
Extended Special Linear group ESL2(F) and matrix equations in

SL2(F), SL2(Z) andGL2(Fp)
SKURATOVSKII RUSLAN1,2,a , LYSENKO S. O.2

1 V. I. Vernadsky Taurida national university

John McCain str., 33, Kiev,

UKRAINE
2 Interregional academy of personnel management,

Kiev,

UKRAINE
aORCiDID : 0000− 0002− 5692− 6123

Abstract: The problem of roots existence for different classes of matrix such as simple and semisimple matrices
from SL2(F), SL2(Z) and GL2(F) are solved.
For this purpose, we first introduced the concept of an extended special linear group ESL2(F), which is gener-
alisation of the matrix group SL2(F), where F is arbitrary perfect field. The group of unimodular matrices and
extended symplectic group ESp2(R) are generalised by us, their structures are found.
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We show that ESL2(F) is a set of all square matrix roots from SL2(F) except of that established in our root
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1 Introduction

One of the main purposes of the work is to find an ex-
tension of the group containing all roots from a certain
set of elements of SL2(F) over a fixed field F.

Firstly we introduce the new algebraic group that
isESL2(Fp) which contains all solutions ofX

2 = A
for A ∈ SL2(Fp) excluding some simple matrices A
non-satisfying established by us conditions. Thereby
the group of unimodular matrices, [1], was general-
ized by us. This allows us to explore the conditions
of matrix equationX2 = A solvability in SL2(Fp) as
well as in GL2(Fp) and in one of splitting extension
of SL2(Fp) that is ESL2(Fp), [2], [3].

Our statements are also true for these groups over
the field R so it leads us to arguments of discrete-
ness problem, [4], [5], solving in some subgroups of
SL(2,R).

The square roots from positive definite matrix
A ∈ GL (F) with distinct eigenvalues (simple ma-
trix) are investigated in [6], but we consider a more
general class of semisimple matrix possessing non-

square eigenvalues. We find the criterion when roots
from this matrices are inGL (Fp). In work, [6], an ex-
pression for the root was found through a linear com-
bination of matrices for the case of positive matrices,
but in the proof from paragraph 4.2 we derived a ma-
trix algebra containing all the roots from amuchwider
class of matrices than positive matrices over a fixed
field F.

We solve, [2], [3] the problem of root existence
for a more general case then in [7], which con-
sists in the whole group G = SL2(Fq) because of
we do not provide additional condition of splitting.
Also the authors considered separately conjugacy
classes in SL2(Fq), [7], such as: central classes, split
regular semisimple classes, non-semisimple classes,
anisotropic regular semisimple classes. For each case
the criterion of solvability of equation is provided. In
the last two cases Bruhat decomposition is applied.

The problems of square root from group element
existing in SL2(Fp), SL2(Fp) and GL2(Fp) for ar-
bitrary prime p are solved in this paper. The similar
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goal of root finding was reached in the GM algorithm
adjoining an n-th root of a generator results in a dis-
crete group for group SL(2,R), but we consider this
question over finite field Fp. Well known the Cayley-
Hamilton method for computing the square roots of
the matrix Mn can give answer of square roots ex-
isting over a finite field only after computation of
detMn and some real Pell-Lucas numbers by using
Bine formula. Our method gives answer about exist-

ing
√
Mn without exponentingM to n-th power. We

use only the trace ofM or only the e.v. ofM , [8].
Earlier it was considered criterion to be square

only for the case Fp is a field of characteristics not
equal 2. We solve this problem even for fields F2

and F2n . Any criterion to g ∈ SL2(F2) be square in
SL2(F2) was not found before. In case of field with
characteristic 0 there is only the Anisotropic case of
group SL1(Q), where Q is a quaternion division al-
gebra over k was considered in [7].

The authors of [9], [10], argue that for some matri-
ces in SL2 (F2) there are not square root in SL2 (F2).
Now we find exactly which class of matrices are not
quadratic element in SL2 (F2) furthermore we make
group classification of roots distribution in which root
could exist in splittable extension of group SL2 (Fp)
over the same field viz it is in ESL2 (Fp). Further-
more we find a characterisation of matrices SL2 (F2)
having not square root in any group extension. We in-
vestigate root distribution of A ∈ SL2 (Fp) by cosets
of ESL2 (Fp) by the normal subgroup SL2 (Fp).

Thereby we find answer of Waring problem, [11],
in SL2(F ) for the image of the word map fromGm to
G induced byw, with a generalization ofm to fraction
of form 1

2 which be continue in our next work to
1
m .

The action of subgroup of new group ESL2(Fp)
introduced here also arose without description of
group structure and generators in the topology.
Namely, if G is a Morse-Bott foliation on the solid
Klein bottle K into 2-dimensional Klein bottles paral-
lel to the boundary and one singular circle S1 then
such group appears as leaf preserving diffeomor-
phisms for foliations G, [12].

In many geometrical groups there are automor-
phisms preserve hyperbolic distance (hyperbolic met-
ric) and hyperbolic angles, furthermore they may
change orientation of space as well as keep it perma-
nent, [13].

In hyperbolic geometry there are groups pre-
serve hyperbolic length, [14], and orientation as well
as changes orientation, in particular projective spe-
cial linear group PSL2(R) and SL2(R) possessing
changing orientation due to action of SL2(R) is non-
faithful because of PSL2(R) is a homomorphic im-
age ofSL2(R)with non-trivial kernel. A proposed by
us group ESL2(R) also preserves hyperbolic length,
[14].

One of interesting algorithmic problem of combi-
natorial group theory was solved by [15]. It was prob-
lem of determining for any element g ∈ G is g a com-
mutator for free nilpotent groupNr of arbitrary rank r
with class of nilpotency 2, [15]. The analogous prob-
lem can be formulated for SLn(Fq), GLn(Fq) and
ESLn(Fq) over a set of squares.

The problem of the solvability of an equation over
a group is well known, [16], [17], [18], [3]. We con-
sider the same problem with additional constrains on
the solvability of an equation of the form X2 = A in
a group.

Question of root existence in different forms ap-
pears in the Purtzitsky-Rosenberger trace minimiz-
ing algorithm, [4], [19], it was considered roots
and rational powers of one or both generators of
non-elementary two generator discrete subgroups of
PSL2(R) found by the GM algorithm. But we
solve existing root problem for arbitrary element of
SL2(Fp).

Our criteria for the roots existence allows to find
a way for solution of Warning problem, [20], for
the set of matrix from SL2 (p) and for matrix from
GL2 (Fp).

Also such criteria of roots existence for SL2(Fp)
and GL2(Fp) are established. This criterion is a
stricter version of the formulated question for group
extensions how large an overgroup of a given group
must be in order to contain a square root of any ele-
ment of the initial group G, which was considered in
the paper of [16]. Our criterion gives the answer that
such extension is ESL2(F) for SL2(F).

2 Litrature review
Many linear equation were solved over different
groups, [21], [22], but problem of solving non-linear
equation is still not closed. One of the approaches to
factorization of matrices was proposed in the work,
[23]. We select a subset of matrices that satisfy our
criterion for the existence of a square or cubic root and
propose a new method for quickly factoring a matrix
into 2 different factors due to the conditions we found.

Some results about root computation for simple
positively defined matrix A ∈ GL (F) is investigated
in [6], we continue research this question for all kind
of matrices from SL (F) and GL (F).

The previous researches, [9], [10], claim that some
matrices inSL2 (F2) have not square root inSL2 (F2)
in this work we describe these class.

In view of Waring verbal width by square of
SL2 (Fq) investigation, [11], our criterion for ele-
ment of SL2 (Fq) to be square in SL2 (Fq) can be re-
garded as more rigid condition of Waring type result
for SL2 (Fq), [11], that every element of SL2 (Fq) is a
product of two squares which was generalized by [7],
on arbitrary field F of characteristic 6= 2.
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In contrast of equation regarded in paper, [7], over
field k on characteristic 6= 2 we stydy the question of
root existence over field of arbitrary characteristic.

