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1  Introduction 
The study of fractional calculus involves derivatives 
and integrals of arbitrary orders, has gained a lot of 
attention due to some applications in various fields 
including engineering and physics. This branch of 
mathematics extends the concepts of classical 
calculus by introducing new models for explaining 
real-world phenomena, especially those involving 
memory effects or diffusion. Modeling complicated 
systems and resolving fractional differential 
equations require the use of the Mittag-Leffler 
function, that generalizes the exponential function 
and a concept in fractional calculus, [1], [2]. It is 
known as the "Queen Function" in fractional 
calculus, it is important in dealing with several 
fields, including bioengineering, [3], luminescence 
degradation [4], and others [5]. Multi-index Mittag-

Leffler functions were introduced to handle some 
kinds of fractional-order equations in applied 
mathematics, [6], [7]. 

The Sawi transform (SWT), a new integral 
transform, that is related to the Laplace transform. It 
has shown promise applications in managing the 
difficulty in solving fractional differential equations, 
[8], [9].  

The SWT offers special characteristics 
including convolution, scaling, and linearity that 
make solving differential equations much easier. It 
shows efficacy in solving many kinds of problems, 
such as linear ordinary differential equations [10], 
fractional partial differential equations [11], and 
nonlinear fractional differential equations [12], 
exhibiting advantages in accuracy, simplicity, and 
fast convergence, [11]. The SWT has been used to 
develop hybrid methods for solving difficult 
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problems [11], [12], by combining with numerical 
approaches such as the homotopy perturbation and 
decomposed methods. Researchers have also 
investigated its relation to other integral transforms 
[13], and the application of solving equations 
involving Hilfer-Prabhakar fractional derivatives 
[14], and how it can be applied to Hyers-Ulam 
stability analysis [15]. The SWT shows that it is a 
valuable tool for handling mathematical analysis 
and applications in various disciplines. 

In order to solve fractional differential 
equations, this study presents a unique method that 
uses the SWT to provide simpler solutions. The 
main goal is to find the SWT and its relation to the 
Mittag-Leffler function. This paper concentrates on 
the SWT and Mittag-Leffler function, it investigate 
novel approaches to solve fractional differential 
equations.  

     Power series solutions for linear and 
nonlinear fractional differential equations are 
provided by Mittag-Leffler functions [16], [17]. 
Fractional calculus is used to produce new 
connections between the parameters in Mittag-
Leffler functions [18], whereas generalized 
multivariable Mittag-Leffler functions are solved 
using the Laplace transform approach, [19], [20]. 
These methods provide efficient, accurate, and 
broadly applicable solutions to complex fractional 
differential equations [21], [22], [23], improving the 
understanding of fractional calculus and its various 
applications, [24], [25], [26]. 

We begin this study by describing the 
definitions and basic features [27], [28] related to 
SWT. We then examine the uses and importance of 
the Mittag-Leffler function in this article. We 
demonstrate the efficiency of SWT in solving 
fractional differential equations by solving some 
examples including the Mittag-Leffler function, 
[29], [30].  

The rest of this paper is organized as follows: In 
Section 2, we present some basic definitions and 
theorems, in Section 3, we in discuss the application 
of SWT on the fractional operators, and obtain some 
related results concerning Mittag-Leffler function. 
We solve four interesting results using the obtained 
theorems in Section 4, finally we get the conclusion. 
 

 

2  Basic Definitions and Properties 
In this section, we introduce some basic definitions 
and theorems that are related to our work. 
Definition 1. [8] The SWT of the function 𝑤(𝑡), 
defined on [0,∞), is denoted by 𝑆[𝑤(𝑡)] and given 
by: 

         𝑆[𝑤(t)] = 𝑅(𝑣) =
1

𝑣2
∫  

∞

0

𝑤(𝑡)𝑒−
𝑡

𝑣𝑑𝑡. (1) 

