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Abstract: In this paper, we first state the ν−Vitali theorems in the non-Newtonian sense. In the second part, we
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1 Introduction
Non-Newtonian calculus, which has found

applications in various fields such as engineering,
mathematics, finance, economics, medicine, and
biomedical sciences, was developed between
1967 and 1970 as an alternative to the classical
calculus of Newton and Leibniz, [1], [2]. The
foundational book titled Non-Newtonian Calculus,
which laid the groundwork for this alternative
calculus, was published in 1972 by [3]. The
concepts of derivative and integral in the context of
metacalculus were explored by [4], while geometric
calculus and its applications were examined in
[5]. The non-Newtonian Lebesgue measure for
non-Newtonian open sets was defined and studied
in[6]. Finally, the non-Newtonian measure for
closed non-Newtonian sets, along with some related
theorems, was defined and studied in [7]. For more
details see, [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22].

Let ν be a generator, which means ν is a
one-to-one function whose domain is real numbers
and whose range is a subset A of R. Let ṗ, q̇ ∈ A.
Then, ν−arithmetics are defined as follows;

ν − addition ṗ+̇q̇ = ν{ν−1(ṗ) + ν−1(q̇)}
ν − subtraction ṗ−̇q̇ = ν{ν−1(ṗ)− ν−1(q̇)}
ν − multiplicative ṗ×̇q̇ = ν{ν−1(ṗ)× ν−1(q̇)}
ν − division
(ν−1(q̇) ̸= 0) ṗ/̇q̇ = ν{ν−1(ṗ)/ν−1(q̇)}
ν − order ṗ≤̇q̇ ⇔ ν−1(ṗ) ≤ ν−1(q̇)

Numbers with x>̇0̇ are called ν−positive numbers,
and numbers with x<̇0̇ are called ν−negative
numbers. The set of ν−integers is

Zν = Z(N) = . . . , ν(−2), ν(−1), ν(0), ν(1), ν(2), . . . .

The set Rν = R(N) = {ν(a) : a ∈ R} is called
the set of non-Newtonian real numbers.

The absolute non-Newtonian value of ȧ ∈ A in
the subset A ⊂ Rν is denoted by |ȧ|N and define as
follows;

|ȧ|ν =

 ȧ , ȧ>̇ν(0)
ν(0) , ȧ = ν(0)
ν(0)−̇ȧ , ȧ<̇ν(0)

Accordingly,
√
ȧ2N

N
= |ȧ|N = ν

{
|ν−1(ȧ)|

}
is written for each u̇ in the set A ⊂ Rν [3], [8].
Definition 1. The non-Newtonian outer measure of
a nonempty ν−bounded set K is the largest lower
bound of the measures of all ν−bounded, ν−open
sets containing the set K. So it is defined by

m∗
NK =ν inf

K⊂G
{mNG}

[7].
Definition 2. The non-Newtonian interior measure of
a nonempty ν−bounded set K is the smallest upper
bound of the measures of all ν−closed sets contained
in the set K. So it is defined by

m∗NK =ν sup
F⊂K

{mNF}

[7].
Theorem 1. Let be given a ν−bounded set K. If∆ is
a ν−open set containing the set K, then we have the
following equation;

m∗
NK+̇m∗N

[
CK
∆

]
= mN∆

[7].
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Definition 3. If the non-Newtonian interior and
exterior measure of a ν−bounded set K are equal,
the set K is called a non-Newtonian Lebesgue
measurable set, or simply the ν−measurable set, [7].

Theorem 2. If the set K is the ν−measurable set in
Rν , then ν−1(K) is the measurable set in R, [7].

Theorem 3. Let be given a ν−bounded set E.
If the set E can be written as a combination of
finite or countably infinite sets of pairwise disjoint
ν−measurable Ek sets, then E is ν−measurable and

mNE =ν

∑
k

mNEk

equality is satisfied, [23].

