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Abstract: - When dealing with longitudinal data, if we directly select a specific model for modeling without any 
prior information about the existence of significant random effects before utilizing the mixed model, it may result 
in the misuse of the model, thereby affecting the final estimation results. This paper investigates a variable 
selection method that can jointly select both fixed and random eff ects in Bayesian mixed model under order 
constraints. This method can effectively prevent model misuse. A computationally feasible Gibbs algorithm is 
proposed for posterior inference. The performance of our proposal is evaluated by simulated data and two real 
applications related to Blood lead levels and Ramus bone heights. Results show that the proposed approaches 
perform very well in various situations. 
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1  Introduction 
In many applications, researchers have prior 
knowledge about the underlying parameters that 
satisfy an order restriction before the data are 
collected. For example, the researchers measured 
Ramus bone heights of 20 boys at four time points 
over 18 months, a natural assumption is that the 
means of ramus bone sizes (𝜇𝑖

′) satisfy the simple 
order 𝜇1 ≤ 𝜇2 ≤ 𝜇3 ≤ 𝜇3. [1], proposed a one-way 
ANOVA model with order constraints for this data 
and find evidence that there are only two growth 
spurts during the 18 months. However, [2] and [3] 
argued that random subject eff ect cannot be easily 
excluded from the model, especially when time is an 
explanatory variable. They developed a Bayesian 
hierarchical mixed model for multiple comparisons 
of fixed eff ects with a simple order restriction using 
mixtures of an exponential distribution and a discrete 
distribution. This matter raises a challenging problem 
of performing joint fixed and random eff ects 
selection in mixed models under order restriction. 
Model selection in mixed models without constraints 
has received substantial interest in recent years. 
Based on a penalized adaptive likelihood, [4] 
developed Bayesian variable selection by allowing 
fixed effects or standard deviations of random effects 

to be exactly zero in linear mixed models. [5], 
proposed a nested EM algorithm for variable 
selection of linear mixed effects. [6], proposed a 
simple iterative penalized procedure that is capable 
of simultaneously selecting and estimating both fixed 
effects and random effects in linear mixed-effects 
models. [7], integrated the penalized quasi-likelihood 
estimation framework with a penalization approach 
that enables simultaneous estimation of model 
parameters while automatically selecting important 
variables by imposing sparsity constraints on the 
coefficients of both fixed effects and random effects. 
[8], reviewed the methods for variable selection in 
linear mixed-effects models proposed in recent 
literature and compared the strengths and 
weaknesses of various approaches through extensive 
simulations. 

However, to our knowledge, there is little 
literature on the model selection of fixed eff ects 
together with the random eff ects in the mixed model 
with order restriction. [2], [3] proposed a Bayesian 
hierarchical mixed model for repeated measures data 
with missing values and a simple order restriction, 
but they did not consider the selection of random 
eff ects in the model. This paper develops a novel 
Bayesian variable selection approach for two-way 
ANOVA mixed model accounting for order 
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restrictions. Compared with existing literature, our 
greatest contribution is that our method can 
determine whether the fixed effects and random 
effects in the mixed model are significant, and 
simultaneously estimate the significant effects. In 
practical data modeling, when significant prior 
information is lacking, this can prevent misuse of the 
model and thereby improve the estimation accuracy 
of the model. A simple and efficient Gibbs sampler is 
proposed for posterior inference. The paper is 
organized as follows. Within Section 2, we describe 
the vectorized form of the two-way ANOVA mixed 
model under a simple order. We also propose 
variable selection procedures for both fixed and 
random eff ects in the model. Section 3 develops 
computational strategies for posterior inference. 
Section 4 conducts simulation studies to evaluate the 
performance of the proposed method. An analysis of 
two real applications is presented in Section 5. 
Section 6 concludes the paper. 
 

 

2  Model Description 
Suppose there are n subjects under investigation, and 
there are k treatment for each subject. Let 𝑦𝑖𝑗 be the 
observation of the response variable, the two-way 
ANOVA mixed model is then expressed as follows: 
 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝑏𝑗 + 𝜀𝑖𝑗 , 𝑖 = 1, … , 𝑘, 𝑗 = 1, … , 𝑛   (1)  
 
where 𝜇𝑖 is the fixed treatment eff ect (mean) for the 
i-th treatment, 𝑏𝑗 is a random subject eff ect which is 
N(0, 𝜎𝜏

2) random variable, and 𝜀𝑖𝑗  is measurement 
error which is N(0, 𝜎2) random variable. Suppose 
that the random subject eff ects and the measurement 
errors are all independent. In practical applications, 
there are generally the following three types of order 
constraints. 
(i) The simple order 𝜇1 ≤ · · · ≤ 𝜇𝑘 
(ii) The simple tree order 𝜇1 ≥ 𝜇𝑖 , 𝑖 = 2, … 𝑘 

(iii) The umbrella order 𝜇1 ≤ · · · ≤ 𝜇𝑔 ≥ 𝜇𝑔+1 ≥· · 
· ≥ 𝜇𝑘. 

