2
−→ı + 2−→ȷ .

The Bézier representation of the two loops is
used to compute their osculating circles at the
given points that are P4 for γP and Q0 for γQ.
As −→

P2 = −→0 , the curvature at P4 equals zero. The
curvature at Q0 equals ρ1 = 1

3 .
The connecting curve denoted γR is a Bézier

quintic curve with mass control points (Ri, ωi),
i ∈ [[0, 5]], defined by R0 = Q0, ω0 = 2, −→

R1
(2

5 , 2
5
)
,

ω1 = 0, R2
(3

2 ; −2
)
, ω2 = 1, R3

(
−1; 7

3
)
, ω3 = 1,

−→
R4
(
−6

5 , 0
)
, ω4 = 0, R5 = P5, ω5 = 1. The Fig-

ure 11 shows a G2 and C1 connection between the
loop of lemniscate γP and the loop of the folium γQ

by a quintic Bézier curve γR and both osculating
circles.

4.6.2 Finding C2 connection for two loops
The quintic rational Bézier curve doing the G2

connection between the loop of Descartes folium
and one loop of Bernouilli lemniscate is built from
the six mass control points (Si, ωi) with i ∈ [[0, 5]].
In case of a C2 connection is necessary, the method
can also be used to compute it. Freeing S2, S3
provides a G1 or C1 at most. Then, S0

(1
2 , 2
)

=

Figure 8: Two G2 blends using a lathe from the
curve in the Figure 6.

Q3, ω0 = 2, S1
(1

2 , −2
5
)
, ω1 = 1, S2

(17
10 , 14

10
)
,

ω2 = 1, S3
( 3

10 , 4
5
)
, ω3 = 1, S4

(
−2

5 , 1
10
)
, ω4 = 2,

S5
(
−1

2 , 0
)

= P0 and ω5 = 1. The Figure 12 shows
a G2 joints to C2 connection between both loops
and also osculating circles.

Figure 13 shows a future application of G2-
continuity to handwriting modeling.

5 Conclusion and perspectives
The paper has shown a method that computes a
Bézier curve that G2 connects two sets of data.
Each set of data is composed by a given tangent
line and a given curvature at the given point. The
connection curve is at least a quintic rational curve
defined by mass control points that are weighted
points with any type of weight. In the case of a
null weight a vector is obtained. The article shows
that the G2 connection offers two degree of free-
dom. For a C1 connection, there is one degree of
freedom left. There is no more degree of freedom
for a C2 connection implying only a unique solu-
tion. The results perform a handwriting modelling
by the use of that type of Bézier curve. The thick
and thin strokes of handwriting is an application.
Further applications are on the way of the 3d do-
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Figure 9: Two G2 blends using a lathe from the
curve in the Figure 7.

Figure 10: Two loops for G2 connection

main as the torsion of space curves based on the
Frenet frame.

Figure 11: A quintic Bézier rational curve con-
necting G2 and C1 beween the loop of Descartes
folium and a loop a Bernouilli lemniscate

Figure 12: A quintic Bézier rational curve con-
necting G2 and C2 beween the loop of Descartes
folium and a loop a Bernouilli lemniscate

Figure 12: A quintic Bézier rational curve con-
necting G2 and C2 beween the loop of Descartes
folium and a loop a Bernouilli lemniscate

Figure 12: A quintic Bézier rational curve con-
necting G2 and C2 beween the loop of Descartes
folium and a loop a Bernouilli lemniscate
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Appendix
A Proof of Formula (3)
From the relation

−−−−→
P0γ (t) = χ (ω1) n t (1 − t)n−1 P̃1

+ χ (ω2) n (n − 1)
2

t2 (1 − t)n−2 P̃2

+
n∑

k=3
χ (ωi) Bk,n (t) P̃k

the velocity vector is equal to
d

dt

−−−−→
P0γ (t)

= χ (ω1) n
(
(1 − t)n−1 − t (n − 1) (1 − t)n−2

)
P̃1

+ χ (ω1) n (n − 1)
2

(
2t (1 − t)n−2

)
P̃1

+ χ (ω1) n (n − 1)
2

(
−t2 (n − 2) (1 − t)n−3

)
P̃1

+
n∑

k=3
χ (ωi)

d

dt
Bk,n (t) P̃k

The acceleration vector is computed as follows

d2−−−−→
P0γ (t)
dt2

= −d′′ (t) d (t) − 2 (d′ (t))2

(d (t))3

−−−−→
P0γ (t)

− 2 d′ (t)
(d (t))2

d

dt

−−−−→
P0γ (t) + 1

d (t)
d2

dt2
−−−−→
P0γ (t)

(4)

and the acceleration vector is simplified to

d2

dt2
−−−−→
P0γ (t)

