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1 Introduction
Fractional integrals are a generalization of the con-
cept of integration to non-integer orders. In particu-
lar, fractional integrals extend the idea of differentia-
tion to non-integer orders, which means they provide
a way to define integrals of functions to fractional
powers, [1], [2], [3].

Let’s start with the Riemann-Liouville fractional
integral . Given a function f (x) defined on an inter-
val [a, b] , and a real number α > 0, the Riemann-
Liouville fractional integral of order α of f (x), de-
noted by Iαf (x) ,is defined as:

Iαf (x) =
1

Γ (α)

∫ x

a
(x− t)α−1 f (t) dt. (1)

Where Γ (α) is the gamma function. This definition
can be extended to other types of integrals, such as
the Caputo fractional integral, which is often used in
fractional calculus.

Definition 1. [4, 5] Let h (τ) be an increasing and
positive monotone function on [0,∞). Further-
more, we’ll consider h as a monotonically increasing
and positive function defined on the interval [0,∞),
with its derivative h′ being continuous and γ (0) =
0. The space Xd

h (0,∞) is the following form for
(1 ≤ d < ∞) ,

∥f∥Xd
h
=

(∫∞
0 |f (θ)|d h′

(τ) dθ
) 1

d

< ∞ (2)

and if we choose d = ∞,

∥f∥X∞
h

= ess sup
1≤θ<∞

[
f (θ)h

′
(τ)

]
. (3)

Additionally, if we take h(τ) = τ (1 ≤ d < ∞)
the space Xd

h(0,∞), then we have the

Ld[0,∞)−space. Moreover, if we take h(τ) = τk+1

k+1

(1 ≤ d < ∞, k ≥ 0) the space Xd
h(0,∞), then we

have the Ld,k[0,∞)−space [6].
Senouci and Khirani obtained newly the following

definition of fractional integral [7].

Definition 2. Let f ∈ L1 ([a, b]) , a < b, α > 0,
k > 0. Then, we have

Iα0,kf (t) =
1

kΓk (α)

∫ t

a
(t− x)

α

k
−1 f (x) dx. (4)

Where

Γk (α) =

∫ ∞

0
tα−1 exp

(
− tk

k

)
dt, k > 0. (5)

Furthermore, we generalized this definition ob-
tained by Abdelkader and Mohammed as the follow-
ing

Definition 3. Let f ∈ L1 ([a, b]) , a < b, α > 0,
k > 0. Suppose that h (x) be an increasing and posi-
tive monotone function on [0,∞). Furthermore, we’ll
consider h as a monotonically increasing and posi-
tive function defined on the interval [0,∞), with its
derivative h′ being continuous and γ (0) = 0. Then,

Iαk,hf (t)

= 1
kΓk(α)

∫ t
a (h (t)− h (x))

α

k
−1 f (x)h′ (x) dx.

(6)
Where

Γk (α) =

∫ ∞

0
tα−1 exp

(
− tk

k

)
dt, k > 0. (7)

The Chebyshev fractional for two integrable
functions f ve g which are synchronous (i,e
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(f (x)− f (y)) (g (x)− g (y)) ≥ 0 ) for any x, y ∈
[a, b] , is defined as follows

T (f, g) = 1
b−a

∫ b
a f (x) g (x) dx

− 1
b−a

∫ b
a f (x) dx 1

b−a

∫ b
a g (x) dx.

(8)

Chebyshev fractional holds a significant position
not only in mathematics but also in statistics, finding
wide-ranging applications across various disciplines.
Thereby, there are a lot of investigation on its. ( See
[8] , [9] and [10]). Let give some definitions asso-
ciated with the fractional integration in the sense of
Riemann-Liouville.

2 Main Results
Lemma 1. Let f ∈ L1 ([0,∞)) and t > 0, α > 0,
k > 0. Suppose that h (x) be an increasing and posi-
tive monotone function on [0,∞). Furthermore, we’ll
consider h as a monotonically increasing and posi-
tive function defined on the interval [0,∞), with its
derivative h′ being continuous and γ (0) = 0. Then

Iαk,hf (t) = 1
kΓk(α)

Γ
(
α
k

)
I

α

k f (t) . (9)

Proof. For all f ∈ L1 ([0,∞)) and t > 0, α > 0,
k > 0, we have

I
α

k f (t)

= 1
Γ(α

k )

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (x) dx,

(10)
and

Iαk,hf (t)

= 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (x) dx.