For the simple order 𝜇1  ≤ · · · ≤ 𝜇𝑘 , let 
𝛿𝑚−1 = 𝜇𝑚 − 𝜇𝑚−1(2 ≤ 𝑚 ≤ 𝑘) . Thus we will 
have 𝜇𝑚 = 𝜇1 + 𝛿1 + ⋯ + 𝛿𝑚−1 .Let 𝛼𝑗  be a 
standard normal variable, the vectorized form of the 
model can be written as: 

𝑦𝑗 = 1𝑘𝜇1 + ∑ 𝑥𝑖𝛿𝑖 + 1𝑘𝜎𝑇𝛼𝑗 + 𝜀𝑗 ,

𝑘−1

𝑖=1

 

       𝛿1 ≥ 0, … , 𝛿𝑘−1 ≥ 0, 𝑗 = 1, … , 𝑛          (2)  

 

where  𝑦
𝑗

= (𝑦
1𝑗

, … , 𝑦
𝑘𝑗

)
′

, 𝜀𝑗 = (𝜀1𝑗, … , 𝜀𝑘𝑗)
′ , and 

1𝑘= (1, . . . , 1)′ which is a k × 1 vector. If the 
parameter means satisfy the simple tree order or the 
umbrella-order, we can also obtain a model similar to 
(2) through transformation. The detailed 
transformation method can be referred to in reference, 
[1]. 

By introducing indicator variables, we adopt the 
method proposed by [9] to select fixed and random 
eff ects simultaneously and fit the model. Bayesian 
variable selection received large attention in recent 
years, a nice review can be found in [10]. Setting 
𝛿𝑖 = 𝛾𝑖𝛽𝑖 and 𝛿𝜏 = 𝛾0𝜔𝜏, we can rewrite model (2) 
as: 

𝑦𝑗 = 1𝑘𝜇1 + ∑ +𝑥𝑖𝑦𝑖𝛽𝑖 + 1𝑘𝛾0𝜔𝑇𝛼𝑗 + 𝜀𝑗，

𝑘−1

𝑖=1

 

        𝛽1 ≥ 0, … , 𝛽𝑘−1 ≥ 0, 𝑗 = 1, … 𝑛,      (3) 
 
where 𝛾0, … , 𝛾𝑘−1 are binary indicator variables (0 
or 1) signifying which predictors are active in the 
model. The indicator variables are assumed 
independent Bernoulli prior distributions: 
 

𝛾𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖), 𝑖 = 0, … , 𝑘 − 1.    (4)  
 
Following [11], we use a weak prior for 𝜋𝑖, i.e. 

Uniform(0,1).We further assign the following 
hierarchical prior distribution for 𝛽𝑖,  

 
𝛽𝑖  ~ 𝑇𝑁(0, 𝜂𝑖 , 0, +∞), 𝜂𝑖 ~ 𝐼𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑏1) 

 
where 𝑎1, 𝑏1 are constants, 𝑇𝑁(𝜇, 𝜎2, 𝑎, 𝑏) denotes 
a truncated normal distribution on the interval (a,b), 
IGamma(a, b) denotes an inverse-gamma 
distribution with density function: 
 

𝑓(𝑥|𝑎, 𝑏) =
𝑏𝑎

𝑇(𝑎)
𝑥−𝑎−1𝑒𝑥𝑃−

𝑏

𝑥，𝑥 > 0. 

To implement the Bayesian model, we further set 
a conjugate norm distribution 𝑁(𝜇0, 𝜏0

2)  for 𝜇1 , 
where 𝜏0

2 is a constant, and a noninformative joint 
prior for 𝜔𝜏

2 and 𝜎2, 

𝜔𝜏
2, 𝜎2~

1

𝜎2(𝑘𝛾0𝜔𝜏
2 + 𝜎2)

 

3  Posterior 
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We outline the Gibbs sampler used to obtain 
posterior samples. The detailed algorithm is as 
follows. 