If   𝑆[𝑤(𝑡)]   =  𝑅(𝑣) , then 𝑤(𝑡), is referred to 
as the inverse SWT of 𝑅(𝑣), and is denoted by 
𝑆−1[𝑅(𝑣)] =  𝑤(𝑡), that is 

𝑆−1[𝑅(𝑣)] =
−1

2𝜋𝑖
∫  

𝑐+𝑖∞

𝑐−𝑖∞

𝑅(𝑣) 𝑒
𝑡

𝑣 𝑑𝑣. (2) 

 

Theorem 1. [8] Let 𝑤(𝑡) be a continuous function 
defined for 𝑡 > 0 and has exponential order 𝛼  
property; |𝑤(𝑡))| ≤ 𝜇𝑒𝛼𝑡 where   𝜇 > 0. Then, the 
SWT   𝑆[𝑤(𝑡)]  exists for  𝑅𝑒 (1

𝑣
) > 𝛼.  

 

Theorem 2. [8] Let 𝑅(𝑣) be SWT of 𝑤(𝑡). Then  

(𝑖)    𝑆[𝑤′(𝑡)] =
𝑅(𝑣)

𝑣
−
𝑤(0)

𝑣2
 .  (3) 

 (𝑖𝑖)  𝑆[𝑤′′(𝑡)] =
𝑅(𝑣)

𝑣2
−
𝑤(0)

𝑣3
−
𝑤′(0)

𝑣2
. (4) 

(𝑖𝑖𝑖) 𝑆[𝑤(𝑛)(𝑡)] =
𝑅(𝑣)

𝑣𝑛
−∑

𝑤(𝑘)(0)

𝑣𝑛−𝑘+1
.

𝑛−1

𝑘=0

 (5) 

 

Remark 1. The relation between SWT and Laplace 
transform is given by: If  𝑆[𝑤(𝑡)] = 𝑅(𝑣) and 
 𝐿[𝑤(𝑡)] = 𝑊(𝑣), is the Laplace transform of 𝑤(𝑡), 
then  𝑅(𝑣) = 1

𝑣2
𝑊(

1

𝑣
). 

 

Proof.  The Laplace transform of a function 𝑤(𝑡), is 
given by:  

𝐿[𝑤(𝑡)] = 𝑊(𝑣) = ∫  
∞

0

w(𝑡)𝑒−𝑣𝑡𝑑𝑡. 

Now, 𝑅(𝑣) = 1

𝑣2
∫  
∞

0
𝑤(𝑡) 𝑒

−𝑡

𝑣  𝑑𝑡,   which implies: 

𝑅(𝑣) =
1

𝑣2
𝑊(

1

𝑣
). (6) 

 
In the following we present some properties of 

SWT, assuming that 𝑆[𝑤(𝑡)] = 𝑅(𝑣)   
and,    𝑆[𝑢(𝑡)] = 𝑈(𝑣): 
𝑆[ 𝑎 𝑤(𝑡) + 𝑏 𝑢(𝑡)] = 𝑎 𝑆[𝑤(𝑡)] + 𝑏 𝑆[𝑢(𝑡)]

= 𝑎𝑅(𝑣) + 𝑏𝑈(𝑣), 
 
where 𝑎 & 𝑏 are arbitrary constants. Moreover, the 
inverse of SWT is linear, 

𝑆−1[𝑎𝑅(𝑣) + 𝑏𝑈(𝑣)] = 𝑎 𝑤(𝑡) + 𝑏 𝑢(𝑡). 
𝑆[ 𝑤(𝑎𝑡)] =  𝑎 𝑅(𝑎𝑣 ), where 𝑎 ≠ 0. 

𝑆[𝑒𝑎𝑡𝑤(𝑡)] =
1

(1 − 𝑎𝑣)2
𝑅 (

𝑣

1 − 𝑎𝑣
) ,where 𝑎𝑣

≠ 1. 
𝑆 [𝑤(𝑡) ∗  𝑢(𝑡)]  =  𝑣2 𝑅(𝑣) 𝑈(𝑣). 
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In Table 1, we state the formula of SWT of some 
functions. 
  