In the article [24] a 3-element generator set of the
unimodular group was proposed, but a minimal gen-
erating set of 2 elements and group structure were not
found, the relations in the three-element set of gen-
erators of this group were not presented too. But we
find minimal generating sets and relations for both 2
and 3-generating sets.

The morphism Pw : SL2(Z)×SL2(Z)→SL2(Z)
generalizing square computation was constructed in
[18], and its root equidistribution turns out depends
of trace polynomial.

3 Preliminaries
A large number of works devoted to studying the ac-
tion of matrix from extension of special linear group
having elements with determinant ±1, [12], [25].
Whereas the concept of this group was not introduced
and its structure was not established. To show the
importance of introducing new group concept and
its studying we notice some topological manifolds in
which action of ESL2(R) subgroups appears.

An action of a subgroup of ESL2(R) appears in
leaf preserving diffeomorphism group which is called
foliated leaf preserving in Morse-Bott foliation on the
solid torus, [25], of simplest Morse-Bott foliations.
But this action of diffeomorphisms was defined ge-
ometrically by symmetries with respect to meridian
and parallel of torus corresponding to level set and
infinite shift on torus also corresponding 3 matrices
to these elements were given. Indeed Morse-Bott fo-
liation on solid torus, [25], T = S−1 × D2 into 2-
tori parallel to the boundary and one singular circle
consists of elements presented by matrices with de-
terminant 1 and -1 by author who characterize it as a
subgroup of the whole GL2(R) group [26]. But now
we characterize it more precisely as a subgroup of the
smaller groupESL2(R) < GL2(R). The diffeomor-
phisms group of this manifold posses the subgroup G
described in the geometrical terms, where the actions
of shifts, symmetries relative to a parallel to a merid-

ian appear, where shift is generated by

(
1 0
1 1

)
which is called by reflection. Symmetries relative
to a parallel and a meridian are defined by matrices(

1 0
0 −1

)
,

(
−1 0
0 1

)
correspondingly. This

matrices generate group G which is a proper subgroup
of ESL2(Z).

We denote by e.v. — eigenvalues. Let µA bemin-
imal polynomial of A.

A polynomial P (X) over a given field K is said
to be separable if its roots are distinct in an algebraic

closure of K, that is, the number of distinct roots is
equal to the degree of the polynomial.

Simple matrix is a matrix such that characterstic
polynomial is separable.

Recall that matrix A is called semisimple if µA is
a product of distinct monic irreducible and separable
polynomials, this is equivalent to the minimal polyno-
mial of T being square-free. If moreover all these ir-
reducible polynomials have degree 1, thenA is called
split semisimple or diagonalizable, [20], [26], [27],
[28].

We denote iff — necessary and sufficient condi-
tion, e,v. — eigenvalue.

4 Concept of new group

4.1 Definition of new group ESL2(R)
Define the algebraic properties and structures of
ESL2(Fp) in this item.

Definition 1. The set of matrices

{Mi : Det(Mi) = ±1,Mi ∈ GL2(Fp)} (1)

forms extended special linear group in GL2(Fp)
and is denoted by ESL2(Fp).

We establish that, ESL2(Fp) ∼= SL2(Fp) o C2,

where C2 is generated by reflection

(
−1 0
0 1

)
.

The involution from the top-subgroup C2 '〈(
−1 0
0 1

)〉
induces the involutive homomor-

phism in Aut (SL2(Fp)) by action of conjugation.
It is obviously that ESL2(Fp) possess presenta-

tion in GL2(Fp) by matrices described in Definition
(1) to show it we establish the homomorphismψ from
SL2(Fp)oC2 toESL2(Fp). We constructψ sending
elements of the semidirect product containing matrix
i as an element of top group C2 in quotient class of
ESL2(Fp)�SL2(Fp) having determinant−1 and anwith
matrix E in the quotient class having determinant 1.

Matrices with determinant -1 correspond to the el-
ements changing Euclidean space base orientation.
As it was found in our study of the roots in matrix
groups, solutions of X2 = A arise in defined above
group ESL2(Fp), where A ∈ SL2(Fp).

We can spread the definition of ESL2(Fp) on
case of matrices over the arbitrary field F as well
as over the ring Z and obtain new groups ESL2(F),
ESL2(Z).

Justification of SL2(Fp), SL2(Z) exten-
sions existence is based on the description
Aut (SL2((Fp)) , Aut (SL2(Z)) and its subgroups
of order 2. In similar way we can extend SLn(F) to
ESLn(F).
SL2(Fp) is of index 2 inESL2(Fp) so its normal-

ity is established.
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As well known the group of outer automor-
phisms of SLn(Z) is semidirect products of the form
SLn(Z)oϕZ and its isomorphism type depends only
on [ϕ] ∈ Out(SLn(Z)). Since Aut(SL2(Z)) con-
tains an element of order 2 that is t2 therefore homo-
morphism from top group that is cyclic group C2 =<
i > of order 2 in Aut(SL2(Z)) exists.

The existence of a non-trivial homomorphism ϕ :
Z2 → Aut (SL2(Z)), as well as φ : Z2 →
Aut (SL2(Fp)) can be proved by indicating an ele-
ment of order 2 in the automorphisms of base group
that is the kernel of the semidirect product we want
to construct. There is countergradient automorphism

in SL2 (Z) that is ϕ : M →
(
MT

)−1
or alternating

automorphism of order 2 acting by conjugating ϕ :

M → D−1MD, where D =

(
1 0
0 −1

)
and is

called by diagonal automorphism, [29], [30]. Also as
it is proved in Theorem 2, [24], every automorphism
of SL2 (Z) is inner automorphism AXA−1, X ∈
SL2 (Z) or inner automorphism AXA−1 multiplied
on +E or −E in dependence of sum of X genera-
tors powers. Thus inner automorphism of order 2 in
SL2 (Z) as well as in SL2 (Fp) always exists. One
of the generating sets of ESL2(Z) has generators

t1 =

(
1 1
0 1

)
, t2 =

(
0 −1
1 0

)
and t3 =(

−1 0
0 1

)
. These generators satisfy the relations

t42 = E, t23 = E, (t2t3)
2 = E, (t3t1)

2 = E.
Recall the definition of TI− subgroup, [31],

[32]. Let G be a group and A < G, then A is called
TI−subgroup iffA∩Ag = e for each g ∈ G\NG(A).

Remark 1. Subgroup C2 is TI− subgroup but not
antinormal subgroup.

Proof. In view of C2 is one generated then its cen-
tralizer coincides with its normalizer. One easy can
verify that the centralizer consists of all diagonal ma-
trices from ESL2(Fp). Let us find a structure of
such normalizer NESL2(Fp)(C2). In view of e.v. of
each element of diagonal matrix algebra over field
has e. v. (1, 0)T and (0, 1)T then these e. v. are
invariant under conjugation by non-singular matrix
from the normalizer of top subgroupC2 inESL2(Fp)
is the subgroup consisting of all diagonal matrices
from ESL2(Fp) and permutational (monomial) ma-

trix P =

(
0 1
1 0

)
. Note that

(
−1 0
0 1

)
is

invariant relatively to conjugations by P and sub-
group of diagonal matrix denoted byD2(ESL2(Fp))
of SL2(Fp). Therefore the normalizer has struc-
ture NESL2(Fp)(C2) ' D(ESL2(Fp)) o P , where
D(ESL2(Fp)) diagonal subgroup of ESL2(Fp).

For the rest of elements condition of A ∩ Ag = e
for each g ∈ ESL2(Fp) \ NESL2(Fp)(C2) holds.
Thus, C2 is TI− subgroup, but not antinormal sub-
group.

It is obviously that there is a homomorphism in
matrix presentation ofESL2(Fp) from the semidirect
product defining the extension of the group SL2(Fp)
as the kernel of the semidirect product, by a group
of two matrices, one E the second reflection matrix
i inducing changes in the sign of the determinant in
ESL2(Fp).
SL2(Z) is a normal subgroup of ESL2(Z), as be-

ing the kernel of the determinant, which is a group ho-
momorphismwhose image is the multiplicative group
{−1,+1}.

Remark 2. It is obviously that orthogonal group
O2(k) < ESL2(k), where k is a field but O2(k) 6
ESL2(k), [26], [27].

