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Abstract: - We introduce the notion of intrinsically Hölder graphs in metric spaces that generalized the one of
intrinsically Lipschitz sections. This concept is relevant because it has many properties similar to Hölder maps but
is profoundly different from them. We prove some relevant results as the Ascoli-Arzelà compactness Theorem,
Ahlfors-David regularity and the Extension Theorem for this class of sections. In the first part of this note, thanks
to Cheeger theory, we define suitable sets in order to obtain a vector space over R or C, a convex set and an
equivalence relation for intrinsically Hölder graphs. These last three properties are new also in the Lipschitz case.
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1 Introduction
Starting to the seminal papers [1, 2, 3] (see also
[4, 5]), in [6] we generalize the notion of intrinsi-
cally Lipschitz maps introduced in subRiemannian
Carnot groups [7, 8, 9]. This concept was intro-
duced in order to give a good definition of rectifi-
ability in subRiemannian geometry after the nega-
tive result shown in [10] (see also [11]) regarding
the classical definition of rectifiability using Lips-
chitz maps given by [12]. The notion of rectifi-
able sets is a key one in Calculus of Variations and
in Geometric Measure Theory. The reader can see
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In this paper, we give a new natural definition
of intrinsically Hölder sections (see Definition 2.1)
which includes intrinsically Lipschitz ones. More
precisely, this paper differs from the related ones be-
cause the settings are metric spaces which are more
general than Carnot groups and because intrinsically
Hölder maps has many properties similar to Hölder
maps but are profoundly different from them (see [4,
Example 4.58]). There are two main reasons for the
importance of these mappings. First, their defini-
tion is extremely simple and widely applicable, and
so they can be found in abundance on any metric
space without any assumptions of smoothness. Sec-
ond, despite the the simplicity of their definition, they
often possess many rigidity properties and therefore
their study can yield surprising analytic and geomet-
ric conclusions.

We prove the following results using basic mathe-
matical tools.

1. Theorem 2.1, i.e., Compactness Theorem a lá

Ascoli-Arzelà for the intrinsically Hölder sec-
tions.

2. Theorem 2.2, i.e., Ahlfors-David regularity for
the intrinsically Hölder sections.

3. Proposition 3.3 states that the class of the intrin-
sically Hölder sections is a convex set.

4. Theorem 3.1 states that a suitable class of the in-
trinsically Hölder sections is a vector space over
R or C.

5. Theorem 4.1 gives an equivalence relation for a
suitable class of the intrinsically Hölder sections.

6. Theorem 5.1, i.e., Extension Theorem for the in-
trinsically Hölder sections.

The points (3)− (4)− (5) are new results also in
the context of Lipschitz sections.

2 Intrinsically Hölder sections:
definition and basic properties

Definition 2.1 (Intrinsic Hölder section) Let (X ,d)
be a metric space and let Y be a topological space.
We say that a map ϕ : Y → X is a section of a quotient
map π : X → Y if π ◦ ϕ = idY . Moreover, we say
that ϕ is an intrinsically (L,α)-Hölder section with
constant L > 0 and α ∈ (0,1) if in addition

d(ϕ(y1),ϕ(y2))≤Ld(ϕ(y1),π
−1(y2))

α +d(ϕ(y1),π
−1(y2)),

(1)
for all y1,y2 ∈ Y.
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Equivalently, we are requesting that d(x1,x2) ≤
Ld(x1,π

−1(π(x2)))
α + d(x1,π

−1(π(x2))), for all
x1,x2 ∈ ϕ(Y ).

The standard example for us is when X is a met-
ric Lie group G (meaning that the Lie group G is
equipped with a left-invariant distance that induces
the manifold topology), for example a subRieman-
nian Carnot group, and Y is the space of left cosets
G/H, where H < G is a closed subgroup and π : G →
G/H is the projection modulo H, g 7→ gH.

When α = 1, a section ϕ is intrinsically Lipschitz
in the sense of [6]. Moreover, we underline that, in
the case α = 1 and π is a Lipschitz quotient or sub-
metry [24, 25], the results trivialize, since in this case
being intrinsically Lipschitz is equivalent to biLips-
chitz embedding, see Proposition 2.4 in [6].