Let 𝑦 = (𝑦1, … , 𝑦𝑛) ,by integrating out 𝑏𝑖 ,the 
marginal likelihood is: 
m(y|𝜇1, {𝛽𝑖}, 𝜔𝜏

2, 𝜎2, {𝛾𝑖}) 
∝ (𝜎2)−

𝑛(𝑘−1)

2 (𝑘𝛾0𝜔𝜏
2 + 𝜎2)−

𝑛

2  
exp {−

1

2𝜎2 (𝑠1 −
𝛾0𝜔𝜏

2𝑆2

𝑘𝛾0𝜔𝜏
2+𝜎2)  

where 
𝑠1 = ∑ ∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙

𝑘−1
𝑙=1 𝛽𝑙)

2𝑘
𝑖=1

𝑛
𝑗=1   

 
and 

𝑠2 = ∑ [∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙
𝑘−1
𝑙=1 𝛽𝑙)𝑘

𝑖=1 ]
2𝑛

𝑗=1
  

 

3.1.1  Step 1–Sampling 𝝈𝟐 and 𝝈𝝉
𝟐: 

For the convenience of implementation, we let 𝜏2 =
𝑘𝛾0𝜔𝜏

2 + 𝜎2. 
Update 𝜎2 from its conditional distribution, an 

inverse-gamma distribution:  
𝜎2|𝑦, 𝜇1, {𝛾𝑖}, {𝛽𝑖}, 𝜏2 

~𝐼𝐺𝑎𝑚𝑚𝑎(
𝑛(𝑘 − 1)

2
,
1

2
(𝑠1 −

𝑠2

𝑘
) 

 
Update 𝜏2 from its conditional distribution, an 

inverse-gamma distribution: 
𝜏2|𝑦, 𝜇1, {𝛾𝑖}, {𝛽𝑖}, 𝜎2~𝐼𝐺𝑎𝑚𝑚𝑎 (

𝑛

2
,

𝑠2

2𝑘
) 

 
The variance of random subject eff ect 𝜎𝜏

2 can be 
computed by 𝜏2−𝜎2

𝑘
 after knowing 𝜏2 and 𝜎2 . 

 

3.1.2  Step 2–Sampling 𝜷𝒑: 

Update 𝛽𝑝  from its conditional distribution, a 
truncated norm distribution: 
 
Setting 
𝑠1 = ∑ ∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙

𝑘−1
𝑙=1 𝛽𝑙)

2𝑘
𝑖=1

𝑛
𝑗=1   

    ∝ ∑ ∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙
𝑘−1
𝑙=1 𝛽𝑙)

2𝑘
𝑖=𝑝+1

𝑛
𝑗=1   

  = (𝑛 ∑ 𝑥𝑖𝑝
2 𝛾𝑝

𝑘
𝑖=𝑝+1 )𝛽𝑝

2 − 2𝛽𝑝  

     ∑ ∑ [𝑥𝑖𝑝𝛾𝑝 (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙𝛽𝑙
𝑘−1
𝑙=1
𝑙≠𝑝

)]𝑘
𝑖=𝑝+1

𝑛
𝑗=1   

 
and 
𝑠2 = ∑ [∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙

𝑘−1
𝑙=1 𝛽𝑙)𝑘

𝑖=1 ]
2𝑛

𝑗=1   
   ∝ ∑ [∑ (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙

𝑘−1
𝑙=1 𝛽𝑙)

𝑘
𝑖=𝑝+1 ]

2
 𝑛

𝑗=1   
  = 𝑛(∑ 𝑥𝑖𝑝𝛾𝑝

𝑘
𝑖=𝑝+1 )

2
𝛽𝑝

2 − 2𝛽𝑝  
∑ ∑ [(∑ 𝑥𝑖𝑝𝛾𝑝

𝑘
𝑖=𝑝+1 ) (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙𝛽𝑙

𝑘−1
𝑙=1
𝑙≠𝑝

)]𝑘
𝑖=𝑝+1

𝑛
𝑗=1  . 

 
Setting 

𝑠4 = ∑ ∑ [𝑥𝑖𝑝𝛾𝑝 (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙𝛽𝑙
𝑘−1
𝑙=1
𝑙≠𝑝

)]𝑘
𝑖=𝑝+1

𝑛
𝑗=1 , 

 
and 
𝑠5 = ∑ ∑ [(∑ 𝑥𝑖𝑝𝛾𝑝

𝑘
𝑖=𝑝+1 ) (𝑦𝑖𝑗 − 𝜇1 − ∑ 𝑥𝑖𝑙𝛾𝑙𝛽𝑙

𝑘−1
𝑙=1
𝑙≠𝑝

)]𝑘
𝑖=𝑝+1

𝑛
𝑗=1 , 

 
we then have: 
[𝛽𝑝|𝑦, 𝜇1, 𝜔𝜏

2, 𝜎2, 𝛽−𝑝, {𝛾𝑖}] 

     ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
[( ∑ 𝑥𝑖𝑝

2 𝛾𝑝

𝑘

𝑖=𝑝+1

−
𝛾0𝜔𝜏

2

𝜏2
( ∑ 𝑥𝑖𝑝𝛾𝑝

𝑘

𝑖=𝑝+1

)

2

) 𝑛𝛽𝑝
2

− 2𝛽𝑝 (𝑠4 −
𝛾0𝜔𝜏

2

𝜏2
𝑠5)]} 

         𝑒𝑥𝑝 {−
𝛽𝑝

2

2𝑛𝑝
}                     (5) 

where 𝛽−𝑝 = (𝛽1, … , 𝛽𝑝−1, 𝛽𝑝+1, … , 𝛽𝑘−1).  
 
Then the full conditional posterior distributions 

of 𝛽𝑝 is a truncated norm distribution, 

𝛽𝑝|𝑦, 𝜇1, 𝜔𝜏
2, 𝜎2, 𝛽−𝑝, {𝛾𝑖} ~ TN (

𝑔2

𝑔1

,
1

𝑔1

, 0, +∞) 

where 𝑔1 =
𝑛

𝜎2
[∑ 𝑥𝑖𝑝

2 𝛾𝑝 −
𝛾0𝜔𝜏

2

𝜏2 (∑ 𝑥𝑖𝑝𝛾𝑝
𝑘
𝑖=𝑝+1 )

2𝑘
𝑖=𝑝+1 ] +

1

𝑛𝑝
  

and 𝑔2 =
1

𝜎2 (𝑠4 −
𝜎𝜏

2

𝜏2 𝑠5). 
 

3.1.3  Step 3–Sampling 𝝁𝟏: 

Update 𝜇1 from its conditional distribution, a norm 
distribution: 
[𝜇1|𝑦, {𝛽𝑖}, 𝜎𝜏

2, 𝜎2, {𝛾𝑖}]  

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑠1 −

𝛾0𝜔𝜏
2𝑆2

𝑘𝛾0𝜔𝜏
2 + 𝜎2

)} 

       𝑒𝑥𝑝 {−
(𝜇1−𝜇0)2

2𝜏0
2 } 𝑒𝑥𝑝 {−

(𝜇1−𝜇0)2

2𝜏0
2 }  

 = exp {−
1

2
[𝜇1

2 (
1

𝜏0
2 +

𝑛𝑘

𝑘𝛾0𝜔𝜏
2+𝜎2) −

        2𝜇1 (
𝜇0

𝜏0
2 +

𝑠3

𝑘𝛾0𝜔𝜏
2+𝜎2)]}, 

 
where 𝑠3 = ∑ ∑ (𝑦𝑖𝑗 − ∑ 𝑥𝑖𝑙𝛾𝑙𝛽𝑙

𝑘−1
𝑙=1 )𝑘

𝑖=1
𝑛
𝑗=1 . 

 
Setting 𝜇 =

𝜇0

𝜏0
2 +

𝑠3

𝑘𝛾0𝜔𝜏
2+𝜎2 and 𝑣 =

1

𝜏0
2 +

𝑛𝑘

𝑘𝛾0𝜔𝜏
2+𝜎2, the conditional posterior distributions of 

𝜇1 is then a norm distribution: 
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𝜇1|𝑦, {𝛽𝑖}, 𝜔𝜏
2, 𝜎2, {𝛾𝑖} ~ 𝑁 (

𝑛

𝑣
,
1

𝑣
) 

 

3.1.4  Step 4–Sampling 𝜼𝒊: 

Update 𝜂𝑖  from its conditional distribution, an 
inverse-gamma distribution: 

𝜂𝑖|𝑦, {𝛽𝑖}, 𝜔𝜏
2, 𝜎2, {𝛾𝑖}, 𝜇1  

~ 𝐼𝐺𝑎𝑚𝑚𝑎 (
1

2
+ 𝑎0,

𝛽𝑖
2

2
+ 𝑏0), 

 

3.1.5  Step 5-Sampling 𝜸𝒊: 
Let 𝛾−𝑖 = (𝛾0, … , 𝛾𝑖−1, 𝛾𝑖+1, … , 𝛾𝑘−1) . It can be 
demonstrated that the indicator variable 𝛾𝑖 follows a 
Bernoulli with probability parameter: 
 