Proof. In fact, the action by conjugation ofESL2(k)
does not preserve angles and does not fixe non-
degenerate quadratic and Hermitian forms.

We denote a matrix of shift

(
1 0
1 1

)
by s and(

0 −1
1 0

)
as r they generate SL2 (Z), new gener-

ator

(
−1 0
0 1

)
is denoted by i.

Proposition 3. The group ESL2(Fp) = 〈s, r, i〉 has
the following representation:

ESL2(Fp) = 〈s, r, i|sp = e, s
p+1

2 is
p+1

2 = i,

isi−1 = s−1, iri−1 = r−1, r4 = i2 = e, (sr)3 = e.〉

The representation of ESL2(Z) = 〈s, r, i〉 is some-
what simpler:

ESL2(Z) = 〈s, r, i|isi−1 = s−1, iri−1 = r−1,

(sr)3 = e, r4 = i2 = e.〉

Proof. Each relation of SL2 (Z) for r4 = e and
(sr)3 = e holds and is similar to relation in another
generators [33], [34] but in [33] the relation (sr)3 = e
among s and r is forgotten. These relations hold in
ESL2 (Z), because of SL2 (Z) is normal subgroup in
ESL2 (Z). Then new relations are isi−1 = s−1 and
iri−1 = r−1, the rest of them r4 = i2 = e are valid
both in SL2 (Z) as well as in SL2 (Fp). But taking
a step towards studying relations over F3 we derive a
new relations s2is−1 = i, s3 = E which can be gen-

eralised for ESL2 (Fp) as s
p+1

2 is
p+1

2 = i. The proof
is a simple verification of the equalities, for instance
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sp =

(
1 0
p 1

)
= E inESL2 (Fp). The order of s

is ∞ in ESL2 (Z), because of s is a shift. Note, that

C2 = 〈i〉 and s−1 =

(
1 0
−1 1

)
.

Thus, the representation of ESL2 (Z) takes form:
There are 3 generators s, i, r :

s =

(
1 0
1 1

)
, i =

(
−1 0
0 1

)
,

(2)

r =

(
0 −1
1 0

)
.

Note that the relation isi−1 = s−1 is characteristic
of the dihedral groups D∞ and D2p.

Some interesting relation amongst genera-
tors of the kernel subgroup of semidirect product
ESL2(Fp) ∼= SL2(Fp) o C2 are r2 = −E,
r−2sr2 = s.

We briefly introduce the minimal set of generators
and relations in ESL2 (Z), [35], i.e. this group over
integer ring.

Lemma 4. The groups ESL2(Z) and ESL2(Fp)
have minimal generating set:

P =

(
0 1
1 0

)
, L =

(
1 0
1 1

)
, (3)

satisfying the relations

P 2 = E, (PL−1PLPL−1)2 = E,

and for ESL2(Fp) is one more L
p = E.

Proof. Note that forESL2(Fp) there is also a relation
Lp = E.

For proof the statement we show that third gener-
ator i from set (2) can be expressed from the consid-
ering set (3). This will prove that these 2 elements
generate the entire group since the set of generators1
exactly generates the entire group. Note that the in-

verse element L−1 =

(
1 0

−1 1

)
, is generated as

inverse to L belonging to set (3), according to [36],
[37].

Then we consider the words in generators of al-

phabet (3), where PL−1 =

(
−1 1
1 0

)
, further

calculations lead us to LPL−1 =

(
−1 1
0 1

)
and

PLPL−1 =

(
0 1
−1 1

)
.

With further transformations we obtain

PL−1PLPL−1 =

(
−1 0
0 1

)
= i. And this

is the required generator i from initial generating set

(2) which, by definition, was equal to

(
−1 0
0 1

)
,

furthermore now we easy verify the declared in
Lemma relation (PL−1PLPL−1)2 = E because
i2 = E.

This means that this generator i is expressed
through a 2-elements P and L, so these two elements
constitute a complete irreducible set of generators.
Note that i is matrix corresponding to symmetry hav-
ing order 2. Therefore the characteristic relation for a
dihedral group iLi−1 = L−1 for L and expressed by
us generators i holds.

But third generator r from set 2 for group
ESL2 (Z) corresponding to rotation on 90 degree
now can be brought into the form r = iP =(

−1 0
0 1

)(
0 1
1 0

)
=

(
0 −1
1 0

)
. Which

completes the proof.
Furthermore the generators L and i form alternat-

ing generating set for ESL2 (Z) in view of the fact
that the initial set of generators (3) can be expressed
from them from them by inverse unfolding of trans-
formations.

We emphasise that the generator L−1 has geomet-
rical sense as the Seifert matrix, [38], and the gen-
erator P completes a surgered solid torus shown in
Figure 2.7 in [39], to the lens space L(p, 1) by glu-
ing of homeomorphism P to this torus. This con-
firms geometrical application of presented in Lemma
4 ESL2(Z).
Remark 5. The elements P and PL−1PLPL−1

forms alternative involutive generators generat-
ing set for ESL2 (Z). These generators P and
PL−1PLPL−1 are similar to reflections of order 2
dihedral group.

Existence justification of such SL2(Z) extension
by C2 to ESL2(Z) ∼= SL2(Z) o C2 or analogously
SL2(Z) to ESL2(Fp) ∼= SL2(Fp) o C2 is based
on Aut(SL2(Z)), [29], [40], [41], structure which is
splitting extension SL2(Z) by Z. As well known the
group of outer automorphisms of SLn(Z) is semidi-
rect products of the form SLn(Z)oϕZ and its isomor-
phism type depends only on [ϕ] ∈ Out(SLn(Z)).
Since Aut(SL2(Z)) contains an element of order 2
that is t2 therefore homomorphism from top group
that is cyclic group C2 =< i > of order 2 in
Aut(SL2(Z)) exists.

The action by right multiplication on

(
−1 0
0 1

)
of a matrix from SLn(Z) inducing automorphism in-
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verting sing of first column of matrix A. This auto-
morphism invert a sign of det(A).

The example of the ESL2 (F3) provides us with
an exceptional isomorphism with the group of self-
combining cubes (full group of Octahedron’s symme-
tries) with inversion about the center. In fact the order
of SL2 (F3) is p

(
p2 − 1

)
= 3

(
32 − 1

)
= 24 there-

fore the order of ESL2 (F3) is 48 withal the group
of self-combining of a cube with eversion, equipped
with a structure S2 oS3, but as it is also the direct prod-
uct S4 × C2 = (A4 n C2)× C2 is of order 48 too.

The group ESL2(Z), without a structural de-
scription and algebraic representation by relations
among generators occurs in the topology when the
Torelli group which is the kernel of the mapping class
group action on the surface M on its first homology
group H1(M,Z), [42], [43], other words the Torelli
group is kernel of homomorphism Modbg(M) −→
Aut(H1(M,Z)) = SL(2g,Z), where g is the genus
ofM .

In a case when the Torelli group is SL2 (Z) in ad-
dition the qoutinet group of action Modbg on homol-

ogy classes H1(M,Z) = SL(2g, Z) that is Sp2g(Z)
contains subgroup isomorphic to Z2 then provided
that Modbg contains subgroup H ' Z2 then there is

subgroup in Modbg having structure of a semidirect

product and isomorphic to ESL2 (Z) the correspon-
dent to this subgroup short exact subsequence from
item 3.1, [42], splits.

A proper subgroup of ESL2(Z) appears as geo-
metrical group G, [25], which subgroup in the dif-
feomorphisms group Dlp (F ) of T and [0; 1] on
C∞(T, [0; 1]) and now be characterized by us in
more structural and exact way. Because of the au-
thors, [25], considerG as subgroup of verywide group
GL(2,Z) consisting of matrices for which the vector
(0, 1) is eigen with eigenvalue±1, which was defined
as:

G =

{(
ε 0
m δ

)
|m ∈ Z, ε, δ ∈ {±1}

}
.