We further rephrase the definition as saying that
ϕ(Y ), which we call the graph of ϕ , avoids some par-
ticular sets (which depend on α,L and ϕ itself):

Proposition 2.1 Let π : X → Y be a quotient map
between a metric space and a topological space,
ϕ : Y → X be a section of π , α ∈ (0,1) and L > 0.
Then ϕ is intrinsically (L,α)-Hölder if and only if
ϕ(Y )∩Rx,L = /0, for all x ∈ ϕ(Y ), where Rx,L :=
{x′ ∈ X |
Ld(x′,π−1(π(x)))α +d(x′,π−1(π(x)))< d(x′,x)}.

Proposition 2.1 is a triviality, still its purpose is to
stress the analogy with the intrinsically Lipschitz sec-
tions theory introduced in [6] when α = 1. In partic-
ular, the sets Rx,L are the intrinsic cones in the sense
of Franchi, Serapioni and Serra Cassano when X is a
subRiemannian Carnot group and α = 1.

Definition 2.1 it is very natural if we think that
what we are studying graphs of appropriate maps.
However, in the following proposition, we introduce
an equivalent condition of (1) when Y is a compact
set.

Proposition 2.2 Let π : X →Y be a quotient map be-
tween a metric space X and a topological and com-
pact space Y and let α ∈ (0,1). The following are
equivalent:

1. there is L > 0 such that d(ϕ(y1),ϕ(y2)) ≤
Ld(ϕ(y1),π

−1(y2))
α + d(ϕ(y1),π

−1(y2)), for
all y1,y2 ∈ Y.

2. there is K ≥ 1 such that

d(ϕ(y1),ϕ(y2))≤ Kd(ϕ(y1),π
−1(y2))

α , (2)

for all y1,y2 ∈ Y.

(1) ⇒ (2). This is trivial when
d(ϕ(y1),π

−1(y2)) ≤ 1. On the other hand,

if we consider y1,y2 ∈ Y and x̄ ∈ X such that
d(ϕ(y1),π

−1(y2)) = d(ϕ(y1), x̄) > 1, then it is pos-
sible to consider ℓ equidistant points x1, . . . ,xℓ ∈ X
such that

d(ϕ(y1), x̄) = d(ϕ(y1),x1)+
ℓ−1

∑
i=1

d(xi,xi+1)+d(xℓ, x̄),

with d(ϕ(y1),x1) = d(xi,xi+1) = d(xℓ, x̄) ∈ (1
2 ,1).

Here, ℓ≤ ⌊d(ϕ(y1), x̄)⌋+1 depends on y1,y2 and ⌊k⌋
denotes the integer part of k. However, it is possible
to choose k ∈ R+ defined as

k := sup
y1,y2∈Y

d(ϕ(y1),π
−1(y2)), (3)

such that k not depends on the points and ℓ ≤
k. We notice that this constant is finite be-
cause, on the contrary, we get the contradiction
∞ = d(ϕ(y1),π

−1(y2)) ≤ d(ϕ(y1),ϕ(y2)). Hence,
d(ϕ(y1),ϕ(y2))≤ Ld(ϕ(y1), x̄)α +d(ϕ(y1), x̄)
= Ld(ϕ(y1), x̄)α

+d(ϕ(y1),x1)+∑
ℓ−1
i=1 d(xi,xi+1)+d(xℓ, x̄)

≤ Ld(ϕ(y1), x̄)α

+d(ϕ(y1),x1)
α +∑

ℓ−1
i=1 d(xi,xi+1)

α +d(xℓ, x̄)α

≤ (L+3(⌊k⌋+1))d(ϕ(y1), x̄)α

=: Kd(ϕ(y1), x̄)α .
(2)⇒ (1). This is a trivial implication.

Definition 2.2 (Intrinsic Hölder with respect to a section)
Given sections ϕ,ψ : Y → X of π . We say that ϕ is
intrinsically (L,α)-Hölder with respect to ψ at point
x̂, with L > 0,α ∈ (0,1) and x̂ ∈ X, if

1. x̂ ∈ ψ(Y )∩ϕ(Y );

2. ϕ(Y )∩Cψ

x̂,L = /0,

where Cψ

x̂,L := {x ∈ X :
d(x,ψ(π(x)))> Ld(x̂,ψ(π(x)))α +d(x̂,ψ(π(x)))}.