𝑃(𝛾𝑖 = 1|𝑦, {𝛽𝑖}, 𝜔𝜏
2, 𝜎2, 𝛾−𝑖) =

𝐶𝑖

𝐶𝑖 + 𝑑𝑖
,   (6)  

where 
𝑐𝑖 = 𝑓(𝑦|{𝛽𝑖}, 𝜔𝜏

2, 𝜎2, 𝛾𝑖 = 1, 𝛾−𝑖)𝑓(𝛾𝑖 = 1, 𝛾−𝑖) 
 
and  

𝑑𝑖 =  𝑓(𝑦|{𝛽𝑖}, 𝜔𝜏
2, 𝜎2, 𝛾𝑖 = 0, 𝛾−𝑖)𝑓(𝛾𝑖 = 0, 𝛾−𝑖) 

 

3.1.6  Step 6-Sampling 𝝅𝒊: 

Conditional posterior for 𝜋𝑖. By the prior on 𝜋𝑖 and 
the prior on 𝛾𝑖 , the full conditional distribution of 
𝜋𝑖 is given by: 

𝜋𝑖|𝑦, {𝛽𝑖}, 𝜔𝜏
2, 𝜎2, {𝛾𝑖}, 𝜇1 

~ 𝐵𝑒𝑡𝑎(0.5 + 𝛾𝑖 , 0.5 − 𝛾𝑖 + 1). 
 

 

4   Simulation Studies 
In this section, we demonstrate the performance of 
our methods (BMS) and compare it with the 
Bayesian procedure for order restricted mixed model 
proposed by [2], [3] using a series of simulations. We 
first perform simulations with independent data and 
then those with dependent data. 

 
4.1  Dependent Data 
The data are generated from the model given by: 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝑏𝑗 + 𝜀𝑖𝑗, 𝑖 = 1, … ,4, 𝑗 = 1, … , 𝑛, 
 
where random subject effect 𝑏𝑗  and error term 𝜀𝑖𝑗 
are generated independently from 𝑁(0,2). Under the 
simple order and k =4 there are 8 candidate models 
on the equality/inequality of fixed treatment eff ects: 

𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 𝐻12: 𝜇1 = 𝜇2 = 𝜇3 < 𝜇4 
𝐻1: 𝜇1 = 𝜇2 < 𝜇3 < 𝜇4 𝐻13: 𝜇1 = 𝜇2 < 𝜇3 = 𝜇4 
𝐻2: 𝜇1 < 𝜇2 = 𝜇3 < 𝜇4 𝐻23: 𝜇1 < 𝜇2 = 𝜇3 = 𝜇4 
𝐻3: 𝜇1 < 𝜇2 < 𝜇3 = 𝜇4 𝐻𝐹: 𝜇1 < 𝜇2 < 𝜇3 < 𝜇4  

 

Following [12], [1] ,there are three scenarios: 
• Case 1: μ = (0, 0, 0, 0)′ , that is, there exists equal 

fixed treatment eff ects, 
• Case 2: μ = (0, 0, 0, 1)′ , that is, the last group has a 

diff erent fixed treatment eff ects, 
• Case 3: μ = (1, 2, 3, 4)′ , that is, the fixed treatment 

eff ects satisfy simple ordering. 
 
4.2  Independent Data 
The model is the same as that in dependent data, 
except for random eff ects:𝑏𝑗 = 0, 𝑗 = 1 … , n . We 
consider three sample sizes n= 10, n = 30, n = 100 
and repeat 500 times in each example. In all 
simulation settings, we suppose independent flat 
inverse Gamma prior distribution IGamma(2.2, 20) 
for 𝜂𝑖 , i = 1, 2, 3 and 𝜂𝜏, choose hyper-parameter 
𝜏0

2 = 100  for 𝜇1  such that we obtain weakly 
informative priors. We run our Gibbs sampler for 
10000 iterations with 3000 for burn-in. For fixed 
treatment eff ects, Table 1-2 list average posterior 
probabilities of all the possible models and the 
percentages of selecting the correct fixed parameters 
from 500 data sets for dependent data and 
independent data respectively. The true model is 
marked as ’*’.The bold font is used to highlight the 
posterior probabilities of the true model. Comparing 
the conclusions from Table 1, when μ = (0, 0, 0, 0), 
[2], [3] off er larger percent- ages of selecting the 
correct model than BMS, but when μ = (0, 0, 0, 1) 
and μ = (1, 2, 3, 4), our proposed methods BMS 
generally perform better than the [2], [3] method, 
showing the good performance of the method. It is 
also clearly seen from Table 1 that BMS tends to 
provide a larger average posterior probability of the 
true model than [2], and [3] in nearly all cases across 
the examples. Furthermore, for independent data, we 
can observe similar results from Table 2 as 
independent data. Moreover, as expected, we see that 
the average posterior probabilities of the correct 
model and the percentages of selecting the correct 
model values for both methods increase as the 
sample size increases, especially in Case 3 where the 
fixed treatment eff ects satisfy simple ordering. 