Table 1. SWT of some elementary functions 
𝒘(𝒕) 𝑺[𝒘(𝒕)] 

1 
1

𝑣
 

𝑡 1 

𝑡𝑛, 𝑛𝜖ℕ 𝑛! 𝑣n−1 

𝑡𝛼 , 𝛼𝜖ℝ+ Γ(𝛼 + 1) 𝑣𝛼−1 

𝑒𝑎𝑡 
1

𝑣(1 − 𝑎𝑣)
 

sin 𝑎𝑡 
𝑎

1 + 𝑎2𝑣2
 

cos 𝑎𝑡 
1

𝑣(1 + 𝑎2𝑣2)
 

sinh 𝑎𝑡 
𝑎

1 − 𝑎2𝑣2
  

cosh 𝑎𝑡 
1

𝑣(1 − 𝑎2𝑣2)
 

 

 

3 The SWT of Mittag-Leffler 

 Function and Riemann- Liouville 
The Riemann-Liouville integral is motivated from 
Cauchy formula for repeated integration and the 
Mittag-Leffler function is one of the important 
special functions, which is considered as a 
generalization of the exponential function, and it is 
frequently used in the solutions of fractional 
differential equations and systems of fractional 
differential equations. 
 

Definition 2. [20] The Riemann–Liouville fractional 
integral of a function 𝑤(𝑡) of order 𝛼 > 0 is defined 
by: 

𝐼𝛼𝑤(𝑡) =
1

Γ(𝛼)
∫  

𝑡

0

  (𝑡 − 𝜏)𝛼−1 𝑤(𝜏)𝑑𝜏. (7) 

 

Definition 3. [20] The Caputo fractional derivative 
of a function 𝑤(𝑡) of order  𝛼 > 0, is defined by: 

𝐷𝛼𝑤(𝑡) =

{
 

 1

Γ(𝑚 − 𝛼)
∫  

𝑡

0

 
𝑤(𝑚)(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑚
𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚,

𝑤(𝑚)(𝑡),                                                𝛼 = 𝑚 ∈ 𝑁.

 (8) 

 

Definition 4. [20] The Mittag-Leffler function is 
defined by: 

𝐸𝛼,𝛽(𝑡) =∑  

∞

𝑗=0

𝑡𝑗

Γ(𝛼𝑗 + 𝛽)
,

𝑡, 𝛼, 𝛽 ∈ ℂ and 𝑅𝑒(𝛼) > 0. 

(9) 

 

Theorem 3. If 𝑅(𝑣) is the SWT of 𝑤(𝑡), then SWT 
of Riemann-Liouville fractional integral is given by:  

𝑆[𝐼𝛼𝑤(𝑡)] = 𝑣𝛼𝑅(𝑣). (10) 

 

Proof. From the definition of Riemann-Liouville 
integral, we have:    

 𝐼𝛼𝑤(𝑡) =
1

Γ(𝛼)
∫  

𝑡

0

  (𝑡 − 𝜏)𝛼−1𝑤(𝜏)𝑑𝜏,  

𝐼𝛼𝑤(𝑡) =
1

Γ(𝛼)
(𝑡𝛼−1 ∗ 𝑤(𝑡)). (11) 

 
Taking SWT to both sides of (11), we obtain:  

𝑆[𝐼𝛼𝑤(𝑡)] =
1

Γ(𝛼)
 𝑆[𝑡𝛼−1 ∗ 𝑤(𝑡)]. 

 
By using convolution property of SWT, we obtain:  

𝑆[𝐼𝛼𝑤(𝑡)] =
𝑣2

𝛤(𝛼)
𝑆[𝑡𝛼−1] 𝑆[𝑤(𝑡)]

=
𝑣2

𝛤(𝛼)
𝛤(𝛼)𝑣𝛼−2 𝑅(𝑣)  

= 𝑣𝛼𝑅(𝑣).  
 