2 Main Results
2.1 Vitali Theorems
Definition 4. Let K be a set of ν−points and B a
family of ν−closed intervals, none of which are single
points.If for every x ∈ K point and for every ϵ̇>̇0̇
there is a ν−closed b ∈ B interval such that

x ∈ b, mNb<̇ϵ̇,

then, the set K is said to be contained by the family
B in the ν−Vitali sense.
In other words, if every point of the set K lies in
arbitrarily small ν−closed intervals belonging to the
family B , then the set K is covered by the family B
in the ν−Vitali sense.

If the set K is contained by the B in the ν−Vitali
sense, then the set ν−1(K) is also contained by a
family in the Vitali sense. Let B is the family of
ν−closed sets b which do not consist of a single point
and let B1 be the family of ν−1(b) closed sets that do
not consist of a single point. Then, for ∀x ∈ K and
for each ϵ̇>̇0̇, there is an ν−closed interval b ∈ B
such that

x ∈ b, mNb<̇ϵ̇.

Then, we have

ν−1(x) ∈ ν−1(b)

and ν−1(b) ∈ B1 since b ∈ B so we get

ν−1(mN (b)) < ν−1(ϵ̇)

ν−1
(
ν{m(ν−1(b))}

)
< ϵ

m(ν−1(b)) < ϵ (ϵ > 0)

⇒ ν−1(K) Vitali

Theorem 4. If a ν−bounded set K is covered by a
family of closed intervals B in the ν−Vitali sense,
then it is possible to find a finite or countable family
of ν−closed intervals bk in the set B such that

bk ∩ bi = ∅(k ̸= i) m∗
N

[
K \

∪
k

bk

]
= 0̇.

Proof. Since the setK is ν−bounded, the set ν−1(K)
is bounded and is covered by the family B1 which
consist of closed intervals. By the Vitali’s theorem it
is possible to find a finite or countable closed interval
family ν−1(bk) in the set B1, such that

⇒ ν−1(bk) ∩ ν−1(bi) = ∅(k ̸= i)

m∗
[
ν−1(K) \

∪
k

ν−1(bk)

]
= 0

⇒ ν{ν−1(bk ∩ bi)} = ν{∅}(k ̸= i)

m∗
[
ν−1(K) \ ν−1

(∪
k

bk

)]
= 0

⇒ bk ∩ bi = ∅(k ̸= i)

ν

{
m∗
[
ν−1

(
K \

∪
k

bk

)]}
= ν(0)

⇒ bk ∩ bi = ∅(k ̸= i)

m∗
N

[
K \

∪
k

bk

]
= 0̇

which gives the proof.

Theorem 5. Under the hypotheses of Theorem 4,
for every ϵ̇>̇0̇ there is a finite system b1, b2, . . . , bn
consisting of pairwise disjoint ν−closed intervals of
the system B such that

m∗
N

[
K \

n∪
k

bk

]
<̇ϵ̇.

Proof. If the set K is covered by a family of closed
intervals B in the sense of ν−Vitali, then the set
ν−1(K) is also covered by a family of closed intervals
B1 in the sense of Vitali. The B1 system has a finite

ν−1(b1), ν
−1(b2), . . . , ν

−1(bn)

system of pairwise disjoint closed intervals. Thus we
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get

⇒ m∗

[
ν−1(K) \

n∪
k

ν−1(bk)

]
< ϵ

⇒ m∗

[
ν−1(K) \ ν−1

(
n∪
k

bk

)]
< ϵ

⇒ ν

{
m∗

[
ν−1

(
K \

n∪
k

bk

)]}
< ν(ϵ)

⇒ m∗
N

[
K \

n∪
k

bk

]
< ϵ̇

⇒ ν−1

(
m∗

N

[
K \

n∪
k

bk

])
< ν−1(ϵ̇)

⇒ m∗
N

[
K \

n∪
k

bk

]
<̇ϵ̇

.

2.2 Measurable Functions
Definition 5. Let

fν : X ⊂ Rν → Rν

ȧ → fν(ȧ).