To check the performance of the proposed 
methods in identifying the correct model for random 
eff ect, Table 3 summarizes the percentages of 
selecting the correct random eff ect parameters from 
500 data sets for dependent data and independent 
data. Overall, Table 3 indicates that BMS yields 
promising results in both cases, even for a small 
sample size when 𝜂𝑖 = 10, suggesting good 
performance of our method. 
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5  Real Data Example 

5.1 Treatment of Lead-exposed Children 

 Trial 
We first apply the proposed methodology to the 
Treatment of Lead- exposed Children trial data 
(TLC), [13]. In this study, Blood lead levels for 50 of 
the children who did not receive the succimer 
capsules were measured at week 0 (baseline), week 
1, week 4, and week 6. We let 𝜇1 , 𝜇2 , 𝜇3 and 𝜇4 
denote the mean blood lead levels corresponding to 
week 6, week 4,week 1, and baseline, respectively. 
Because the homes of these children were cleaned 
using an established TLC regimen, it is reasonable to 
assume that the mean blood lead levels satisfy the 
simple order restriction, i.e., 𝜇1 ≤ 𝜇2 ≤ 𝜇3 ≤ 𝜇4.So 
there are eight candidate models: 

𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 𝐻12: 𝜇1 = 𝜇2 = 𝜇3 < 𝜇4 
𝐻1: 𝜇1 = 𝜇2 < 𝜇3 < 𝜇4 𝐻13: 𝜇1 = 𝜇2 < 𝜇3 = 𝜇4 
𝐻2: 𝜇1 < 𝜇2 = 𝜇3 < 𝜇4 𝐻23: 𝜇1 < 𝜇2 = 𝜇3 = 𝜇4 
𝐻3: 𝜇1 < 𝜇2 < 𝜇3 = 𝜇4 𝐻𝐹: 𝜇1 < 𝜇2 < 𝜇3 < 𝜇4  

 
Table 1. Results of the average posterior probabilities 

of all the possible models and the percentages of 
selecting the correct model from 500 repetitions for 

dependent data 
Hypothesis 𝑛𝑖 = 10 𝑛𝑖 = 30 𝑛𝑖 = 100 

BMS Shang BMS Shang BMS Shang 
case 1 𝐻0

∗ 0.560 0.328 0.703 0.335 0.779 0.356 
𝐻1 0.019 0.062 0.009 0.063 0.004 0.060 
𝐻2 0.025 0.068 0.010 0.067 0.005 0.062 
𝐻3 0.020 0.075 0.008 0.070 0.004 0.066 
𝐻12 0.127 0.131 0.094 0.138 0.068 0.137 
𝐻13 0.108 0.142 0.081 0.141 0.069 0.14 
𝐻23 0.137 0.158 0.094 0.152 0.070 0.147 
𝐻𝐹 0.003 0.036 0.001 0.035 0.000 0.033 

Percentages 0.820 0.998 0.924 0.994 0.962 0.994 
case 2 𝐻0 0.233 0.240 0.070 0.134 0.000 0.010 

𝐻1 0.075 0.100 0.092 0.153 0.083 0.199 
𝐻2 0.083 0.100 0.095 0.149 0.077 0.204 
𝐻3 0.025 0.068 0.008 0.040 0.000 0.003 
𝐻12

∗  0.370 0.187 0.644 0.297 0.831 0.475 
𝐻13 0.116 0.126 0.056 0.076 0.003 0.006 
𝐻23 0.086 0.121 0.024 0.064 0.000 0.004 
𝐻𝐹 0.013 0.059 0.010 0.087 0.005 0.101 

Percentages 0.514 0.244 0.874 0.794 0.978 0.994 
case 3 𝐻0 0.004 0.065 0.000 0.004 0.000 0.000 

𝐻1 0.179 0.152 0.141 0.205 0.009 0.107 
𝐻2 0.236 0.134 0.166 0.142 0.009 0.05 
𝐻3 0.155 0.139 0.158 0.164 0.007 0.042 
𝐻12 0.057 0.111 0.001 0.031 0.000 0.000 
𝐻13 0.139 0.162 0.043 0.141 0.000 0.005 
𝐻23 0.056 0.093 0.001 0.022 0.000 0.000 
𝐻𝐹

∗  0.174 0.145 0.490 0.293 0.975 0.796 
Percentages 0.086 0.036 0.582 0.398 0.998 0.962 