Theorem 4. If 𝑅(𝑣) is SWT of the function 𝑤(𝑡), 
then SWT of Caputo functional derivative of a 
function 𝑤(𝑡), is given by  

𝑆[𝐷𝛼𝑤(𝑡)] =
1

𝑣𝛼
 𝑅(𝑣)

− ∑  

𝑚−1

𝑘=0

(
1

𝑣
)
𝑚−(𝑘−1)

𝑤(𝑘)(0), 
(12) 

where, 𝑚 − 1 <  𝛼 ≤ 𝑚 ,𝑚 ∈ 𝑁. 
 

Proof. The definition of Caputo derivative of a 
function 𝑤(𝑡) is: 

𝐷𝛼𝑤(𝑡) =
1

Γ(𝑚 − 𝛼)
∫

𝑤(𝑚)(𝜏)

(𝑡 − 𝜏)𝛼+1−𝑚
𝑑𝜏 

𝑡

0

=
1

Γ(𝑚 − 𝛼)
∫  

𝑡

0

  (𝑡

− 𝜏)𝑚−𝛼−1𝑤(𝑚)(𝜏)𝑑𝜏,   
 
where 𝑚 − 1 < 𝛼 < 𝑚 . Thus, we can write  

𝐷𝛼𝑤(𝑡) =
1

Γ(𝑚 − 𝛼)
(𝑡𝑚−𝛼−1 ∗ 𝑤(𝑚)(𝑡)).  (13) 

 
Taking SWT to both sides of Eq (13), we obtain:  
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𝑆[𝐷𝛼𝑤(𝑡)] =
1

Γ(𝑚 − 𝛼)
𝑆[𝑡𝑚−𝛼−1 ∗ 𝑤(𝑚)(𝑡)]. 

 
By using convolution property of SWT, 

𝑆[𝐷𝛼𝑤(𝑡)] =
𝑣2

Γ(𝑚 − 𝛼)
 𝑆[𝑡𝑚−𝛼−1] 𝑆[𝑤(𝑚)(𝑡)]

=
𝑣2

Γ(𝑚 − 𝛼)
Γ(𝑚

− 𝛼)𝑣𝑚−𝛼−2  (
1

𝑣𝑚
𝑅(𝑣)

− ∑  

𝑚−1

𝑘=0

 (
1

𝑣
)
𝑚−(𝑘−1)

𝑤(𝑘)(0))

= 𝑣𝑚−𝛼  (
1

𝑣𝑚
𝑅(𝑣)

− ∑  

𝑚−1

𝑘=0

 (
1

𝑣
)
𝑚−(𝑘−1)

𝑤(𝑘)(0))

=
1

𝑣𝛼
𝑅(𝑣)

− ∑  

𝑚−1

𝑘=0

 (
1

𝑣
)
𝑚−(𝑘−1)

𝑤(𝑘)(0). 

 

Theorem 5. The SWT of the Mittag-Leffler 
function is given by 

𝑆[ 𝐸𝛼,𝛽(𝑡)] =∑  

∞

𝑗=0

Γ(𝑗 + 1)

Γ(𝛼𝑗 + 𝛽)
𝑣𝑗−1. (14) 

 

Proof. The Mittag-Leffler function is defined by, 

𝐸𝛼,𝛽(𝑡) =∑  

∞

𝑗=0

𝑡𝑗

Γ(𝛼𝑗 + 𝛽)
,

𝑡, 𝛼, 𝛽 ∈ ℂ and 𝑅𝑒(𝛼) > 0. 

(15) 

 
Applying SWT for Mittag-Leffler function in Eq 
(15), to get: 

𝑆[ 𝐸𝛼,𝛽(𝑡)] = S [∑  

∞

𝑗=0

𝑡𝑗

Γ(𝛼𝑗 + 𝛽)
]

=∑  

∞

𝑗=0

1

Γ(𝛼𝑗 + 𝛽)
𝑆[𝑡𝑗]

=∑  

∞

𝑗=0

1

Γ(𝛼𝑗 + 𝛽)
𝑣𝑗−1 Γ(𝑗 + 1). 