Remark 1 Definition 2.2 can be rephrased as fol-
lows. A section ϕ is intrinsically (L,α)-Hölder with
respect to ψ at point x̂ if and only if there is ŷ ∈ Y
such that x̂ = ϕ(ŷ) = ψ(ŷ) and

d(x,ψ(π(x)))≤ Ld(x̂,ψ(π(x)))α +d(x̂,ψ(π(x))),
(4)

for all x ∈ ϕ(Y ), which equivalently means

d(ϕ(y),ψ(y))≤ Ld(ψ(ŷ),ψ(y))α +d(ψ(ŷ),ψ(y)),
(5)

for all y ∈ Y.

Notice that Definition 2.2 does not induce an
equivalence relation because of lack of symmetry in
the right-hand side of (5). In Section 4 we give a
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stronger definition in order to obtain an equivalence
relation.

Finally, following Cheeger theory [26] (see also
[27, 28]), we give another equivalent property of
Hölder section. Here it is fundamental that Y is a
compact set.

Proposition 2.3 Let X be a metric space, Y a topo-
logical and compact space, π : X → Y a quotient
map, L > 0 and α,β ,γ ∈ (0,1). Assume that every
point x ∈ X is contained in the image of an intrinsic
(L,α)-Hölder section ψx for π . Then for every sec-
tion ϕ : Y → X of π the following are equivalent:

1. for all x ∈ ϕ(Y ) the section ϕ is intrinsically
(L1,β )-Hölder with respect to ψx at x;

2. the section ϕ is intrinsically (L2,γ)-Hölder.

The proof of the last statement is an immediately
consequence of the following result.

Proposition 2.4 Let X be a metric space, Y a topo-
logical and compact space, and π : X →Y a quotient
map. Let L > 0 and y0 ∈ Y . Assume ϕ0 : Y → X is an
intrinsically (L,α)-Hölder section of π . Let ϕ : Y →
X be a section of π such that x0 := ϕ(y0) = ϕ0(y0).
Then the following are equivalent:

1. For some L1 > 0 and β ∈ (0,1), ϕ is intrinsically
(L1,β )-Hölder with respect to ϕ0 at x0;

2. For some L2 ≥ 1 and γ ∈ (0,1), ϕ satisfies

d(x0,ϕ(y))≤ L2d(x0,π
−1(y))γ , ∀y ∈ Y. (6)

Moreover, the constants L1 and L2 are quantitatively
related in terms of L.

We begin recall that, by Proposition 2.2, (1) is
equivalent to (2).

(1) ⇒ (2). For every y ∈ Y, it follows that
d(ϕ(y),x0)≤ d(ϕ(y),ϕ0(y))+d(ϕ0(y),x0)

≤ L1d(ϕ0(y),x0)
β +d(ϕ0(y),x0)

≤ L1Ld(x0,π
−1(y))βα +Ld(x0,π

−1(y))α

≤ L(L1 +1)max{d(x0,π
−1(y))βα ,d(x0,π

−1(y))α}
where in the first inequality we used the triangle
inequality, and in the second one the intrinsic Hölder
property (1) of ϕ. Then, in the third inequality we
used the intrinsic Hölder property of ϕ0. Here, notic-
ing that βα < α, we have that if d(x0,π

−1(y)) ≤ 1,
then max{d(x0,π

−1(y))βα ,d(x0,π
−1(y))α} =

d(x0,π
−1(y))βα . On the other hand, if

d(x0,π
−1(y)) > 1, then using a similar technique

using in Proposition 2.2 we obtain the same maxi-
mum with additional constant K := L + 3(⌊k⌋+ 1)
where k ∈ R is given by costuniversale. Definitely,
d(ϕ(y),x0)≤ LK(L1 +1)d(x0,π

−1(y))βα .

(2) ⇒ (1). For every y ∈ Y, we have that
d(ϕ(y),ϕ0(y))≤ d(ϕ(y),x0)+d(x0,ϕ0(y))
≤ L2d(ϕ0(y),x0)

γ + d(ϕ0(y),x0), where in the first
equality we used the triangle inequality, and in the
second one we used (6).

It is easy to see that if α = 1, then we get β = γ

and so we have the following corollary.

Corollary 2.1 Let X be a metric space, Y a topolog-
ical and compact space, π : X → Y a quotient map,
L≥ 1 and β ∈ (0,1). Assume that every point x∈X is
contained in the image of an intrinsically L-Lipschitz
section ψx for π . Then for every section ϕ : Y → X of
π the following are equivalent:

1. for all x ∈ ϕ(Y ) the section ϕ is intrinsically
(L1,β )-Hölder with respect to ψx at x;

2. the section ϕ is intrinsically (L2,β )-Hölder.