But G is a proper subgroup of ESL2(Z) whose
structure is studied by us, moreover ESL2 (Z) has
a kernel of semidirect product a proper subgroup of
SL2 (Z), andG has in role of kernel a proper subgroup
of SL2 (Z), because of det (G) = ±1. Furthermore
the concept of new group ESL2 (Z) admits us to ob-
tain a structural characterization and set of generators
with relations for G. We take in consideration first
generator of G that is involutions generating symme-
try of torus with respect to the parallel. It is repre-

sented by matrix t =

(
1 0
0 −1

)
and generators of

the top subgroup of ESL2 (Z) which is denoted by

i =

(
−1 0
0 1

)
. One easy can verify that third

generator D of G can be derived from generators of
ESL2(Z) in the following way t = −E × i, because
−E ∈ ESL2(Z).

Now using concept of new group ESL2(Z) al-
lows us to give exact and structural characterization
of group G which contains in Dlp (F ). For this goal
we consider subgroup of ESL2(Z) with kernel K '〈(

1 0
1 1

)〉
. Since K '

〈(
1 0
1 1

)〉
' Z

then AutK ' Z2 and thence homomorphisms from
cyclic subgroups 〈i〉 and 〈t〉 toAutK exist. One easy

can check that i

(
1 0
1 1

)
i−1 =

(
1 0

−1 1

)
=(

1 0
1 1

)−1

and rest of conjugations remain K in-

variant. Thus, we find a structure of G which, up to a
way to define a semidirect product, is G ' Kn〈t, i〉.
An important fact that K n 〈t, i〉 is a subgroup in
ESL2(Z). Top subgroup of G has 2 generators but
kernel subgroup K is one generated, If we denote(

1 0
1 1

)
then the relations are following isi =

s−1, tst = s−1, t2 = s2 = e.

4.2 Some possible applications in topology

Geometrical transformations corresponding to matri-
ces that form the subgroup of the introduced here
SL2 (R) o C2 group, occur in leaf preserving dif-
feomorphism group and vector bundle isomorphism
(ξ, η) in Morse-Bott foliation on the solid Klein bot-
tle, [12], (because of matrix A with det(A) = −1
changes space orientation as on the Klein bottle), with
the complementary circle.

A group of continuous functions implementing ro-
tation D (y), which is a linear isomorphism preserv-
ing concentric circles, simultaneously with a shift as
standing a second coordinate of tuple, is founded in

[12]. Its elements have a form of pair (we2πiλh(s), s),
whereλh(s) ensures sign inversion provided unit shift
(on one). We see that this group has structure of
semidirect product and denote it by H . Thus, from
this group H of diffeomorphisms with additional
functions λh (s+ 1) = −λh (s) making changing of
sign provided by action of shift on one described in
[12], homomorphism in subgroup of ESL2(R) can
be constructed. Homomorphic image can be realized
by matrices of rotation with sign inversion inducing
by the top group of semidirect productESL2(R) that
could be also generated by Frobenius normal form(

0 −1
1 0

)
. Thus this subgroup of ESL2(R) can

be embedded in H and this subgroup is realized by
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matrices of rotation with sign inversion due to the
top group of semidirect product ESL2(R). One of
subgroup of our new group ESL2(R) is embedded
in H . This subgroup has the structure SO(2) n〈(

−1 0
0 1

)〉
': O(2). We additionaly denote

this subgroup by 〈ρ〉n 〈i〉.
Previously, a definition of an extended symplectic

group was formulated for instance in [44], in terms of
this paper a group of extended group is described as
group of symplectic matrices with det(M) = ±1, and
denoted by ESL

(
2,Zd

)
on page 4. But its structure

was not found.
We define it as the group of symplectic matri-

ces with det (M) = ±1 additionally find its struc-
ture and propose more convenient and usual notifi-
cation of this group. Extended symplectic group
be denoted by ESp2(R) is the group all symplec-
tic matrices such set of matrices having determinant
det (M) = ±1. Moreover, extended symplectic
group is subgroup of our group ESL2(R) and has
the structure of semedirect product ESp2(R) ≡
Sp2(R) o C2, where C2 is defined above, also sym-
plectic group Sp2(R) is the kernel of the semidirect
product. Note that C2 can be generated not only by i

but by matrix

(
1 0
0 −1

)
too. The justification of

established structure is same as for ESL2(R).
As well known even symplectic group has some

applications, [45], [46].
It is obviously that ESp2(R) < ESL2 (R). We

can spread concept of extended symplectic group on
ring by considering ESp2(Z) and ESp2(Zk). Then
using finding by us structure

ESp2(Zd) ' Sp2(Zd)oC2

we can establish the structure of extended Clifford
group more precisely and apply it in Theorem 2, [45],
to describe a unique surjective homomorphism from
extended Clifford group to group of Clifford opera-
tions which was used in [44], in following homomor-

phism fE :
(
Sp2(Zd)oC2

)
n
(
Zd

)2 → EC(d)/I(d)
satisfying condition (110) from [45].

In terms and notation of [45], taking into consid-
eration established here structure of ESL(2,Z), the
Clifford group in contet of Theorem 2 [45], takes

form:
(
SL
(
2,Zd

)
oC2

)
n
(
Zd

)2
wherein condition

(110) from [45], holds.
Note that group of the diffeomorphisms h coincid-

ing with some vector bundle morphism also function
λh : R → R are described in item 3) of [12], there are

subgroup h′(w, s) =
(
e2πiλh(s), s

)
, λh (s+ 1) =

−λh (s) presented in form of functions. Now we can
describe its structure as semidirect product. We es-
tablish a homomorphism from this group to 〈ρ〉n 〈i〉.

Furthermore the top group of ESL2(R) is the same

matrix i =

(
−1 0
0 1

)
coinciding with a matrix Λ

presenting the meridian of torus respect to the paral-
lel, [25].

The subgroup of diffeomorphismD (Lp,q) of Lp,q

is under a consideration in [25], whence a group clo-
sure ofD (Lp,q) is just ESL2(Z) but algebraic struc-
ture of set was not investigated before so it was clas-
sified in [25], as the matrix subset of GL2 (Z) with
determinant -1 also there is transformation T in that
item with det(T ) = 1.

Thus, there are many subgroup of ESL2(Z) and
whole ESL2(Z) appear in nature but it was not de-
fined and investigated as algebraic group before.

Thus, the surfaces of the thigh and lower leg are on
opposite sides of the cutting plane passing through the
knee joint. Therefore, to specify a rotation operator
in a single basis, you need exactly the operator repre-
sented by a matrix from the ESL2(R) group. By the
same reason operators from our group can be applied
in geoinformation systems,

5 Criterions of an element root

existing in GL2(Fp), SL2(Fp)
5.1 Conditions of root existing in SL2(Fp)
Let SL2(Fp) denotes the special linear group of de-
gree 2 over a finite field of order p. And a degree
always means an irreducible character degree in this
paper.

We recall the well known relation between eigen-
values of A and f(A).

Lemma 6. If β is an eigenvalue for B then β2 is an
eigenvalue for B2.

Consider the criterion of elements squareness in
SL2(Fp) as well as in GL2(Fp) which can be pre-
sented by diagonal matrix. As well known, [27], a
matrix can be presented in the diagonal form iff the
algebraic multiplicity of its eigenvalues are the same
as the geometric multiplicity.

Theorem 7. LetA be simple diagonalizable or scalar
matrix and A ∈ SL2(F), [27], then for A there is a
solution B ∈ SL2(F) of the matrix equation

X2 = A (4)

if and only if

trA+ 2 (5)

is quadratic element in F or 0, where F is a field.
IfX ∈ ESL2(F) then the matrix equation (4) has

a solutions iff

trA± 2 (6)

[47].
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is quadratic element in F or 0.
This solution X ∈ ESL2(F) \ SL2(F) iff

(trA− 2) is quadratic element or 0 in F but
(trA+ 2) is not. Conversely X ∈ SL2(F) iff
(trA+ 2) is quadratic element. Solutions belong to
ESL2(F) and SL2(F) iff (trA+ 2) and (trA− 2)
are quadratic elements.

In the case A ∈ GL2(F) this condition (5) takes
form:

trA± 2
√
detA (7)

is quadratic element in F or 0 and detA is quadratic
element.