(11)
Then ∫ t

0 (h (t)− h (x))
α

k
−1 h′ (x) f (x) dx

= Γ
(
α
k

)
I

α

k f (t) ,
(12)

finally

Iαk,hf (t) = 1
kΓk(α)

Γ
(
α
k

)
I

α

k f (t) . (13)

The proof is done.

Theorem 1. Let the functions f and g be two syn-
chronous functions on [0,∞[ . Suppose that h (x)
be an increasing and positive monotone function on
[0,∞). Furthermore, we’ll consider h as a monoton-
ically increasing and positive function defined on the
interval [0,∞), with its derivative h′ being continu-
ous and γ (0) = 0. Then for all t > 0, α > 0, k > 0

Iαk,h (fg) (t) ≥
1

Iα
k,h(1)

.Iαk,hf (t) .Iαk,hg (t) (14)

Proof. The functions f and g are synchronous func-
tions on then for all x ≥ 0, b ≥ 0, then

(f (x)− f (b)) (g (x)− g (b)) ≥ 0 (15)

and

f (x) g (x) + f (b) g (b)
≥ f (x) g (b) + f (b) g (x) .

(16)

We have (16) . Multiplying both hand sides of (16)
by (h(t)−h(x))

α
k

−1

kΓk(α)
h′ (x) , x ∈ (0, t) ,

(h(t)−h(x))
α
k

−1

kΓk(α)
h′ (x) f (x) g (x)

+ (h(t)−h(x))
α
k

−1

kΓk(α)
h′ (x) f (b) g (b)

≥ (h(t)−h(x))
α
k

−1

kΓk(α)
h′ (x) f (x) g (b)

+ (h(t)−h(x))
α
k

−1

kΓk(α)
h′ (x) f (b) g (x) .

(17)

By integrating (17) from 0 to t, we have

1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (x) g (x) dx

+ 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (b) g (b) dx

≥ 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (x) g (b) dx

+ 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (b) g (x) dx.

(18)
In here, we can write

Iαk,h (fg) (t)

+f (b) g (b) 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) dx

≥ g (b) 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) f (x) dx

+f (b) 1
kΓk(α)

∫ t
0 (h (t)− h (x))

α

k
−1 h′ (x) g (x) dx.

(19)
Finally, we get

Iαk,h (fg) (t) + f (b) g (b) Iαk,h (1)
≥ g (b) Iαk,hf (t) + f (b) Iαk,hg (t) .

(20)

Now, multiplying both hand sides of (20) by
(h(t)−h(b))

α
k

−1

kΓk(α)
h′ (b) , b ∈ (0, t) ,

(h(t)−h(b))
α
k

−1

kΓk(α)
h′ (b) Iαk,h (fg) (t)

+ (h(t)−h(b))
α
k

−1

kΓk(α)
h′ (b) f (b) g (b) Iαk,h (1)

≥ (h(t)−h(b))
α
k

−1

kΓk(α)
h′ (b) g (b) Iαk,hf (t)

+ (h(t)−h(b))
α
k

−1

kΓk(α)
h′ (b) f (b) Iαk,hg (t) .

(21)
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In here, by integrating (21) from 0 to t,

Iαk,h (fg) (t)
1

kΓk(α)[
×
∫ t
0 (h (t)− h (b))

α

k
−1 h′ (b) db

]
+Iαk,h (1)

1
kΓk(α)[

×
∫ t
0 (h (t)− h (b))

α

k
−1 h′ (b) f (b) g (b) db

]
≥ Iαk,hf (t) 1

kΓk(α)[
×
∫ t
0 (h (t)− h (b))

α

k
−1 h′ (b) g (b) db

]
+Iαk,hg (t)

1
kΓk(α)[

×
∫ t
0 (h (t)− h (b))

α

k
−1 h′ (b) f (b) db.