2.1 Continuity
An intrinsically (L,α)-Hölder section ϕ : Y → X
of π is a continuous section. Indeed, fix a point
y ∈ Y . Since π is open, for every ε ∈ (0,1) and
every x ∈ X such that x = ϕ(y) we know that
there is an open neighborhood Uε of π(x) = y such
that Uε ⊂ π(B(x, [ε/(L + 1)]1/α)). Hence, if y′ ∈
Uε then there is x′ ∈ B(x, [ε/(L + 1)]1/α) such that
π(x′) = y′. That means x′ ∈ π−1(y′) and, con-
sequently, d(ϕ(y),ϕ(y′)) ≤ Ld(ϕ(y),π−1(y′))α +
d(ϕ(y),π−1(y′))
≤ (L+1)d(x,x′)α

≤ ε, i.e., ϕ(Uε)⊂ B(x,ε).

2.2 An Ascoli-Arzelà compactness theorem
Similar to the Lipschitz case, we have the following
theorem a lá Ascoli-Arzelá.

Theorem 2.1 (Equicontinuity and Compactness Theorem)
Let π : X → Y be a quotient map between a metric
space X for which closed balls are compact and a
topological space Y . Then,
(i) For all K′ ⊂ Y compact, L ≥ 1, α ∈ (0,1),K ⊂ X
compact, and y0 ∈Y the set A0 := {ϕ|K′ : K′ → X |ϕ :
Y → X is intrinsically (L,α)-Hölder section
of π,ϕ(y0) ∈ K} is equibounded, equicontinuous,
and closed in the uniform convergence topology.
(ii) For all L ≥ 1, α ∈ (0,1),K ⊂ X compact, and
y0 ∈ Y the set { ϕ : Y → X : ϕ is intrinsically
(L,α)-Hölder section of π , ϕ(y0) ∈ K} is compact
with respect to the topology of uniform convergence
on compact sets.

The proof is similar to the one of [6, Theorem
1.2].
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2.3 Ahlfors-David regularity
Following again [6], we can prove an Ahlfors-David
regularity for the intrinsically Hölder sections. Re-
call that in Euclidean case Rs, there are (L,α)-Hölder
maps such that the (s + 1 − α)-Hausdorff measure
of their graphs is not zero and the (s+ 1)-Hausdorff
measure of their graphs is zero, we give the following
result.

Theorem 2.2 (Ahlfors-David regularity) Let
π : X → Y be a quotient map between a metric space
X and a topological space Y such that there is a
measure µ on Y such that for every r0 > 0 and every
x,x′ ∈ X with π(x) = π(x′) there is C > 0 such that

µ(π(B(x,r)))≤Cµ(π(B(x′,r))), ∀r ∈ (0,r0).
(7)

Let ℓ ∈ (0,∞). We also assume that there is an in-
trinsically (L,α)-Hölder section ϕ : Y → X of π such
that ϕ(Y ) is locally (ℓ+ 1−α)-Ahlfors-David regu-
lar with respect to the measure ϕ∗µ .

Then, for every intrinsically (L,α)-Hölder sec-
tion ψ : Y → X of π, the set ψ(Y ) is locally Q-
Ahlfors-David regular with respect to the measure
ψ∗µ, where Q = α(ℓ+1−α) when the radius of the
balls is small than 1 and Q = ℓ+1−α when the ra-
dius of the balls is larger than 1.

Namely, locally Q-Ahlfors-David regularity
means that the measure ϕ∗µ is such that for each
point x ∈ ϕ(Y ) there exist r0 > 0 and C > 0 so that
C−1rQ ≤ ϕ∗µ

(
B(x,r) ∩ ϕ(Y )

)
≤ CrQ, f orallr ∈

(0,r0). The same inequality will hold for ψ∗µ with a
possibly different value of C and Q.

The proof of this statement is similar to the one
of [6, Theorem 1.3]. We notice that in the Lips-
chitz case we use [6, Proposition 2.12 (iii)]; here,
the corresponding result is the following one: Let
X be a metric space, Y a topological space, and
π : X → Y a quotient map. If ϕ : Y → X is an intrin-
sically (L,α)-Hölder section of π with α ∈ (0,1) and
L > 0, then π (B(p,r))⊂ π(B(p,Lrα + r)∩ϕ(Y ))⊂
π(B(p,Lrα + r)), for all p ∈ ϕ(Y ) and r > 0.