Thus,  

𝑆[ 𝐸𝛼,𝛽(𝑡)] =∑  

∞

𝑗=0

Γ(𝑗 + 1)

Γ(𝛼𝑗 + 𝛽)
𝑣𝑗−1. 

Theorem 6. For   𝛼 > 0, 𝑎 ∈ ℝ  and  |𝑎𝑣𝛼| < 1, we 
have the following formulas of inverse SWT as 

(𝑖)   𝑆−1 [
1

𝑣(1 + 𝑎𝑣𝛼)
] = 𝐸𝛼(−𝑎𝑡

𝛼). (16) 

(𝑖𝑖)  𝑆−1 [
𝑎𝑣𝛼

𝑣(1 + 𝑎𝑣𝛼)
] =  𝑡𝛼  𝐸𝛼(−𝑎𝑡

𝛼).   (17) 

 

Proof. (𝑖) The formula of Mittag-Leffler function is, 

𝐸𝛼(−𝑎𝑡
𝛼) =∑  

∞

𝑗=0

 
(−𝑎𝑡𝛼)𝑗

Γ(𝛼𝑗 + 1)
. (18) 

 
By taking SWT of Eq (18), we get: 

𝑆[𝐸𝛼(−𝑎𝑡
𝛼)] = 𝑆 [∑  

∞

𝑗=0

 
(−𝑎𝑡𝛼)𝑗

Γ(𝛼𝑗 + 1)
]

= 𝑆 [∑  

∞

𝑗=0

 
(−𝑎)𝑗

Γ(𝛼𝑗 + 1)
 (𝑡𝛼𝑗)]

=∑  

∞

𝑗=0

 
(−𝑎)𝑗  𝑆[𝑡𝛼𝑗]

Γ(𝛼𝑗 + 1)

=
1

𝑣
 (

1

1 + 𝑎𝑣𝛼
). 

 
Thus, 

𝑆[𝐸𝛼(−𝑎𝑡
𝛼)] =

1

𝑣(1 + 𝑎𝑣𝛼)
. (19) 

 
By taking inverse SWT of Eq (19), we get: 

 𝑆−1 [
1

𝑣(1 + 𝑎𝑣𝛼)
] = 𝐸𝛼(−𝑎𝑡

𝛼). 

 

Proof. (𝑖𝑖) The formula of Mittag-Leffler function 
is:  

𝑡𝛼𝐸𝛼(−𝑎𝑡
𝛼) = ∑  

∞

𝑛=0

 
(−𝑎𝑡𝛼)𝑗( 𝑡𝛼)

Γ(𝛼𝑗 + 1)
. (20) 

 
By taking SWT of Eq (20), 

𝑆[𝑡𝛼  𝐸𝛼(−𝑎𝑡
𝛼)] = 𝑆 [∑  

∞

𝑗=0

 
(−𝑎𝑡𝛼)𝑗( 𝑡𝛼)

Γ(𝛼𝑗 + 1)
]

=∑  

∞

𝑗=0

 
(−𝑎)𝑗  𝑆[𝑡𝛼𝑗 𝑡𝛼]

Γ(𝛼𝑗 + 𝛽)

=∑  

∞

𝑗=0

 
(−𝑎)𝑗 𝑣𝛼(𝑗+1)−1 Γ(𝛼𝑗 + 1)

Γ(𝛼𝑗 + 1)

=
1

𝑣1−𝛼
(

1

(1 + 𝑎𝑣𝛼)
). 
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Thus,  

𝑆[𝑡𝛼  𝐸𝛼(−𝑎𝑡
𝛼)] =

𝑣𝛼−1

(1 + 𝑎𝑣𝛼)
. (21) 

 
By taking SWT inverse of Eq (21), we get:  

𝑆−1 [
𝑣𝛼−1

(1 + 𝑎𝑣𝛼)
] =  𝑡𝛼  𝐸𝛼(−𝑎𝑡

𝛼). 