Table 2. Results of the average posterior probabilities 
of all the possible models and the percentages of 

selecting the correct model from 500 repetitions for 
independent data 

Hypothesis 𝑛𝑖 = 10 𝑛𝑖 = 30 𝑛𝑖 = 100 
BMS Shang BMS Shang BMS Shang 

case 1 𝐻0
∗ 0.561   0.326 0.703 0.35 0.78  0.372 

𝐻1 0.019 0.062 0.008 0.060 0.004 0.057 
𝐻2 0.025 0.068 0.010 0.063 0.005 0.058 
𝐻3 0.020 0.072 0.008 0.063 0.004 0.06 
𝐻12 0.127 0.137 0.093 0.144 0.067 0.142 
𝐻13 0.108 0.144 0.081 0.141 0.069 0.142 
𝐻23 0.137 0.159 0.095 0.149 0.070 0.144 
𝐻𝐹 0.003 0.032 0.001 0.028 0.000 0.025 

Percentages 0.832 0.906 0.924 0.940 0.962 0.96 
case 2 𝐻0 0.232 0.190 0.071 0.071 0.000 0.001 

𝐻1 0.074 0.118 0.093 0.175 0.083 0.199 
𝐻2 0.083 0.115 0.095 0.171 0.077 0.202 
𝐻3 0.025 0.066 0.008 0.028 0.000 0.001 
𝐻12

∗  0.370 0.221 0.643 0.377 0.831 0.509 
𝐻13 0.116 0.121 0.057 0.055 0.003 0.002 
𝐻23 0.087 0.106 0.024 0.038 0.000 0.000 
𝐻𝐹 0.013 0.063 0.010 0.084 0.005 0.086 

Percentages 0.510 0.386 0.872 0.828 0.978 0.974 
case 3 𝐻0 0.003 0.010 0.000 0.000 0.000 0.000 

𝐻1 0.180 0.152 0.144 0.129 0.008 0.008 
𝐻2 0.235 0.183 0.169 0.163 0.009 0.008 
𝐻3 0.155 0.172 0.157 0.189 0.006 0.011 
𝐻12 0.057 0.052 0.001 0.002 0.000 0.000 
𝐻13 0.142 0.147 0.043 0.056 0.000 0.000 
𝐻23 0.054 0.072 0.001 0.003 0.000 0.000 
𝐻𝐹

∗  0.173 0.212 0.485 0.458 0.976 0.974 
Percentages 0.088 0.096 0.574 0.502 0.998 0.994 

 
Table 3. Results of the percentages of selecting the 

correct random eff ect parameters from 500 
repetitions 

  n =10 n =30 n =100 
dependent case 1 0.962 0.988 1.000 

case 2 0.954 0.990 1.000 
case 3 0.940 0.996 1.000 

independent case 1 0.852 0.932 0.994 
case 2 0.874 0.952 0.986 
case 3 0.896 0.952 1.000 

 

We consider the similar prior specifications as in 
Section 4 and generate 100, 000 samples with an 
initial burn-in of 20, 000 iterations. The posterior 
probabilities of the indicator variable for random 
subject effect is 1.0, indicating that there is a high 
probability of non-negligible random subject effects 
in the data. We also compare our method with [2], 
[3].The posterior probabilities of all the possible 
models for each method are listed in Table 4.We 
observe Shang method chooses 𝜇1 < 𝜇2 < 𝜇3 < 𝜇4, 
whereas 𝜇1 = 𝜇2 < 𝜇3 < 𝜇4  is more supported by 
BMS. Table 5 also summarizes the posterior 
estimates for the parameters. It can be seen from 
Table 4 that both methods yield similar posterior 
point estimates, however ,BMS tends to offer more 
narrow credible intervals than Shang for most 
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parameters, except 𝜎𝜏
2 , showing an improvement 

over Shang. 
 

5.2  Ramus Bone Heights 
In this section, we illustrate the proposed method to 
the Ramus bone heights data (Ramus), which are 
given by [14]. In this study, the Ramus bone heights 
of 20 boys were measured at 8 years, 8 .5 years, 9 
years, 9.5 year over an 18 month period. We also let 
𝜇1 , 𝜇2 ,  𝜇3  and 𝜇4 denote the mean ramus bone 
heights corresponding to the four time points, 
respectively. [1] has applied a one-way ANOVA 
model with no random subject eff ects to analyze this 
dataset. The results of [1] show that 𝐻1  has the 
largest posterior probability. 
 