3 Properties of linear and quotient
map

In order to give some relevant properties as convexity
and being vector space over R we need to ask that π

is also a linear map. Notice that this fact is not too
restrictive because in our idea π is the ’usual’ projec-
tion map. More precisely, throughout the section we
will consider π a linear and quotient map between a
normed space X and a topological space Y .

3.1 Basic properties
In this section we give two simple results in the par-
ticular case when π is a linear map.

Proposition 3.1 Let π : X → Y be a linear and quo-
tient map between normed spaces X and Y. The set of
all section of π is a convex set.

Fix t ∈ [0,1] and let ϕ,ψ :Y →X sections of π. By
the simply fact π(tϕ(y)+(1−t)ψ(y))= tπ(ϕ(y))+
(1− t)π(ψ(y)) = y, we get the thesis.

Proposition 3.2 Let π : X → Y be a linear and quo-
tient map between normed spaces X and Y. If ϕ : Y →
X is an intrinsically Hölder section of π, then for any
λ ∈ R−{0} the section λϕ is also intrinsic Hölder
for 1/λπ with the same Lipschitz constant up to the
constant |λ |1−α .

Fix λ ∈ R − {0}. The fact that λϕ is a sec-
tion is trivial using the similar argument of Propo-
sition 3.1. On the other hand, for any y1,y2 ∈ Y
∥λϕ(y1)−λϕ(y2)∥ ≤ |λ |Ld(ϕ(y1),π

−1(y2))
α

= |λ |1−αLd(λϕ(y1),(1/λπ)−1(y2))
α , i.e., the the-

sis holds. This fact follows by these observations:

1. if d(ϕ(y1),π
−1(y2)) = d(ϕ(y1),a) then

|λ |αd(ϕ(y1),π
−1(y2))

α = ∥λϕ(y1)−λa∥α .

2. λa ∈ π−1(λy).

3. π−1(λy) = (1/λπ)−1(y).

The second point is true because using the linear-
ity of π we have that π(λa) = λπ(a) = λy. Finally,
the third point holds because π−1(λy) = {x ∈ X :
π(x) = λy}
= {x ∈ X : 1/λπ(x) = y}
= (1/λπ)−1(y), as desired.

3.2 Convex set
In this section we show that the set of all intrinsically
Hölder sections is a convex set. We underline that the
hypothesis on boundness of Y is not necessary.

Definition 3.1 (Intrinsic Hölder set with respect to ψ)
Let α ∈ (0,1] and ψ : Y → X a section of π . We
define the set of all intrinsically Hölder sections of π

with respect to ψ at point x̂ as H ψ,x̂,α := {ϕ : Y →
X a section of π : ϕ is intrinsically
(L̃,α)-Hölder w.r.t. ψ at point x̂ for some L̃ > 0}.

Proposition 3.3 Let π : X → Y be a linear and quo-
tient map between normed spaces X and Y. Assume
also that α ∈ (0,1], ψ : Y → X a section of π and
x̂ ∈ ψ(Y ). Then, the set Hψ,x̂,α is a convex set.

Let ϕ,η ∈ Hψ,x̂,α and let t ∈ [0,1]. We want to
show that

w := tϕ +(1− t)η ∈ Hψ,x̂,α .

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.75 Daniela Di Donato

E-ISSN: 2224-2880 726 Volume 23, 2024



Notice that, by Proposition 3.1, w is a section of π and
w(ȳ) = ϕ(ȳ) = η(ȳ) = x̂ for some ȳ ∈Y. On the other
hand, for every y ∈ Y we have ∥w(y)− ψ(y)∥ =
∥t(ϕ(y)− ψ(y)) + (1 − t)(η(y)− ψ(y))∥, and so
∥w(y)− ψ(y)∥ ≤ t∥ϕ(y)− ψ(y)∥+ (1 − t)∥η(y)−
ψ(y)∥. Hence, d(w (y),ψ(y))≤ tLϕd(ψ(ȳ),ψ(y))α

+(1− t)Lψd(ψ(ȳ),ψ(y))α +d(ψ(ȳ),ψ(y))
= [t(Lϕ −Lψ)+Lψ ]d(ψ(ȳ),ψ(y))α

+d(ψ(ȳ),ψ(y)),
for every y ∈ Y, as desired.

3.3 Vector space
In this section we show that a ’large’ class of intrin-
sically Hölder sections is a vector space over R or C.
Notice that it is no possible to obtain the statement for
Hψ,x̂,α since the simply observation that if ψ(ŷ) = x̂
then ψ(ŷ)+ψ(ŷ) ̸= x̂.