]
(22)

We can write that

Iαk,h (fg) (t) ≥
1

Iαk,h (1)
Iαk,hf (t) Iαk,hg (t) . (23)

The proof is done.

Corollary 1. If the functions f and g are asynchronous
( i.e (f (x)− f (y)) (g (x)− g (y)) ≤ 0, for any
x, y ∈ [a, b]), then

Iαk,h (fg) (t) ≤
1

Iα
k,h(1)

Iαk,hf (t) Iαk,hg (t) . (24)

Theorem 2. Let the functions f and g be two syn-
chronous functions on [0,∞[ . Suppose that h (x)
be an increasing and positive monotone function on
[0,∞). Furthermore, we’ll consider h as a monoton-
ically increasing and positive function defined on the
interval [0,∞), with its derivative h′ being continu-
ous and γ (0) = 0. Then for all t > 0, α > 0, k > 0,
β > 0, the following inequality, we have

Iαk,h (fg) (t) I
β
k,h (1)

+Iαk,h (1) I
β
k,h (fg) (t)

≥ Iαk,h (f) (t) I
β
k,h (g) (t)

+Iαk,h (g) (t) I
β
k,h (f) (t) .

(25)

Proof. By utilizing the proof of Theorem 1, we can
write

(h(t)−h(y))
β
k

−1

kΓk(β)
h′ (y) Iαk,h (fg) (t)

+ (h(t)−h(y))
β
k

−1

kΓk(β)
h′ (y) f (y) g (y) Iαk,h (1)

≥ (h(t)−h(y))
β
k

−1

kΓk(β)
h′ (y) g (y) Iαk,hf (t)

+ (h(t)−h(y))
β
k

−1

kΓk(β)
h′ (y) f (y) Iαk,hg (t) .

(26)

By integrating (26) from 0 to 1, we get

Iα
k,h(fg)(t)

kΓk(β)[
×
∫ t
0 (h (t)− h (y))

β

k
−1 h′ (y) dy

]
+

Iα
k,h(1)

kΓk(β)[
×
∫ t
0 (h (t)− h (y))

β

k
−1 h′ (y) f (y) g (y) dy

]
≥ Iα

k,hf(t)

kΓk(β)[
×
∫ t
0 (h (t)− h (y))

β

k
−1 h′ (y) g (y) dy

]
+

Iα
k,hg(t)

kΓk(β)[
×
∫ t
0 (h (t)− h (y))

β

k
−1 h′ (y) f (y) dy

]
.

(27)
Then,

Iαk,h (fg) (t) I
β
k,h (1)

+Iαk,h (1) I
β
k,h (fg) (t)

≥ Iαk,h (f) (t) I
β
k,h (g) (t)

+Iαk,h (g) (t) I
β
k,h (f) (t) .

(28)

The proof is done.

Corollary 2. If the functions f and g are asyn-
chronous, then inequality (28) holds in the reversed
direction.

Remark 1. If we choose α = β in Theorem 2, then
we obtain inequality of Theorem 1.

Theorem 3. Let (fi)i=1,...,n be n positive increas-
ing functions on [0,∞[ . Suppose that h (x) be an in-
creasing and positive monotone function on [0,∞).
Furthermore, we’ll consider h as a monotonically in-
creasing and positive function defined on the inter-
val [0,∞), with its derivative h′ being continuous and
γ (0) = 0. Then for any t > 0, α > 0, k > 0, we have

Iαk,h (π
n
i=1fi) (t)

≥
(
Iαk,h (1)

)1−n (
πn
i=1I

α
k,hfi (t)

)
.

(29)

Proof. By utilizing inequality in Theorem 1 for n =
2, we have for α > 0 and k > 0

Iαk,h (f1f2) (t)

≥
(
Iαk,h (1)

)−1
Iαk,hf1 (t) I

α
k,hf2 (t) .