Proof. Throughout the proof a quadraticity of ele-

ment x or x = 0 in a field F be denoted by
(
x
p

)
∈

{0, 1}. For concretization, we provide a proof over
Fp. But out prove can be spread without changes on
arbitrary field F instead Fp.

We assume that matrices A and B have eigen-
values λ1, λ2 and µ1, µ2 respectively. Let a char-
acteristic polynomial χB(x) of B be the following:
χB(x) = (x− µ1)(x− µ2). We denote tr(A) by a.

Since det(A), A ∈ SLn(Fp) is 1, then eigenvalues
of A satisfy the following equality: µ21µ

2
2 = 1 that

implies µ1µ2 = ±1. Therefore a+2µ1µ2 = a± 2 =
(µ1 + µ2)

2. As is known tr(B) = µ1 + µ2 ∈ Fp and
det(B) = µ1µ2 ∈ Fp. Then according to Lemma

6 a is the sum of the roots µ21, µ
2
2 of a polynomial

χA(x) = (x − µ21)(x − µ22). Hence tr(A) = a =
µ21 + µ22 = (µ1 + µ2)

2 − 2µ1µ2 = (tr(B))2 − 2. So,
tr(A) + 2 = c2 for c = tr(B).

In case µ1µ2 = −1 we express tr(A) as tr(A) =
a = µ21 + µ22 = (µ1 − µ2)

2 − 2µ1µ2 = (tr(B))2 +
2 and conclude that tr(A) − 2 = c2 is quadratic
residue in this case. It yields that the solutions ±B ∈
ESL2(F) \ SL2(F).

We show the existence of χB(x) := x2 − cx + 1
having roots µ1, µ2 which will be the e.v. of B. Let
χB2(x) = µ2 − aµ + 1. Then µ21, µ

2
2 are e.v. for A

and according to Viet’s theorem, µ21 + µ22 = a.
Let us prove the sufficiency of the condition

( trA+2
p ) = 1. According to Viet Theorem µ1+µ2 = c

and µ1 + µ2 = Tr(B), also c2 = trA + 2 by con-
struction of χB(x).

We assume that χB (x) := x2 − cx + 1 =

(x− µ1) (x− µ2), where c := ±
√
tr (A) + 2, is

characteristic polynomial for B and χA (x) := x2 −
ax + 1 = (x− λ1) (x− λ2), where a = tr (A).
To provide justification that χB (x) is characteristic

polynomial of
√
A, which denoted by B, we con-

sider χB2 (x) =
(
x− µ21

) (
x− µ22

)
and prove that

χB2 (x) = χA (x) by showing coinciding of their co-
efficients. For this goal we have constructed c2 :=

tr (A) + 2, in another hand c = µ1 + µ2 and by con-
dition of theorem tr (A)+2 is quadratic residue or 0.

Consider the sum µ21 + µ22 = (µ1 + µ2)
2 − 2µ1µ2 =

c2 + 2− 2µ1µ2 = c2 + 2− 2 = trA = a, according
to Viet theorem µ21 + µ22 is coefficient of linear term
in χB2 . The free term of χB2 (x) as well as of χA (x)
equals to 1 as products of e.v. µ21µ

2
2 = Det

(
B2
)
and

λ1λ2 = 1 because of B2, A ∈ SL2 (F). Thus coef-
ficients of χB2 (x) and χA (x) coincide providing an
equality of these polynomials. So, their eigenvalues
are the same too. Also these eigenvalues are different.
Hence these matrices are conjugated.

For the case of generalization on GL2(Fp) the
proof is the similar but with new absolute term in

χB . Let detA = D and D = d2 if trA + 2
√
detA

is quadratic element then we construct χB (x) =

x2 − cx + d, with d = ±
√
D, then d2 = µ21µ

2
2,

where µ1, µ2 are e.v. ofB. Consequently χB2 (x) =
x2 −

(
c2 − 2

)
x + d2 in the same time χA (x) =

x2−tr (A)x+det (A). Thus, these polynomials have
the same coefficients, as in case of SL2 (Fp). So B

2

and A are conjugated matrices
Consider case of scalar matrix inGL2 (Fp). Show

that a characteristic polynomial also exists, in view of

c = trA− 2
√
detA = 2λ− 2

√
λ2 = 2λ± 2λ. That is

equal to

2λ± 2λ =

[
0 iff

√
detA = −λ,

4λ iff
√
detA = λ.

The value 4λ = trA+2
√
detA is declaimed in the

condition (7) as quadratic residue, therefore 4λ ∈ Fp.

Also absolute term d is
√
detA =

√
λ2 = ±λ ∈ Fp

because of both elements λ on diagonal and rest of
elements is 0 moreover all conjugated matrices to a
scalar matrix A coincide with A because A in cen-
tre, that’s why λ ∈ Fp. Thus, the coefficients c,
d ∈ Fp, so such B exists in SL2(Fp). In case a
scalar matrix A ∈ SL2 (Fp) our expression takes

form trA − 2
√
detA = 2 ± 2 whose values are al-

ways squares.
In case of diagonal matrix which is not scalar (case

of simple matrix) we get d = ±
√
detA but under

additional condition to (7) detA is quadratic residue,

hence we have ±
√
detA ∈ Fp.

The structure of matrix roots Bi of exceptional
limiting case, when trA + 2 = 0 corresponds to a
scalar matrix A = −E in SL2 (F), then

B1 =

(
±λ 0
0 ±λ

)
, B2 =

(
0 ±λ

∓λ 0

)
,

B3 =

(
0 1
λ 0

)
, B4 =

(
0 λ
1 0

)
,

[48].
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where λ2 = −1. It is obviously that this root exists
if -1 is quadratic element in F, whence we seeB1, B2

are elements of ESL2(Fp). If trA − 2 = 0 then we
construct the same roots but with condition λ2 = 1.

An outstanding case provided by λ2 = 1 is Jordan

form JA =

(
λ 1
0 λ

)
, possess the solutions S1 =(

±1 1
±2

0 ±1

)
from SL2 (F) and

G1 =

(
±
√
λ 1

±2
√
λ

0 ±
√
λ

)
belonging to GL2 (F).

If A ∈ GL2 (F) and satisfies (7) then the case

trA − 2
√
detA = 0, where A = λE implies that

trA = 2λ, and its roots

√
A =

(
±λ 0
0 ±λ

)
,
√
A =

(
0 ±λ

∓λ 0

)
,

√
A =

(
0 1
λ 0

)
,
√
A =

(
0 λ
1 0

)
,

where λ2 = 1. Note all roots are conjugated in view
of scalar structure of A.

The case trA − 2 = 0 implies that A = E, so its
roots

√
A =

(
±λ 0
0 ±λ

)
,
√
A =

(
0 ±λ

∓λ 0

)
,

√
A =

(
0 1
λ 0

)
,

where λ2 = 1.
The sequence of e.v., corresponding to the limiting

case ( lim
λi→1

(TrAi + 2) = 0), is λi +
1
λi

→ 2. In this

sequence matrices are simple and have diagonal form
aswell as their roots have limiting form. But the limit-
ing case admits not diagonal structures of roots, where
all roots are conjugated i.e. similar matrix. Indeed

if A′ and A are similar matrix and (B′)2 = A′ then

U−1A′U = U−1(B′)2U = U−1B′UU−1B′U =
B2 = A so B = U−1B′U .

Let us construct the solution of equation X2 = A
in SL2(Fp). In a general case we obtain the solution

B2 = A,

where A ∼ A′ with eigenvalues λ1 = µ21, λ2 =
µ22. Since c ∈ Fp then we can construct in the normal
Frobenius form a matrix(

0 −1
1 c

)
= B

therefore this matrix is over base field Fp or Q or

arbitrary field F. Since λ1 + λ2 = (µ1 + µ2)
2 − 2 =

trA and that is why (µ1 + µ2)
2 = trA + 2 this

equality holds iff ( trA+2
p ) = 1. Thus, the condition

( trA+2
p ) = 1 is sufficient for existing of χb(x). But

it remains to show that these eigenvalues
√
λ1 = µ1,√

λ2 = µ2 are the roots of the characteristic polyno-
mial χB(x).