Theorem 3.1 Let π : X → Y is a linear and quotient
map between normed spaces X and Y. Assume also
that ψ : Y → X is a section of π.

Then, for any α ∈ (0,1], the set
⋃

λ∈R+ Hλψ,λ x̂,α ∪
{0} is a vector space over R or C.

Let ϕ,η ∈
⋃

λ∈R+ Hλψ,λ x̂,α and β ∈ R−{0}. We
want to show that

1. w = ϕ +η ∈
⋃

λ∈R+ Hλψ,λ x̂,α .

2. βϕ ∈
⋃

λ∈R+ Hλψ,λ x̂,α .

(1). If ϕ ∈ Hδ1ψ,δ1x̂,α and η ∈ Hδ2ψ,δ2x̂,α for some
δ1,δ2 ∈ R+ it holds

w ∈ H(δ1+δ2)ψ,(δ1+δ2)x̂,α .

For simplicity, we choose ϕ,η ∈ Hψ,x̂,α and so it re-
mains to prove

w ∈ H2ψ,2x̂,α .

By linear property of π , w is a section of 1/2π.
On the other hand, if ψ(ȳ) = x̂, then w(ȳ) = ϕ(ȳ)+
η(ȳ) = 2ψ(ȳ) ∈ X . Moreover, using (5), we deduce
∥w(y)−2ψ(y)∥= ∥ϕ(y)+η(y)−2ψ(y)∥
≤ ∥ϕ(y)−ψ(y)∥+∥η(y)−ψ(y)∥
≤ 2max{Lϕ ,Lη}∥ψ(ȳ)−ψ(y)∥α

+2∥ψ(ȳ)−ψ(y)∥
= 21−α max{Lϕ ,Lη}∥2ψ(ȳ)−2ψ(y)∥α

+∥2ψ(ȳ)−2ψ(y)∥, for any y ∈ Y, as desired.
(2). Let β ∈ R− {0} and ϕ ∈ Hψ,x̂,α . By lin-

ear property of π,βϕ is a section of 1/βπ. On the
other hand, βϕ(ȳ) = βψ(ȳ) = β x̂ ∈ X . Moreover, us-
ing (5), we deduce ∥βϕ(y)−βψ(y)∥= |β |∥ϕ(y)−
ψ(y)∥
≤ |β |Lϕ∥ψ(ȳ)−ψ(y)∥α

+ |β |∥ψ(ȳ)−ψ(y)∥
= Lϕ∥βψ(ȳ)−βψ(y)∥α

+∥βψ(ȳ)−βψ(y)∥,
for any y ∈ Y. Hence βϕ ∈ Hβψ,β x̂,α and the proof is
complete.

Remark 2 Theorem 3.1 holds also if we consider
λ ∈ R− instead of R+.

3.4 Examples
In this section, π is a linear map. Here, we present
some examples of linear sections and intrinsically
Lipschitz sections.

1. Let the general linear group X = GL(n,R) or
X = GL(n,C) of degree n which is the set of
n× n invertible matrices, together with the op-
eration of ordinary matrix multiplication. We
consider Y = R∗ = GL(n,R)/SL(n,R) or Y =
C∗ = GL(n,C)/SL(n,C) where the special lin-
ear group SL(n,R) (or SL(n,C)) is the subgroup
of GL(n,R) (or GL(n,C)) consisting of matri-
ces with determinant of 1. Here the linear map
π = det : GL(n,R) → R∗ is a surjective homo-
morphism where Ker(π) = SL(n,R).

2. Let X = GL(n,R) as above and Y =
GL(n,R)/O(n,R) where O(n,R) is the or-
thogonal group in dimension n. Recall that Y is
diffeomorphic to the space of upper-triangular
matrices with positive entries on the diagonal,
the natural map π : X → Y is linear.

3. Let X = R2,Y = R and π : R2 → R defined as
π((x1,x2)) := x1 + x2 for any (x1,x2) ∈ R2. An
easy example of sections of π is the following
one: let ϕ : R → R2 given by ϕ(y) = (by+
a f (y),(1−b)y−a f (y)), ∀y ∈R, where a,b ∈
R and f : R→ R is a continuous map.