 

Corollary 1.  For   𝛼 > 0, 𝑎 ∈ ℝ  &  |𝑎𝑣𝛼| < 1, we 
have the following   formula of inverse SWT as: 

𝑆−1 [
𝑣𝛼−2

(1 + 𝑎𝑣𝛼)
] =  𝑡𝛼−1 𝐸𝛼(−𝑎𝑡

𝛼). 

 
The formula of Mittag-Leffler function is: 

𝑡𝛼−1 𝐸𝛼(−𝑎𝑡
𝛼) =∑  

∞

𝑗=0

 
(−𝑎𝑡𝛼)𝑗( 𝑡𝛼−1)

Γ(𝛼𝑗 + 1)
. (22) 

 
By taking SWT of Eq (22), we obtain:  

𝑆[𝑡𝛼−1 𝐸𝛼(−𝑎𝑡
𝛼)] = 𝑆 [∑  

∞

𝑗=0

 
(−𝑎𝑡𝛼)𝑗( 𝑡𝛼−1)

Γ(𝛼𝑗 + 1)
]

=∑  

∞

𝑗=0

 
(−𝑎)𝑗   𝑆[𝑡𝛼𝑗 𝑡𝛼−1]

Γ(𝛼𝑗 + 1)

=∑  

∞

𝑗=0

 
(−𝑎)𝑗  𝑆[𝑡𝛼(𝑗+1)−1]

Γ(𝛼𝑗 + 1)
 

=∑  

∞

𝑗=0

 
(−𝑎)𝑗  𝑣𝛼(𝑗+1)−2 (Γ(𝛼𝑗 + 1)

Γ(𝛼𝑗 + 1)
 

=
1

𝑣2−𝛼
(

1

(1 + 𝑎𝑣𝛼)
). 

 
Thus,  

𝑆[𝑡𝛼−1 𝐸𝛼(−𝑎𝑡
𝛼)] =

𝑣𝛼−2

(1 + 𝑎𝑣𝛼)
. (23) 

 
By taking SWT inverse of Eq (23), we get: 

𝑆−1 [
𝑣𝛼−2

(1 + 𝑎𝑣𝛼)
] =  𝑡𝛼−1 𝐸𝛼(−𝑎𝑡

𝛼). 

 

 

4 Applications on Fractional 

 Differential Equations 
In this section, we present four interesting examples 
on fractional differential equations, that can be 
solved using the obtained results. 
 

Example 4.1. At the first example, we consider the 
following initial value problem in the case of 
nonhomogeneous Bagley-Torvik equation.  

𝐷2𝑤(𝑡) + 𝐷
3

2𝑤(𝑡) + 𝑤(𝑡) = 1 + 𝑡, (24) 

with the initial conditions: 
𝑤(0) = 𝑤′(0) = 1. (25) 

 

Solution: By applying SWT on Eq (24), we get:  
𝑆[𝐷2𝑤(𝑡)] + S [𝐷

3

2𝑤(𝑡)] + S[𝑤(𝑡)]

= 𝑆[1 + 𝑡]. 
(26) 

 
Running SWT for Eq (26), and using Theorem 2 for  
𝛼 =

3

2
 and 𝑚 = 2, we have: 
𝑅(𝑣)

𝑣2
−
𝑤(0)

𝑣3
−
𝑤′(0)

𝑣2
+ 𝑣−

3

2 𝑅(𝑣)

−∑  

1

𝑘=0

  (
1

𝑣
)

3

2
−(𝑘−1)

𝑤(𝑘)(0)

+ 𝑅(𝑣) =
1

𝑣
+ 1, 

(27) 

 
Substituting the initial conditions in Eq (25), we 
obtain:  
𝑅(𝑣)

𝑣2
−
1

𝑣3
−
1

𝑣2
+𝑣−

3

2 𝑅(𝑣) −  (
1

𝑣
)

5

2

− (
1

𝑣
)

3

2

+ 𝑅(𝑣)

=
1

𝑣
+ 1. 