(30)

In here, we can write as the following inequality for
t > 0

Iαk,h (π
n
i=1fi) (t)

≥
(
Iαk,h (1)

)2−n (
πn−1
i=1 I

α
k,hfi (t)

)
.

(31)

If (fi)i=1,2,...,n are positive increasing functions, then(
πn−1
i=1 fi

)
(t) is an increasing function.Moreover, we
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can apply Theorem 1 to the functions πn−1
i=1 fi and

fn = f. Then,

Iαk,h (π
n
i=1fi) (t)

= Iαk,h (fg) (t)

≥
(
Iαk,h (1)

)−1
Iαk,h

(
πn−1
i=1 fi

)
(t) Iαk,hfn (t) ,

(32)
by using inequality in (31) , we get

Iαk,h (π
n
i=1fi) (t)

≥
(
Iαk,h (1)

)−1 (
Iαk,h (1)

)2−n
Iαk,h

(
πn−1
i=1 fi

)
(t) Iαk,hfn (t)

≥
(
Iαk,h (1)

)1−n (
πn
i=1I

α
k,hfi (t)

)
.

(33)
The proof is done.

Theorem 4. Let f and g be two functions defined on
[0,∞[ , such that f is increasing and g is differen-
tiable and there is a real numberm = inf

t>0
g′ (t) . Sup-

pose that h (x) be an increasing and positive mono-
tone function on [0,∞). Furthermore, we’ll consider
h as a monotonically increasing and positive function
defined on the interval [0,∞), with its derivative h′

being continuous and γ (0) = 0. Then we have as the
following inequality for t > 0, α > 0 and k > 0,

Iαk,h (fg) (t)

≥
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−Iαk,hf (t) m(kh(t)+αh(0))
(α+k) +mIαk,h (hf) (t) .

(34)

Proof. LetH (t) := g (t)−mh (t) . It is clear thatH
is differentiable and increasing on [0,∞[ . Addition-
ally, Let h (t) be an increasing and positive monotone
function on [0,∞). Furthermore, if we consider h′

(t)
is continuous on [0,∞) and h (0) = 0.Then bymeans

of Theorem 1, we have

Iαk,h ((g (t)−mh (t)) (f (t)))

≥
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,h (g (t)−mh (t))

≥
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−m
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hh (t)

≥
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−m
[
I

α

k (1)
]−1

Iαk,hf (t) I
α

k h (t)

=
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−m
[
I

α

k

k,h (1)
]−1

Iαk,hf (t) (h(t)−h(0))
α
k (kh(t)+αh(0))

Γ(α

k
+1)(α+k)

=
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−m
Γ(α

k
+1)

(h(t)−h(0))
α
k
Iαk,hf (t) (h(t)−h(0))

α
k (kh(t)+αh(0))

Γ(α

k
+1)(α+k)

=
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−Iαk,hf (t) m(kh(t)+αh(0))
(α+k) .

Where

I
α

k h (t)

= 1
Γ(α

k )

∫ t
0 (h (t)− h (0))

α

k
−1 h (x)h′ (x) dx

= 1
Γ(α

k
+1)

(h(t)−h(0))
α
k (kh(t)+αh(0))

(α+k)

(35)
and [

I
α

k (1)
]−1

=
Γ(α

k
+1)

(h(t)−h(0))
α
k
. (36)

The proof is done.

Corollary 3. Let f and g be two functions defined
on [0,∞[ . Suppose that h (x) be an increasing and
positive monotone function on [0,∞). Furthermore,
we’ll consider h as a monotonically increasing and
positive function defined on the interval [0,∞), with
its derivative h′ being continuous and γ (0) = 0.

1. While f is decreasing, g is differentiable and
there is a real number M := supt≥0 g

′ (t) , then
for all t > 0, α > 0, k > 0, we acquire

Iαk,h (fg) (t)

≥
[
Iαk,h (1)

]−1
Iαk,hf (t) Iαk,hg (t)

−Iαk,hf (t) M(kh(t)+αh(0))
(α+k) +MIαk,h (hf) (t) .