4. Let X = R2κ ,Y = R and π : R2κ → R de-
fined as π((x1, . . . ,x2κ)) := x1+ . . .+x2κ for any
(x1, . . . ,x2κ)∈R2κ . An easy example of sections
of π is the following one: let ϕ : R→ R2κ given
by ϕ(y) =
(y+a1 f1(y),−a1 f1(y),a2 f2(y),−a2 f2(y),
. . . ,aκ fκ ,−aκ fκ), for all y ∈ R, where ai ∈ R
and fi : R → R are continuous maps for any
i = 1, . . . ,κ .

5. Regarding examples of intrinsically Lipschitz
sections the reader can see [4, Example 4.58].

4 An equivalence relation
In this section X is a metric space, Y a topological
space and π : X → Y a quotient map (we do not ask
that π is a linear map). We stress that Definition 2.2
does not induce an equivalence relation, because of
lack of symmetry in the right-hand side of (5). As
a consequence we must ask a stronger condition in
order to obtain an equivalence relation.
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Definition 4.1 [Intrinsic Hölder with respect to a
section in strong sense] Given sections ϕ,ψ : Y → X
of π . We say that ϕ is intrinsically (L,α)-Hölder
with respect to ψ at point x̂ in strong sense, with
L > 0,α ∈ (0,1] and x̂ ∈ X, if

1. x̂ ∈ ψ(Y )∩ϕ(Y );

2. it holds d(ϕ(y),ψ(y)) ≤
min{Ld(ψ(ŷ),ψ(y))α +d(ψ(ŷ),ψ(y)),
Ld(ψ(ŷ),ϕ(y))α +d(ψ(ŷ),ϕ(y))},
for every y ∈ Y.

Now we are able to give the main theorem.

Theorem 4.1 Let α ∈ (0,1] and π : X →Y be a quo-
tient map from a metric space X to a topological
space Y. Assume also that ψ : Y → X is a section of
π and x̂ ∈ X . Then, being intrinsically Hölder with
respect to ψ at point x̂ in strong sense induces an
equivalence relation. We will write the class of equiv-
alence of ψ at point x̂ as [Hψ,x̂,α ] := {ϕ : Y →
X a section of π :
ϕ is intrinsically (L̃,α)-Hölder with respect to
ψ at point x̂ in strong sense, for some L̃ > 0}.

An interesting observation is that, considering
Hψ,x̂,α , the intrinsic constants L can be change but
it is fundamental that the point x̂ is a common one for
the every section.

We need to show:

1. reflexive property;

2. symmetric property;

3. transitive property.

(1). It is trivial that ϕ ∽ ϕ.
(2). If ϕ ∽ ψ, then ψ ∽ ϕ. This follows from Def-

inition 4.1.
(3). We know that ϕ ∽ ψ and ψ ∽ η . Hence,

x̂ = ϕ(ŷ) = ψ(ŷ) = η(ŷ). Moreover, by Definition
4.1, it holds d(ϕ(y),ψ(y))≤ min{L1d(ψ(ŷ),ψ(y))α

+d(ψ(ŷ),ψ(y)),L1d(ψ(ŷ),ϕ(y))α

+d(ψ(ŷ),ϕ(y))},
d(ψ(y),η(y))≤ min{L2d(η(ŷ),η(y))α

+d(η(ŷ),η(y)),L2d(η(ŷ),ψ(y))α

+d(η(ŷ),ψ(y))},
for any y ∈ Y and, consequently, if L̃ =
2max{L1,L2}, then d(ϕ(y),ψ(y))≤ d(ϕ(y),ψ(y))+
d(ψ(y),η(y))
≤ min{L̃d(η(ŷ),η(y))α +d(η(ŷ),η(y)),
L̃d(ψ(ŷ),ϕ(y))α +d(ψ(ŷ),ϕ(y))},
= min{L̃d(η(ŷ),η(y))α +d(η(ŷ),η(y)),
L̃d(η(ŷ),ϕ(y))α +d(η(ŷ),ϕ(y))},
f orany y∈ Y. This means that ϕ ∽ η , as desired.

5 Level sets and extensions
A crucial property of Hölder sections is that under
suitable assumptions they can be extended. This
property is much studied in the context of metric
spaces if we consider the Hölder maps; the reader
can see [29, 30, 31] and their references. We need to
mention several earlier partial results on extensions
of Lipschitz graphs in the context of Carnot groups,
as for example in [32, 33], [34, Proposition 4.8],
[35, Theorem 1.5]), [36, Proposition 3.4], [5, The-
orem 4.1].