 
Now, 

𝑅(𝑣) (
1

𝑣2
+
1

𝑣
3

2

+ 1)

= 1 +
1

𝑣
+
1

𝑣2
+
1

𝑣3
+
1

𝑣
3

2

+
1

𝑣
5

2

 , 

𝑅(𝑣) (
1

𝑣2
+
1

𝑣
3

2

+ 1) = (1 +
1

𝑣
)(

1

𝑣2
+
1

𝑣
3

2

+ 1). 

 
Thus, 

𝑅(𝑣) = 1 +
1

𝑣
. (28) 

 
Now, take inverse SWT for both sides of Eq (28), 
which implies:  

𝑤(𝑡) = 𝑡 + 1. 
 

Example 4.2. The second example discusses the 
idea of a nonhomogeneous linear equation: 

𝐷𝛼𝑤(𝑡) + 𝑤(𝑡) =
2𝑡2−𝛼

Γ(3 − 𝛼)
−

𝑡1−𝛼

Γ(2 − 𝛼)
+ 𝑡2 − 𝑡, 

(29) 

 
with the initial condition: 

𝑤(0) = 0   ,  0 < 𝛼 ⩽ 1. (30) 

Solution: Applying SWT to Equation (29) yields 
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𝑆[𝐷𝛼𝑤(𝑡)] + S[𝑤(𝑡)]

=
2

Γ(3 − 𝛼)
S[𝑡2−𝛼]

−
1

Γ(2 − 𝛼)
𝑆[𝑡1−𝛼] + S[𝑡2

− 𝑡]. 

(31) 

 
Running SWT for Eq (31), and using Theorem 2 for 
0 < 𝛼 ≤ 1   and  𝑚 = 1, we have:  
 

(
𝑅(𝑣)

𝑣𝛼
− (

1

𝑣
)
𝛼+1

w(0)) + 𝑅(𝑣)

=
2𝑣2−𝛼−1Γ(3 − 𝛼)

Γ(3 − 𝛼)

−
𝑣1−𝛼−1Γ(2 − 𝛼)

Γ(2 − 𝛼)
+ 2𝑣

− 1 . 

(32) 

 
Substituting the initial condition in Eq (32), we 
obtain: 

𝑅(𝑣)

𝑣𝛼
+ 𝑅(𝑣) = 2𝑣1−𝛼 − 𝑣−𝛼 + 2𝑣 − 1. 

 
Now, 

𝑅(𝑣) (
1

𝑣𝛼
+ 1) =

1

𝑣𝛼
(
2

𝑣−1
− 1) + 2𝑣 − 1, 

𝑅(𝑣) (
1

𝑣𝛼
+ 1)  =

1

𝑣𝛼
(2𝑣 − 1) + 2𝑣 − 1. 

𝑅(𝑣) = 2𝑣 − 1. (33) 
 
Taking inverse SWT for both sides of Eq (33), we 
get:  

𝑆−1[𝑅(𝑣)] = 𝑆−1(2𝑣 − 1), 
𝑤(𝑡) = 𝑡2 − 𝑡. 

 

Example 4.3. Evaluate the following linear initial 
value problem: 

𝐷𝛼𝑤(𝑡) + 𝑤(𝑡) = 0, (34) 
 
with the initial conditions, 

      𝑤(0) = 1,  𝑤′(0) = 0. (35) 
 
The second initial condition is for 𝛼 > 1  only, thus, 
we have two cases of  𝛼 and 𝐷𝛼𝑤(𝑡) considered  as 
0 < 𝛼 < 1 𝑎𝑛𝑑 1 < 𝛼 < 2 . 
 

Solution.  

(i) For  0 < 𝛼 < 1.   
 