By the condition of theorem trA+2 is a quadratic

residue or 0, there is
√
tr(A) + 2 =

√
(µ1 + µ2)

2
in

Fp, whence tr(B) ∈ Fp, detB ∈ Fp holds in view
of well known theorems, therefore χB(x) has coef-

ficients c =
√
tr(A) + 2 = µ1 + µ2 in Fp, hence

B presented in the Frobenius normal form belongs to
SL2(Fp).

Furthermore B having e.v. µ1, µ2 is the matrix
over Fp, but µ1, µ2 can be from Fp2\Fp.

Corollary 8. The condition (λ1

p ) = 1 and (λ2

p ) = 1

are necessary over algebraically closed field for diag-

onalizable non-scalar Jordan form
√
A ∈ ESL2 (Fp).

The condition (TrA+2
p ) = 1 yields quadraticity of

e.v. λ1,2.
Moreover additional an equality TrA+2 = Tr2B

holds.

Proof. Proof. In the process of proof we obtain that

λ1 = β21 and λ2 = β22 . Let B =

(
a b
c d

)
then in

view of detB = ad− bc = 1 and the fact

TrA = a2 + bc+ d2 + bc = a2 + d2 + 2bc = a2+

+d2 + 2 (ad− 1) = a2 + d2 + 2ad− 2 =

= (a+ d)2 − 2 = Tr2B − 2.

Finally we have TrA+2 = Tr2B. Thus TrA+2 is
square so according to Theorem 7 and from diagonal
form of A we have λ1 = β21 and λ2 = β22 .

Example 9. Consider Fibonacci matrix F =(
0 1
1 1

)
in SL2 (Fp) then F 2 =

(
1 1
1 2

)
which confirms criterion 7 of existing roots in
ESL2 (Fp) because trA − 2 = 1 because of 1 is
square in each field Fp as well as in Q and R.

Next one is R =

(
0 −2
2 0

)
in SL2 (F3) then

R2 =

(
−1 0
0 −1

)
.

In another hand we can justify the root existing by
criterion for ESL2 (F3) because trR

2 − 2 = 0.

Example 10. The case of roots belonging to both

cosets of the quotient ESL2(F)/SL2(F) appears for a

matrixA with tr(A) = 3 and F = F11. In fact, in this
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case tr(A) − 2 = 1, tr(A) + 2 = 5 one can easily
verify that 5 is quadratic residue by mod11 because
of 42 ≡ 5 (mod11) and 1 is always square.

Corollary 11. By the way in the proof of Theorem
7 for simple matrix diagonalizable matrix we obtain
additional equality trA+ 2 = tr2B.

Proof. Let B =

(
a b
c d

)
then in view of detB =

ad− bc = 1 and the fact trA = a2 + bc+ d2 + bc =
a2 + d2 + 2bc = a2 + d2 + 2 (ad− 1) = a2 + d2 +

2ad− 2 = (a+ d)2− 2 = tr2B− 2. Finaly we have
trA+ 2 = tr2B.

Example 12. Consider a case when roots are only

fromESL2(Z), letA =

(
3 2
4 3

)
. Here trA−2 = 4

that is square, but trA + 2 = 8 is not square in Z.
The square roots

B =
±1√
4

(
2 2
4 2

)
= ±

(
1 1
2 1

)
,

therefore B ∈ ESL2(Z) \ SL2(Z).

Corollary 13. Let A ∈ SL2(F) and A be simple di-
agonizable matrix satisfying Theorem 7, where F is
arbitrary field. Then there exist at most 4 solutions of
equation X2 = A in ESL2(F).

Proof. Let B be solution of X2 = A. If tr(A) + 2
is quadratic element then we have 2 solutions ±B in
SL2(F), if tr(A)−2 is such then there are 2 roots±B
in ESL2(F). At least if both elements tr(A) ± 2 are
squares in F then we have 4 roots by the same reasons
wherein 2 in SL2(F) and 2 in ESL2(F).

For the case F = Fp our criterion can be formu-
lated in terms of Legendre symbol.

Corollary 14. Let A be simple diagonalizable or
scalar matrix and A ∈ SL2(Fp), [27], then for a ma-
trix A ∈ SL2(Fp) there is a solution B ∈ SL2(Fp)
of the matrix equation

X2 = A (8)

if and only if (
trA+ 2

p

)
∈ {0, 1}. (9)

If X ∈ ESL2(Fp) then the matrix equation (8)
has a solution iff(

trA± 2

p

)
∈ {0, 1}. (10)

This solution X ∈ ESL2(Fp) \ SL2(Fp) iff(
trA−2

p

)
= 1 or 0, but

(
trA+2

p

)
= −1. Con-

versely X ∈ SL2(Fp) iff
(
trA+2

p

)
= 1. Solutions

Xi ∈ ESL2(F) and SL2(F) iff
(
trA+2

p

)
= 1 and

(trA− 2) = 1.
In the case A ∈ GL2(Fp) this condition (5) takes

form: (
trA± 2

√
detA

p

)
∈ {0, 1}. (11)

The proof is the same as for Theorem 7 but instead
of F we put Fp. But we emphasise that theorems of
such a kind, [7], were for algebraic closed field before
this paper.

Example 15. Consider a matrix equation X2 = A
with e.v. in F9\F3 then taking into consideration
Corollary 14. It has roots in ESL2 (F3) \SL2 (F3)

according to our results, [3]. Let A =

(
0 −1
1 0

)
since trA + 2 = 2 that is non-square residue in F3

but trA − 2 = −(−1) = 1 in F3, then accord-
ing to our criterion and formula for root expression
which specialised by us for finite fields and SL2 (Fp)

from [10], we use a minus in trA ± 2 i.e.
√
A =

A−E√
trA−2

= 1√
trA−2

(
−0− 1, −1

1, −0− 1

)
=

1√
trA−2

(
−1, −1
1, −1

)
=

(
−1, −1
1, −1

)
=(

2, −1
1, 2

)
= B. Another branch with ”-” be-

fore the root trA ± 2 lead us to second root:
√
A =

A−E
−
√
trA−2

= 1√
trA−2

(
−0 + 1, 1

−1, −0 + 1

)
=

1√
trA−2

(
1, 1

−1, 1

)
= −B.

Its χA(x) = x2 + 1 = 0 therefore its roots are
±i ∈ F9\F3 and ±i are square in F9 that confirms
Corollary 14.

Corollary 16. IfA ∈ GL(F2) the condition (5) takes
the form: (

trA

2

)
∈ {0, 1}.

Remark 17. The formulated criterion for a diagoniz-
able matrix is also true over fields Q and R.
Proof. The proof is the same only with the change of
quadraticity criterion over the new field.

Corollary 18. A matrix A is square in SL2(F2k) as
well as in GL2(F2k) iff matrix A admits diagonal
form over F2k .
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Furthermore, this condition is sufficient for any
square matrix A ∈ GLnF2k . If A admits diagonal
form over F2k , then there exists a matrix B over F2k

for which B2 = A. This condition is sufficient even
for singular matrix from a matrix ringMn(Z).

Proof. Firstly we show that square of B ∈ SL2(F2k)
having non-diagonal Jordan JB form is not non-

diagonal Jordan form. Let JB =

(
β 1
0 β

)
then

(JB)
2 =

(
β2 2β
0 β2

)
=

(
β2 0
0 β2

)
= DA =(

λ 0
0 λ

)
. Besides that square of no one diago-

nal matrixB does not give non-diagonal Jordan form.
Therefore only diagonalizable matrix DA admits the
presence of roots in SL2(F2k) this confirms a neces-
sity of the stated condition for SL2(F2k).

Let us check the sufficiency of the condition. In-
deed, if A is diagonalizable then there exists a non-
singular matrix U , for which

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0

. . .

0 0 0 · · · λn

 .

The elements λi, i ∈ 1, ..., n belongs to some F2k .

That’s why for any λi 6= 0 we have λ2
k−1

i = 1. So

for any λ2
k

i = λi, it leads us to replacement D2k

by

D. This gives us the equality A2k

= UD2k

U−1 =
UDU−1 = A. Since k ≥ 1, the number 2k is even.