Our proof follows using the link between Hölder
sections and level sets of suitable maps. This idea is
widespread in the context of subRiemannian Carnot
groups (see, for instance, [37, 38, 39, 35]). In next
result, we say that a map f on X is L-biLipschitz on
fibers (of π) if on each fiber of π it restricts to an L-
biLipschitz map.

Theorem 5.1 (Extensions as level sets) Let π : X →
Y be a quotient map between a metric space X and a
topological space Y .
(5.1.i) If Z is a metric space, z0 ∈ Z and f : X → Z
is (λ ,β )-Hölder and λ -biLipschitz on fibers, with
λ > 0 and β ∈ (0,1), then there exists an intrinsi-
cally (λ 2,β )-Hölder section ϕ : Y → X of π such that
ϕ(Y ) = f−1(z0).
(5.1.ii) Vice versa, assume that X is geodesic and
that there exist k ≥ 1,α ∈ (0,1), ρ : X × X → R
k-biLipschitz equivalent to the distance of X , and
τ : X →R is (k,α)-Hölder and k-biLipschitz on fibers
such that

1. for all τ0 ∈ R the set τ−1(τ0) is an intrinsically
(k,α)-Hölder graph of a section ϕτ0 : Y → X ;

2. for all x0 ∈ τ−1(τ0) the map X → R,x 7→
δτ0(x) := ρ(x0,ϕτ0(π(x))) is k-Lipschitz on the
set {|τ| ≤ δτ0}.

Let Y ′ ⊂ Y a set and L ≥ 1. Then for every in-
trinsically (L,α)-Hölder section ϕ : Y ′ → π−1(Y ′) of
π|π−1(Y ′) : π−1(Y ′)→Y ′, there exists a map f : X →R
that is (K,α)-Hölder and K-biLipschitz on fibers,
with K ≥ 1, such that ϕ(Y ′) ⊆ f−1(0). In particular,
each ‘partially defined’ intrinsically Hölder graph
ϕ(Y ′) is a subset of a ‘globally defined’ intrinsically
Hölder graph f−1(0).

We underline that an important point is that the
constant β in (5.1.i) does not change.

[Proof of Theorem 5.1] The proof is the same
to [6, Theorem 1.4]. The only difference that we
want to notice is the ”good” map in the second
point is defined as follows: Fix x0 ∈ τ−1(τ0).
We consider the map fx0 : X → R defined as
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{ 2(Γ− γ(δτ0(x)
α +δτ0(x)) if |Γ| ≤ 2γ[δτ0(x)

α +δτ0(x)]
Γ if Γ > 2γ[δτ0(x)

α +δτ0(x)]
3Γ if Γ <−2γ[δτ0(x)

α +δτ0(x)]
where Γ := τ(x)− τ(x0) and γ := 2kL+1.
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Carathéodory spaces, Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5) 11, 939 (2012).

[37] L. Ambrosio, F. Serra Cassano, and D. Vit-
tone, Intrinsic regular hypersurfaces in Heisen-
berg groups, J. Geom. Anal. 16, 187 (2006).

[38] G. Antonelli, D. Di Donato, S. Don, and
E. Le Donne, Characterizations of uni-
formly differentiable co-horizontal intrinsic
graphs in Carnot groups, (2020), accepted
to Annales de l’Institut Fourier, available at
https://arxiv.org/abs/2005.11390.

[39] D. Di Donato, Intrinsic differentiability and in-
trinsic regular surfaces in Carnot groups, Poten-
tial Anal. 54, 1 (2021).

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself

D.D.D. is supported by the Italian MUR through
the PRIN 2022 project “Inverse problems in PDE:
theoretical and numerical analysis”, project code
2022B32J5C, under the National Recovery and Re-
silience Plan (PNRR), Italy, funded by the European
Union - Next Generation EU, Mission 4 Component
1 CUP F53D23002710006.

Conflicts of Interest The authors declare no conflict
of interest.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
US

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The author contributed in the present research, at all 

stages from the formulation of the problem to the 

final findings and solution. 
    

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.75 Daniela Di Donato

E-ISSN: 2224-2880 730 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Intrinsically Hölder sections: definition and basic properties
	Continuity 
	An Ascoli-Arzelà compactness theorem
	Ahlfors-David regularity

	Properties of linear and quotient map
	Basic properties
	Convex set
	Vector space
	Examples

	An equivalence relation
	Level sets and extensions
	Blank Page