By applying SWT for Eq (34), we get  

𝑆[𝐷𝛼𝑤(𝑡)] + S[𝑤(𝑡)] = 0. (36) 

Running SWT for Eq (39) and using Theorem 2 for  
0 < 𝛼 < 1   and  𝑚 = 1, we have  

𝑅(𝑣)

𝑣𝛼
− (

1

𝑣
)
𝛼+1

w(0) + 𝑅(𝑣) = 0. 
(37) 

 
By substituting the beginning conditions of 
Equation (37), we derive 

 
𝑅(𝑣)

𝑣𝛼
− (

1

𝑣
)
𝛼+1

+ 𝑅(𝑣) = 0. (38) 

 
Simplifying Eq (38), we get  

𝑅(𝑣) =
1

𝑣(𝑣𝛼+1)
=
1

𝑣
(
1

𝑣𝛼+1
). 

(ii) For  1 < 𝛼 < 2. By applying SWT for Eq (34), 
we get  

𝑆[𝐷𝛼𝑤(𝑡)] + S[𝑤(𝑡)] = 0. (39) 
 
Running SWT for Eq (39) and using Theorem 2, for 
1 < 𝛼 < 2, and   𝑚 = 2. 

𝑅(𝑣)

𝑣𝛼
−( (

1

𝑣
)
𝛼+1

w(0) −  (
1

𝑣
)
𝛼

w′(0))

+ 𝑅(𝑣) = 0. 

(40) 

 
We obtain the expression by changing the beginning 
conditions in Eq. (40) 

𝑅(𝑣)

𝑣𝛼
− (

1

𝑣
)
𝛼+1

+ 𝑅(𝑣) = 0, 

𝑅(𝑣) =
1

𝑣(𝑣𝛼+1)
=
1

𝑣
(
1

𝑣𝛼+1
), 

 
which gives the same results in both cases. Now by 
applying inverse SWT, we have  

𝑆−1[𝑅(𝑣)] = 𝑆−1 [
1

𝑣
(
1

𝑣𝛼+1
)].  

 
Thus, 

𝑤(𝑡) = 𝐸𝛼(−𝑡
𝛼). (41) 

 

Example 4.4. Consider the following linear initial 
value problem  

𝐷𝛼𝑤(𝑡) = 𝑤(𝑡) + 1, (42) 

 
with the initial condition, 

𝑤(0) = 0     , 0 < 𝛼 ⩽ 1. (43) 

 

Solution. By applying SWT for Eq (42), 
𝑆[𝐷𝛼𝑤(𝑡)] = S[𝑤(𝑡) + 1]. (44) 

 
Running SWT for Eq (44) and using Theorem 2, for 
0 < 𝛼 ⩽ 1  and 𝑚 = 1. 
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𝑅(𝑣)

𝑣𝛼
− ((

1

𝑣
)
𝛼+1

w(0)) = 𝑅(𝑣) +
1

𝑣
 . (45) 

 
Substituting the initial terms into equation (45), we 
conclude: 

𝑅(𝑣)

𝑣𝛼
= 𝑅(𝑣) +

1

𝑣
 , 

𝑅(𝑣) =
𝑣𝛼−1

(1 − 𝑣𝛼)
 . 

 
Now by applying inverse SWT, we have:  

𝑆−1[𝑅(𝑣)] = 𝑆−1 [
𝑣𝛼−1

(1 − 𝑣𝛼)
]. 

 
Thus, 

𝑤(𝑡) = 𝑡𝛼𝐸𝛼(−𝑡
𝛼). (46) 

 
 
5  Conclusion 
This paper investigates a unique method for 
fractional calculus that combines the SWT with the 
Mittag-Leffler function. We demonstrated how the 
SWT's basic features may simplify and improve the 
solution of fractional differential equations, a 
foundation for dealing with complicated 
mathematical problems. Solving fractional 
differential equations in this study, is based on the 
properties of SWT such as linearity, scaling, and 
convolution. Hiring the Mittag-Leffler function, we 
presented new solutions that demonstrate the 
effectiveness and adaptability of SWT in solving 
fractional differential equations. This article helps 
us to get better understanding for fractional calculus 
and presents new techniques for researchers. 
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