So, we can simply take B = A
2k

2 = A2k−1

. For

this B we have B2 = A2k

= A. We will refer e.v.
of B as β1, β2. In the case SL2(F2) the product of
e.v. λ1λ2 = 1, wherein

√
λ1 = β1,

√
λ2 = β2,

this imply that the product β1β2 = ±1. It means
that B ∈ ESL2(Fp). Since in F2n all elements
gi ∈ F2n (including eigenvalues λ1, λ2, . . . λn) are
quadratic elements, therefore a diagonal matrix A is
always square of the mentioned above B over F2n .
ForMn(Z) the proof is the same.

We exhibit the formula of roots of diago-

nalizible matrices
√
A = A

x+1

2 , where x =
LCM(ord(λ1), ord(λ2), ..., ord(λn)).

5.2 Conditions of root existing in GL2(Fp)
Lemma 19. If e.v. ofA lies in the quadratic extension
of Fp i.e. λ1, λ2 ∈ Fp2 \ Fp, then the matrix algebra
Alg[A] = 〈E, A〉 ' Fp2 .

Proof. We show that the algebra Alg [A] = 〈E,A〉
is isomorphic to the finite field Fp2 . As well-known
from Galois theory, a quadratic extension of Fp can

be constructed by involving of any external element
g ∈ Fp2\Fp. For our case, to construct a bijective
correspondence with the algebra we put g = λ1. We
denote this element by g, in particular, for p = 4m+3
it may be an element satisfying the relation g2 = −1.
Note that the matrix of the rotation by 90 degrees can
be used as an example of a matrix A, namely

A = ρ90 :=

(
0 1
−1 0

)
satisfies this relation. In case when p = 4m + 1 one
must construct another matrix instead of ρ90 because
of (−1

p ) = 1. It may be a matrix of the form

B =

(
0 c
−1 b

)
,

whose characteristic polynomial λ2 − bλ + c is irre-
ducible over Fp.

We define the mapping ϕ : xE + yA → xe +
yλ; a, b ∈ Fp. The mapping ϕ in Fp2 can be more
broadly described, in such a way that a matrix A sat-
isfies A2 = −E, then its e.v. λ is assigned to it in the
field Fp2 , whereas λ ∈ Fp2\Fp, ϕ : y1A + x1E →
xe+ yλ; x, y ∈ Fp.

Obviously detA = 1, that’s why A ∈ SL2(Fp)
and µA(x) is irreducible because A is semisimple.

According to assumption of this Lemma, the ma-
trix A is semisimple and has no multiple eigenvalues
which are not squares in Fp, so χA (x) is irreducible
because of definition of semisimple matrix and condi-
tion λ1 6= λ2. According to the Lemma about Frobe-
nius automorphism, its eigenvalues are conjugated in

Fp2 . The method of constructing of
√
A is the follow-

ing. Having isomorphism Alg [A] = 〈E,A〉 ' Fp2 ,
we set a correspondence λ ↔ A and a correspon-
dence between groups operations in Fp2 and A lg [A].

Therefore, solving the equation (x+ λy)2 = λ rel-
atively coefficients x, y ∈ Fp we obtain the coeffi-

cients for expression of
√
A, i.e.

√
A = x + Ay. To

prove the isomorphism, we establish a bijection be-
tween the generators of the algebraA lg [A] = 〈E,A〉
and the field Fp2 . It is easy to establish in more detail
that A ↔ λ and E ↔ e. Also the correspondence
between the neutral elements of both structures, i.e.
ϕ (0̄) = 0 where 0 is the zero matrix. To complete
the proof, it remains to show that the kernel of this
homomorphism ϕ is trivial. To do this, we show that
among the elements of the algebra there are no iden-
tical ones. The surjectivity of ϕ is obvious.

To show the injectivity, we use a method of proof
by contradiction. From the opposite, we assume
y1A + x1E = y2A + x2E, xi, yi ∈ Fp. Then
y1A+x1E = y2A+x2E it yields that (y1 − y2)E =
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(x1 − x2)A, which is impossible since the character-
istic polynomial of the matrix A is irreducible but the
characteristic polynomial of the identity matrix is re-
ducible. Therefore, our algebraA lg [A] is isomorphic
to the completely linear space of linear polynomials
fromE andA. In the similar way we prove that poly-
nomial of form xe + yλ where x, y ∈ Fp do not re-
peat. The proof is based on oppositive assumption
about coinciding of a two polynomials x1e + y1λ =
x2e + y2λ with different coefficients. Then equality
x1e + y1λ = x2e + y2λ implies that (y1 − y2)λ =
(x1 − x2) e i.e. y1 = y2 and x1 = x2 that contradicts
to our assumption.

Theorem 20. Let p be prime and p > 2. Let a matrix
A ∈ GL2(Fp) be semisimple with different eigenval-
ues and let at least one its eigenvalue λi ∈ Fp2 \ Fp,

i ∈ {1, 2}, be quadratic residue in Fp2 then
√
A ∈

GL2(Fp). Vice-versa is also true.

As an immediate consequence we get if detA is not
quadratic residue inFp a square root fromA does not
exist in GL2(Fp).

Proof. Firstly, we consider the most complex and
interesting case when A is not diagonalizable, then
χA (x) is irreducible overFp. By assumption, the ma-
trix is semisimple and its characteristic polynomial
is irreducible. So root λ of χA(x) belongs to the
quadratic extension of the field Fp. Since each ele-
ment of Fp2 can be presented in form a+ bλ, a, b ∈
Fp, then we can construct mapping of matrix algebra
generators E and A in generators of Fp2 and apply
the aforementioned Lemma 19 about isomorphism es-
tablish correspondence between property be square
in Fp2 and in Alg [A] = 〈E,A〉. If one e.v. λi
is square in Fp2 then so is second e.v. because of
they are conjugated as roots of characteristic poly-
nomial χA(x) by theorem about Frobenius automor-
phism (Frobenius endomorphism in perfect field be-
came to be automorphism). Also we construct the
mapping ϕ : xE + yA → xe + yλ; x, y ∈ Fp
establishing isomorphism Alg [A] ' Fp2 .

Note, that in order to anlalyze the matrixA, where
e.v. are in λi ∈ Fp2\Fp, we must construct an algebra
using matrix A.

If the condition (detAp ) ∈ {0, 1} does not hold

then a matrixB satisfying the condition detBdetB =
detA (where A is not square) does not exist too.

Example 21. Consider the square matrix A =
−E satisfying conditions of Theorem 20 because of
(−1

9 ) = 1 in F9, provided E is identity matrix in
SL2(F3). We have to note that there exists the ma-

trix

(
0 2
−2 0

)
= 2I ∈ SL2(F3) is the square root

for A, where I is the rotation matrix on -90 degrees.
Indeed I2 = −E over F3.

Another root of this equation X2 = −E, where
A is matrix of elliptic type realizing rotation on 90

degrees ρ90 =

(
0 1
−1 0

)
= I because of I2 = −E,

is the matrix of elliptic type.
The matrix 2I is the square in GL2 (F3) be-

cause of existence such an element

(
1 1

−1 1

)2

=

2

(
0 1

−1 0

)
= 2I.

Example 22. Consider the diagonal matrix A ∈

GL2(F3), where A =

(
1 0
0 − 1

)
, emphasizing the

need for the condition (det(A)
p ) = 1 and λ ∈ Fp2 \ Fp

of Theorem 20 for semisimple matrix. Here even

the condition (det(A)
p ) = 1 does not hold as well as

λ1,2 /∈ Fp but in Fp2 \Fp, A
′ ∈ ESL2(F3). It is easy

to verify the absence of root from A =

(
1 0
0 − 1

)
in GL2(F3).

But the matrix A′ =

(
1 − 1
−1 − 1

)
satisfy-

ing conditions of Theorem 20 has roots
√
A′ =

±
(

1 − 1
−1 − 1

)
.

Theorem 23. Under conditions (λp ) = 1 in Fp and

matrix A is similar to a Jordan block of the form

JA =

(
λ 1
0 λ

)
(12)

a square root B of JA exists in SL2(Fp) and takes

form B =

( √
λ γ

0
√
λ

)
, wherein γ = (2

√
λ)−1.