= χ (ω1) n (n − 1)
(
− (1 − t)n−2

)
P̃1

− χ (ω1) n (n − 1)
(
(1 − t)n−2 + t (1 − t)n−3

)
P̃1

+ χ (ω2) n (n − 1)
2

(
2 (1 − t)n−2

)
P̃2

+ χ (ω2) n (n − 1)
2

(
−2 (n − 2) t (1 − t)n−2

)
P̃2

+ χ (ω2) n (n − 1)
2

(
−2t (n − 2) (1 − t)n−3

)
P̃2

+ χ (ω2) n (n − 1)
2

t2 (n − 2) (n − 3) (1 − t)n−4 P̃2

+
n∑

k=3
χ (ωi)

d2

dt2 Bk,n (t) P̃k
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which, at t = 0 leads to

−−−−→
P0γ (0) = −→0

d

dt

−−−−→
P0γ (0) = nχ (ω1) P̃1

d2

dt2
−−−−→
P0γ (t) = n (n − 1)

(
−2χ (ω1) P̃1 + χ (ω2) P̃2

)
Let d (t) be defined by

d (t) = ω0 (1 − t)n + ω1n t (1 − t)n−1

+ ω2
n (n − 1)

2
t2 (1 − t)n−2 +

n∑
k=3

ωiBk,n (t)

and the expression of the first derivative of d is
equal to

d′ (t)

= −ω0n (1 − t)n−1

+ ω1n
(
(1 − t)n−1 − (n − 1) t (1 − t)n−2

)
+ ω2

n (n − 1)
2

2t (1 − t)n−2

− ω2
n (n − 1)

2
(n − 2) t2 (1 − t)n−3

+
n∑

k=2
ωi

d

dt
Bk,n (t)

and the expression of the second derivative of d
equals

d′′ (t)

= ω0n (n − 1) (1 − t)n−2

− 2ω1n
(
(n − 1) (1 − t)n−2

)
+ ω1n

(
(n − 1)

(
(n − 2) t (1 − t)n−2

))
+ ω2n (n − 1)

(
(1 − t)n−2 − t (1 − t)n−3

)
− ω2

n (n − 1)
2

(n − 2)
(
2t (1 − t)n−3

)
− ω2

n (n − 1)
2

(n − 3) t2 (1 − t)n−3

+
n∑

k=2
ωi

d2

dt2 Bk,n (t)

that leads to
d (0) = ω0

d′ (0) = n (ω1 − ω0)
d′′ (0) = n (n − 1) (ω0 − 2ω1 + ω2)

and

d′′ (0) d (0) − 2 (d′ (0))2

(d (0))3

= n (n − 1) ω0 (ω0 − 2ω1 + ω2) − 2n2 (ω1 − ω0)2

ω3
0

= n
(n − 1) (ω0 − 2ω1 + ω2) − 2n (ω1 − ω0)2

ω2
0

and
d′ (0)

(d (0))2 = n
ω1 − ω0

ω2
0

Based on Formula (4), the acceleration vector
equals

d2

dt2
−−−−→
P0γ (0)

= −2n
ω1 − ω0

ω2
0

nχ (ω1) P̃1

+ 1
ω0

n (n − 1)
(
−2χ (ω1) P̃1 + χ (ω2) P̃2

)
= −2n

ω1 − ω0

ω2
0

nχ
(
ω1P̃1

)
+ 1

ω0
n (n − 1)

(
−2χ (ω1) P̃1 + χ (ω2) P̃2

)
= −2n

(
n

ω1 − ω0

ω2
0

+ n − 1
ω0

)
χ (ω1) P̃1

+ 1
ω0

n (n − 1) χ (ω2) P̃2

= 2n

(
ω0 − nω1

ω2
0

)
χ (ω1) P̃1

+ 1
ω0

n (n − 1) χ (ω2) P̃2

and four cases must be distinguished for the ac-
celeration vector at P0:

• if ω1 = ω2 = 0,

d2

dt2
−−−−→
P0γ (0) = 2n

ω0

−→
P1 + n

n − 1
ω0

−→
P2

• if ω1 6= 0 and ω2 = 0,

d2

dt2
−−−−→
P0γ (0)

= 2n

(
ω0 − nω1

ω2
0

)
ω1

−−→
P0P1

+ 1
ω0

n (n − 1)
−→
P2
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• if ω1 = 0 and ω2 6= 0,
d2

dt2
−−−−→
P0γ (0) = 2n

ω0

−→
P1 + ω2

ω0
n (n − 1)

−−→
P0P2

• if ω1ω2 6= 0,
d2

dt2
−−−−→
P0γ (0)

= 2n

(
ω0 − nω1

ω2
0

)
ω1

−−→
P0P1

+ ω2

ω0
n (n − 1)

−−→
P0P2
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