(37)

2. If f and g are differentiable and we assume that
m1 := inft≥0 f

′ (t) and m2 := inf g′ (t) , then
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we obtain

Iαk,h (fg) (t)−m1I
α
k,h (gh) (t)

−m2I
α
k,h (fh) (t) +m1m2I

α
k,h (hh) (t)

≥
[
Iαk,h (1)

]−1

×
[
Iαk,hf (t) Iαk,hg (t)−m1I

α
k,hg (t) I

α
k,hh (t)

−m2I
α
k,hf (t) Iαk,hh (t) +m1m2I

α
k,hh (t) I

α
k,hh (t)

]
.

(38)

3. If f and g are differentiable and we assume that
M1 := sup f ′ (t) and M2 := supt≥0 g

′ (t) , then
we obtain

Iαk,h (fg) (t)−M1I
α
k,h (gh) (t)

−M2I
α
k,h (fh) (t) +M1M2I

α
k,h (hh) (t)

≥
[
Iαk,h (1)

]−1

×
[
Iαk,hf (t) Iαk,hg (t)−M1I

α
k,hg (t) I

α
k,hh (t)

−M2I
α
k,hf (t) Iαk,hh (t) +M1M2I

α
k,hh (t) I

α
k,hh (t)

]
.

(39)

Proof. 1. If we takeG (t) := g (t)−Mh (t) , then we
obtain (38) by utilizing (14) to the decreasing func-
tions f and G.

2. If we takeF (t) := f (t)−m1h (t) andG (t) :=
g (t)−m2h (t) , then we obtain (39) by utilizing (14)
to the increasing functions F and G as the following

Iαk,h ((f (t)−m1h (t)) (g (t)−m2h (t)))

≥
[
Iαk,h (1)

]−1

×
[(

Iαk,hf (t)−m1I
α
k,hh (t)

)(
Iαk,hg (t)−m2I

α
k,hh (t)

)]
≥

[
Iαk,h (1)

]−1

×
[
Iαk,hf (t) Iαk,hg (t)−m1I

α
k,hg (t) I

α
k,hh (t)

−m2I
α
k,hf (t) Iαk,hh (t) +m1m2I

α
k,hh (t) I

α
k,hh (t)

]
.

(40)
which

Iαk,h ((f (t)−m1h (t)) (g (t)−m2h (t)))
= Iαk,h (fg) (t)−m1I

α
k,h (gh) (t)

−m2I
α
k,h (fh) (t) +m1m2I

α
k,h (hh) (t) .

(41)

3. If we takeF (t) := f (t)−M1h (t) andG (t) :=
g (t)−M2h (t) , then we obtain (40) by utilizing (14)

to the decreasing functions F and G as the following

Iαk,h ((f (t)−M1h (t)) (g (t)−M2h (t)))

≥
[
Iαk,h (1)

]−1

×
[(

Iαk,hf (t)−M1I
α
k,hh (t)

)(
Iαk,hg (t)−M2I

α
k,hh (t)

)]
≥

[
Iαk,h (1)

]−1

×
[
Iαk,hf (t) Iαk,hg (t)−M1I

α
k,hg (t) I

α
k,hh (t)

−M2I
α
k,hf (t) Iαk,hh (t) +M1M2I

α
k,hh (t) I

α
k,hh (t)

]
.

(42)
which

Iαk,h ((f (t)−M1h (t)) (g (t)−M2h (t)))
= Iαk,h (fg) (t)−M1I

α
k,h (gh) (t)

−M2I
α
k,h (fh) (t) +M1M2I

α
k,h (hh) (t) .

(43)

Remark 2. If we choose h (t) = t and k = 1 in Theo-
rems and Corollaries presented in this article, we ac-
quire the consequences equivalent to those found in
[6] Theorems and Corollaries. Similarly, if we take
h (t) = t in Theorems and Corollaries presented in
this article, we obtain results of Theorems and Corol-
laries in [7].

3 Conclusion
In this paper, we introduce the Riemann-Liouville
generalized fractional integral and derive several im-
portant inequalities associated with it. Additionally,
we establish key properties and bounds for Riemann-
Liouville generalized fractional integrals.
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