The root B belongs to Alg[A] which is described in
Lemma 19.

Proof. Assume that a square root from A exists in
SL2(Fp) or in ESL2(Fp) correspondently. We de-
note a matrix B transformed to upper triangular form
by UTB . Let us show provided that above condition
it always exists such B : UT 2

B = JA, where UTB is
B transformed to UTM form. Then we show that it
implies existing of solution ofX2 = A. From the ex-
istence of the Jordan block forA follows the existence
of a similarity transformation U transforming B2 to
the Jordan normal form JB because of A = B2 and
A has non-trivial Jordan block denoted by JA. But a
square root fromB2 this operator U transforms in up-
per triangular formUTB . Then if we find the solution
for
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UT 2
B = JA (13)

we can obtain solution forX2 = A because of the
following:

A = U · (UTB)2 · U−1 =

(U · UTB · U−1)(U · UTB · U−1) = B2.

It means that such matrix UTB satisfying pre-
vious equation exists and it can be transformed by
the same similarity transformation by conjugation in
form UTB = U−1BU by the same matrix that trans-
forms A in JA because of B2 = A. To show the
existing of such solution of (13) we acting by inverse
transformation A = U · (UTB)2 · U−1 = (U · UTB ·
U−1)(U · UTB · U−1) = B2, where U is a similarity
transformation B to

UTB =

(
β γ
0 β

)
.

note that its diagonal elements b11 = b22 = β are
the same. Even more easier we can deduce it without
applying Lemma 19. We have b11 = b22 = β, then
β+β = Tr(U−1BU). Therefore 2β ∈ Fp. It implies
that β ∈ Fp if p > 2 and

(UTB)
2 =

(
β2 2βγ
0 β2

)
.

Here the element γ can be chosen γ : 2βγ = 1 so
γ = (2β)−1

taking into account that β =
√
λ which

is already determined by A. Then (UTB)
2 :

(UTB)
2 =

(
β2 2βγ
0 β2

)
=

(
β2 1
0 β2

)
=

= JA =

(
λ 1
0 λ

)
.

Furthermore we show that these conditions is also
necessary but not only sufficient. It means if (λp ) =

−1, then there are no matrix B over SL2(Fp) such
that B2 = A. By a reversal of theorem condition and
using the representation in the form of UTM for and
for we see that B from PSL2(Fp) such that B

2 = A.
We see that the eigenvalue of B over lie in the main

field — Fp. However, we assumed that (λp ) = −1.

Thus we obtain the desirable contradiction.
Let us show that condition of non-

diagonalizability of matrix is necessary in the
conditions of this Theorem. By virtue of the
well-known theorem stating that if the algebraic
multiplicity is equal to the geometric multiplicity
for each eigenvalue, then matrix is diagonalizable
otherwise it is not diagonalizable, we see that if

the condition of similarity to JA =

(
λ 1
0 λ

)

indicated in this Theorem 23 does not holds, then
such A satisfy the conditions of this Theorem 7,
where algebraic multiplicity is equal to geometrical.
And since the condition 12 of this criterion is nature,
therefore, it is no longer necessary to prove the
non-diagonalizability condition in Theorem 23.

Proof of necessity. Furthermore we show that
these conditions is also necessary but not only suffi-

cient. It means if (λp ) = −1, then there are no matrix

B having non trivial Jordan block over SL2(Fp) such
that B2 = A. By a reversal of theorem condition and
using the representation in the form of UTM for and
for we see that B from SL2(Fp) such that B

2 = A.
We see that according to the Lemma the eigenvalue
of B ∈ SL2(Fp) correspondingly, lie in the main
field – Fp. Furthermore according to Lemma 6 if β
is an eigenvalue for B then β2 is an eigenvalue for
B2, so we have β2 = λ. However, we assumed that
(λp ) = −1. Thus we obtain the desirable contradic-

tion. The eigenvalue β has geometrical dimension 1,
because of in oppositive case geometrical dimβ = 2
(dimension of eigenvector space of β), then we get
that J2

B is only scalar matrix B.
The proof is fully completed.

6 Future research and discussion
The main result of this paper about the criterion of a
quadraticity can be extended to larger dimension ma-
trices having a Jordan structure constructed of blocks
of dimension 2 or 1. Also, our result for a semisim-
ple matrix of dimension 2 can be generalized to a
semisimple matrix of higher dimension.

One new method of matrix factorization, [49],
[50], [23] due to our square root existence criterions
can be provided.

If M possesses the presentation M = A − C,
whereA = B2, C = D2, thenM can be factorized in
the following wayM = (B −D) (B +D), provided
condition BD = DB. For verifying the condition of
A, C quadraticity our structural theorems about roots
structures are applicable. Theorem 23 outlines the
Jordan structure of roots which is key to defining the
matrix centralizer.

Indeed, (B −D) (B +D) = B2 − D2 + BD −
DB, whence equality (B −D) (B +D) = B2−D2

satisfies if BD = DB. Therefore it is important to
have quick method of square root existence checking
in SL2 (F) also we investigate jourdan structures of
matrix roots to obtain an answer about commuting of√
A and

√
B. Analogously we can spread the method

on case of cubic root existing.
Besides another one new method of matrix factor-

ization for the case If algebraAlg(A) = 〈E,A〉 is one
generated and roots B1, B2 ∈ Alg(A) then B1, B2

commutes, because of such algebra is commutative.
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It yields some decomposition of A in roots products.
Another part of root can be out of Alg(A) in case if
dim(Alg(A)) = 1.

Such rootsB1, B2 ∈ ESL2 (F3) always commute
if they belongs to one-dimensional algebraAlg(A) =
〈A〉. Consider SL2 (F3) and its element that is the

90 degree rotation matrix A =

(
0 −1
1 0

)
. For

factorization we also use roots of an additional matrix
√
−A = B1 =

(
1 1

−1 1

)
and

√
−A = B2 =(

1 1
−1 1

)
.

Then we can present their product as a factoriza-
tion of a matrix A

A = B1B2 =

(
−1 1
−1 −1

)(
1 −1
1 1

)
=

=

(
0 −1
1 0

)
. Note that B1 = A − E that ac-

cords with derived us by modification, [3], of Cayley-
Hamilton method for roots of matrix of finite field. In
general case there are 4 roots possible which are de-
scribed in [3], therefore more combinations or roots
can lead us to grater number ofmatrix decompositions
what can be object of future research.

Consider SL2 (F3) and the roots of the - 90 degree
rotation matrix.

Let A =

(
1 0
0 1

)
so B1 =

√
A =(

−1 −1
1 −1

)
, B2 =

√
−A =

(
1 −1
1 1

)
.

This method of a matrix factorization can be a sub-
ject of future researches baised on our criterions of
quadraticity.

7 Conclusion
The new linear group which is storage of most of
square roots from SL2(Fp) is found and investigated
by us.

The criterions of the matrix equation X2 = A
solvability over different linear groups with respect
to matrix classification by its tr(A) and type of space
contracting is found and proved in this paper.

The characterization of form of a square matrix
root are closely connected with the solution of matrix
factorization that is important, since the factorization
of matrices, like polynomials, is related to the factor-
ization of numbers [23], [49], [50], [51].

The method of matrix factorization that we have
outlined gives a decomposition of the matrix into two
factors of arbitrary shape, not necessarily upper trian-
gular and lower triangular form.

The criterion of roots existing for different classes
of matrix — simple and semisimple matrixes from
SL2(Fp), SL2(Z) are established.

If a matrix A ∈ GL2(Fp) is semisimple with
different eigenvalues and at least one an eigenvalue

λi ∈ Fp2 \ Fp, i ∈ {1, 2}, then
√
A ∈ GL2(Fp) iff A

satisfies: (λi

p ) = 1 in the algebraic extention

of degree 2 that is Fp2 .

Over method gives answer about existing
√
Mn

without exponentingM ton-th power in contrast with
[8], which give answer only after computation detMn

and some real Pell-Lucas numbers by using Bine for-
mula. Out criterion require only the trace of M or
only eigenvalues ofM .
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