If for ∀β̇ ∈ Rν , the set

A = {ȧ ∈ X : fν(ȧ)>̇β̇}

is ν−measurable, that is,

m∗
NA = m∗NA

then, the function fν is called a non-Newtonian
measurable function, or simply a ν−measurable
function.

Theorem 6. Let fν : X ⊂ Rν → Rν be a function.
The following expressions are equivalent; for ∀β̇ ∈
Rν

a) the set Aβ̇ = {ȧ ∈ X : fν(ȧ)>̇β̇} is the
ν−measurable set,
b) the set Bβ̇ = {ȧ ∈ X : fν(ȧ)≤̇β̇} is the
ν−measurable set,
c) the set Cβ̇ = {ȧ ∈ X : fν(ȧ)≥̇β̇} is the
ν−measurable set,
b) the set Dβ̇ = {ȧ ∈ X : fν(ȧ)<̇β̇} is the
ν−measurable set.

Proof. It is obvious thatAβ̇ = X\Bβ̇ , Bβ̇ = X\Aβ̇ .
(a) ⇒ (b):Since Aβ̇ is ν−measurable, its
complement, Bβ̇ , is also ν−measurable.
(b) ⇒ (a): Since Bβ̇ is ν−measurable, its
complement, Aβ̇ , is also ν−measurable.
Thus, we get (a) ⇔ (b).
Since Cβ̇ = X \Dβ̇ is Dβ̇ = X \ Cβ̇ (c) ⇔ (d) .
(a) ⇒ (c): For ∀β̇ ∈ Rν , let Aβ̇ = {ȧ ∈ X :

fν(ȧ)>̇β̇} be the ν−measurable set.
For every ṁ ν−positive integer, we have β̇−̇ 1̇

m ∈ Rν

since β̇ ∈ Rν and 1̇
m ∈ Rν and so A

β̇−̇ 1̇

m

is a
ν−measurable set.
Thus

A
β̇−̇ 1̇

m

= {ȧ ∈ X : fν(ȧ)>̇β̇−̇ 1̇

m
}

and we get

∞∩
m=1

A
β̇−̇ 1̇

m

=

∞∩
m=1

{
ȧ ∈ X : fν(ȧ)>̇β̇−̇ 1̇

m

}
= {ȧ ∈ X : fν(ȧ)≥̇β̇} = Cβ̇

is the ν−measurable set.
(c) ⇒ (a): For ∀β̇ ∈ Rν , Cβ̇ = {ȧ ∈ X : fν(ȧ)≥̇β̇}
be a ν−measurable set.
For every ṁ ν−positive integer, we have β̇+̇ 1̇

m ∈ Rν

since β̇ ∈ Rν and 1̇
m ∈ Rν and so C

β̇+̇ 1̇

m

is the
ν−measurable set.
Again

C
β̇+̇ 1̇

m

= {ȧ ∈ X : fν(ȧ)≥̇β̇+̇
1̇

m
}

and we get

∞∪
n=1

C
β̇+̇ 1̇

m

=

∞∪
m=1

{
ȧ ∈ X : fν(ȧ)≥̇β̇+̇

1̇

m

}
= {ȧ ∈ X : fν(ȧ)>̇β̇} = Aβ̇

is the ν−measurable set which gives (a) ⇔ (c).

Theorem 7. If

fν : X ⊂ Rν → Rν

ȧ → fν(ȧ)

is a non-Newtonian measurable function, then

ν−1 ◦ fν ◦ ν : ν−1(X) ⊂ R → R
a → (ν−1 ◦ fν ◦ ν)(a)

is a measurable function.
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Proof. Since fν is a non-Newtonian measurable
function, we have
∀β̇ ∈ Rν , {ȧ ∈ X : fν(ȧ)>̇β̇} is the ν−measurable
set. For ∀β ∈ R, the set

ν−1({ȧ ∈ X : fν(ȧ)>̇β̇})
⇔ {ν−1(ȧ) ∈ ν−1(X) : fν(ȧ)>̇β̇}
⇔ {a ∈ ν−1(X) : ν−1(fν(ν(a))) > ν−1(β̇)}
⇔ {a ∈ ν−1(X) : (ν−1 ◦ fν ◦ ν)(a) > β}

is measurable. This completes the proof.