Table 4. Results of the posterior probabilities of all 

the possible models for blood lead level data 
Model TLC Ramus 

BMS Shang BMS Shang 
𝐻0 0.0000 0.0535 0.0000 0.0176 
𝐻1 0.3946 0.1890 0.0100 0.0870 
𝐻2 0.2624 0.1898 0.0155 0.1679 
𝐻3 0.0021 0.0584 0.0330 0.1950 
𝐻12 0.2012 0.1846 0.0148 0.0236 
𝐻13 0.0049 0.0633 0.0000 0.0709 
𝐻23 0.000 0.0478 0.0006 0.0918 
𝐻𝐹  0.1349 0.2136 0.9410 0.3462 

 
Again, we use the same prior specifications as in 

Section 4 and perform MCMC to obtain 80 000 
samplers after the 20000 burn-in. Tables 4 and 5 lists 
the posterior probabilities of all the possible models 
and the posterior estimates for the parameters 
respectively. We can clearly see that both methods 
select the same model, indicating that there are three 
growth spurts during the 18-month period, which is 
different from [1]. Actually, the posterior probability 
of the indicator variable for random subject effect 
offered by BMS is 1.0, suggesting that it is 
inappropriate to ignore random subject effects in the 
model. [1] used a one-way ANOVA model without 
random effects to analyze this real data, which could be 
inappropriate. 

Table 5 lists the posterior estimates for the 
parameters. In summary, both BMS and Shang's 
methods yield similar posterior estimates and 
standard deviations for the parameters. However, 
generally speaking, BMS provides shorter posterior 
confidence intervals. For example, for the parameter 
𝜎2  in Ramus, BMS gives a 95% posterior 

confidence interval of 0.57, which is much smaller 
than the 3.05 provided by Shang's method. 
 
Table 5. Posterior means (mean), variances(SD) and 
95% credible intervals (CrI) for blood lead level data 

Methods 𝜇1 𝜎𝜏
2 𝜎2 

TLC 

BMS 
Mean 23.680 25.586 5.578 
Var 0.610 32.285 0.433 
CrI (22.13,25.21) (16.65,38.80) (4.43,7.00) 

Shang 
 

Mean 23.535 25.424 6.217 
Var 1.266 32.463 1.278 
CrI (21.01,25.46) (16.47,38.64) (4.66,8.87) 

 
 
Ramus 

BMS Mean 48.477 6.861 0.734 
Var 0.386 6.737 0.021 
CrI (47.23,49.68) (3.46,13.30) (0.50,1.07) 

Shang 
 

Mean 48.247 6.678 1.452 
Var 1.215 6.771 0.767 
CrI (49.94,50.22) (3.235,13.09) (0.68,3.73) 

 
 
 
 
TLC 

BMS 

 𝛿1 𝛿2 𝛿3 
Mean 0.278 0.427 1.740 
Var 0.173 0.242 0.253 
CrI (0.00,1.31) (0.00,1.49) (0.71,2.67) 

Shang 
 

Mean 0.546 0.507 1.362 
Var 0.836 0.654 1.289 
CrI (0.00,3.01) (0.00,2.64) (0,3.53) 

 
 
 

Ramus 

BMS Mean 0.982 0.947 0.856 
Var 0.085 0.093 0.097 
CrI (0.40,1.55) (0.32,1.54) (0.00,1.42) 

Shang 
 

Mean 1.419 0.875 0.632 
Var 1.321 0.830 0.611 
CrI (0.00,3.70) (0.00,2.82) (0.00,2.43) 

 
 
6  Discussion and Conclusion 
In this article, we develop a simultaneous selection 
method of fixed and random eff ects in a Bayesian 
restricted two-way ANOVA mixed model, which can 
accommodate some constraints such as simple order, 
tree order umbrella order, etc. Simulation studies 
show that the proposed Bayesian variable selection 
approach works well in the selection of fixed and 
random eff ects whether in dependent or independent 
data. Specifically, in both simulations of dependent 
and independent data, our method not only 
successfully identifies the correct fixed effects but 
also effectively determines the presence of random 
effects. Furthermore, the accuracy of this 
identification increases with the number of samples, 
demonstrating the consistency of our method. 

Real data examples indicate that the proposed 
method is likely to provide more narrow 95% 
credible intervals than the competing method. 
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Moreover, we find strong evidence that there exists 
significant random subject eff ects in Ramus bone 
heights data. However, [1] analyzed the dataset by 
using an unsuitable one-way ANOVA model without 
random effects and selected a diff erent model. This 
shows that it is necessary to consider a simultaneous 
selection of fixed and random eff ects for longitudinal 
data under order constraints. 
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