Example 1. The non-Newtonian constant function

fν : X ⊂ Rν → Rν

ȧ → fν(ȧ) = ċ, ċ ∈ Rν

is a ν−measurable.
Proof. For ∀β̇ ∈ Rν , it can be shown that the set

{ȧ ∈ X : fν(ȧ) = ċ>̇β̇}

is ν−measurable.
(i) Let β̇≥̇ċ . Then, the set

fν(ȧ)>̇β̇≥̇ċ

{ȧ ∈ X : fν(ȧ)>̇β̇} = ∅
is ν−measurable.
(ii) Let β̇<̇ċ. Thus, the set

{ȧ ∈ X : fν(ȧ)>̇β̇} = X

is ν−measurable.
Then the non-Newtonian constant function is
ν−measurable.

Example 2. For ∀ȧ ∈ Rν , the set {ȧ ∈ X : fν(ȧ) =

β̇} is a-measurable if

fν : X ⊂ Rν → Rν

ȧ → fν(ȧ)

is a non-Newtonian measurable function.
Proof. It is easy to see the following equality:

{ȧ ∈ X : fν(ȧ) = β̇}
= {ȧ ∈ X : fν(ȧ)≥̇β̇} ∩ {ȧ ∈ X : fν(ȧ)≤̇β̇}.

Since finite number of intersections of ν−measurable
sets are ν−measurable the proof is completed.

Definition 6. Given a set E, the ν−characteristic
function of E is denoted by νχ and defined by

νχE =

{
1̇, x ∈ E
0̇, x /∈ E

Example 3. If E is ν−measurable set, the the
function νχE is a ν−measurable function.

Proof. For ∀β ∈ Rν we show that the set{
x ∈ X : νχE(X)>̇β̇

}
is a ν−measurable.

i) If β̇<̇0̇, then the set{
x ∈ X : νχE(X)>̇β̇

}
= X

is ν−measurable.
ii) Let 0̇≤̇β̇<̇1̇. Then the set{

x ∈ X : νχE(X)>̇β̇
}
= E

is ν−measurable.
iii) Let β̇≥̇1̇.{

x ∈ X : νχE(X)>̇β̇
}
= ∅

set is ν−measurable.
Hence, the function νχE is ν−measurable function
when the set E is ν−measurable.

Theorem 8. If the function fν is ν−measurable
non-Newtonian real-valued function and ċ ∈ Rν , then
the function ċ×̇fν is ν−measurable.

Proof. To show that the function (ċ×̇fν)(ȧ) =
ċ×̇fν(ȧ) is ν−measurable, the set

{ȧ ∈ X : (ċ×̇fν)(ȧ)>̇β̇}

must be shown to be ν−measurable.
i) If ċ = 0̇, the set

{ȧ ∈ X : (ċ×̇fν)(ȧ)>̇β̇} = X ifβ̇<̇0̇

is ν−measurable and the set

{ȧ ∈ X : (ċ×̇fν)(ȧ)>̇β̇} = ∅ ifβ̇≥̇0̇

is ν−measurable.
which shows that the ċ×̇fν function is ν−measurable.
ii) Let ċ>̇0̇. We write

{ȧ ∈ X : ċ×̇fν(ȧ)>̇β̇} = {ȧ ∈ X : fν(ȧ)>̇β̇/̇ċ}.

Since β̇/̇ċ ∈ Rν and the fν function is ν−measurable,
the set {ȧ ∈ X : ċ×̇fν(ȧ)>̇β̇} is ν−measurable.
iii) Let ċ<̇0̇. The set

{ȧ ∈ X : ċ×̇fν(ȧ)<̇β̇} = {ȧ ∈ X : fν(ȧ)<̇β̇/̇ċ}

is ν−measurable since β̇/̇ċ ∈ Rν and the function fν
is ν−measurable.
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Theorem 9. If the function fν is ν−measurable,
then the non-Newtonian real-valued function f2N

ν is
ν−measurable.

Proof.
i) If β̇<̇0̇ then {ȧ ∈ X : [fν(ȧ)]

2N >̇β̇} = X set is
ν−measurable.
ii) If β̇≥̇0̇ then we have

{ȧ ∈ X : [fν(ȧ)]
2N >̇β̇}

= {ȧ ∈ X : |fν(ȧ)|N >̇

√
β̇
N

}

= {ȧ ∈ X : fν(ȧ)>̇

√
β̇
N

} ∪ {ȧ ∈ X : fν(ȧ)<̇−̇
√

β̇
N

}

which shows the function f2N
ν is ν−measurable.

Theorem10. If non-Newtonian real-valued functions
fν , gν are ν−measurable, then the function fν+̇gν is
ν−measurable.

Proof. Since the functions fν , gν are ν−measurable,
then we have ν−1 ◦fν ◦ν, ν−1 ◦gν ◦ν are real-valued
measurable functions. Therefore, we get (ν−1 ◦ fν ◦
ν) + (ν−1 ◦ gν ◦ ν) is measurable.
Thus, since

(ν−1 ◦ fν ◦ ν)(a) + (ν−1 ◦ gν ◦ ν)(a)
= ν−1(ν{(ν−1 ◦ fν ◦ ν)(a) + (ν−1 ◦ gν ◦ ν)(a)})
= ν−1(ν{ν−1(fν(ν(a))) + ν−1(gν(ν(a)))})
= ν−1(fν(ν(a))+̇gν(ν(a)))

= ν−1((fν+̇gν)(ν(a)))

= (ν−1 ◦ (fν+̇gν) ◦ ν)(a)

is a measurable function for ∀a ∈ ν−1(X), then the
function fν+̇gν is ν−measurable.

Theorem 11. If fν , gν are ν−measurable, then the
function fν×̇gν is ν−measurable.

Proof. If fν and gν are ν−measurable, then ν−1◦fν ◦
ν, ν−1 ◦ gν ◦ ν are real-valued measurable functions.
Therefore, the (ν−1 ◦fν ◦ν)× (ν−1 ◦gν ◦ν) function
is measurable. Thus, since

(ν−1 ◦ fν ◦ ν)(a)× (ν−1 ◦ gν ◦ ν)(a)
= ν−1(ν{(ν−1 ◦ fν ◦ ν(a))× (ν−1 ◦ gν ◦ ν(a))})
= ν−1(ν{ν−1(fν(ν(a)))× ν−1(gν(ν(a)))})
= ν−1(fν(ν(a))×̇gν(ν(a)))

= ν−1((fν×̇gν)(ν(a)))

= (ν−1 ◦ (fν×̇gν) ◦ ν)(a)

is a measurable function for ∀a ∈ ν−1(X), then the
function fν×̇gν is ν−measurable.

Theorem 12. If the function fν is ν−measurable,
then the function |fν |N is ν−measurable.

Proof.

i) If β̇<̇0̇, the set {ȧ ∈ X : |fν(ȧ)|N >̇β̇} = X is
ν−measurable.
ii) Let β̇≥̇0̇. Then the set {ȧ ∈ X : |fν(ȧ)|N >̇β̇} is
ν−measurable since

{ȧ ∈ X : |fν(ȧ)|N >̇β̇}
= {ȧ ∈ X : fν(ȧ)>̇β̇} ∪ {ȧ ∈ X : fν(ȧ)<̇−̇β̇}

is ν−measurable. This shows that the function |fν |N
is ν−measurable.

3 Conclusion
In this study, we first give the ν−Vitali theorems

in the non-Newtonian sense. In the second
part, we give the definition of the non-Newtonian
measurable function. Also, we show that a function
ν−measurable if and only if the function ν−1◦fν◦ν is
a measurable function.This can be seen as the crucial
step in the definition of the Lebesgue integral in
the non-Newtonian sense. We also investigate some
basic properties of ν−measurable functions.
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