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Abstract: This research introduces the notion of complex Pythagorean fuzzy subgroup (CPFSG). Both complex
fuzzy subgroup (CFSG) and complex intuitionistic fuzzy subgroup (CIFSG) have significance in assigning mem-
bership grades in the unit disk in the complex plane. CFSG has a limitation solved by CIFSG, while CIFSG deals
with a limited range of values. The important novelty of the CPFSG lies in its ability to solve the above limita-
tions simultaneously and gets a wider range of values to be engaged in CPFSG. This work has introduced and
investigated CPFSG as a new algebraic structure via the conditions that the sum of the square membership and
non-membership lies on the unit interval for both the amplitude term and phase term. The result as any CIFSG
is CPFSG but the convers is not true has been proved. Complex Pythagorean fuzzy coset has been defined and
complex Pythagorean fuzzy normal subgroup (CPFNSG) and their algebraic characteristic has been demonstrated.
Homomorphism on the CPFSG is shown. Some results as the inverse image of CPFSG and CPFNSG under iso-
morphism function are also a CPFSG and CPFNSG, respectively.
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1 Introduction
Since, [1], owned the first introduction to the fuzzy
set (FS) in 1965, researchers have developed it in
various domains to better uncertainty and vagueness
representation. FS can convey uncertainty and
vagueness, by using membership degrees between
0 and 1. For example, a membership degree of 0.8
does not always imply a membership degree of 0.2.
Contrarily, FS has been described in several works,

where the concept was working in conjunction with
many applications of fuzzy technology including
artificial intelligence, computer science, control
engineering, decision theory, expert systems, logic
management science, operation research, robotics,
and others. Numerous theoretical advancements
have been made, see, [2], Fuzzy Set Theory and Its
Applications. In 1986, [3], introduced the intuitionis-
tic fuzzy set (IFS), where a non-membership degree
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has been added. It is independent of the membership
degree, and the range of the membership degree
plus non-membership degree is 0 to 1. IFSs were
improved by various methods and applications, see,
[4], [5]. Also, as an improvement is the Pythagorean
fuzzy set (PFS) in 2013, [6]. Whereas the condition
of PFS is the square of the membership degree plus
the square of the non-membership degree between
0 and 1, then it can be proven that any IFS is PFS.
The Pythagorean fuzzy set was used in a variety
of applications, for example, it has been suggested
as a creative solution to a decision-making (DM)
dilemma using PFS in 2018, by [7]. In addition,
Ejegwa provided a PFS application that included
career placement based on academic achievement
utilizing a Max-min-Max composition, [8].

Ambiguity and uncertainty in the data may be
handled by the fuzzy set, but they are unable to
demonstrate a prospective ignorance of the infor-
mation and its fluctuations at a particular point in
time during their execution. Changes in the phase
(periodicity) of the data in real life coincide with
ambiguity and uncertainty that are present in the
data. The study, [9], presented as a result a novel
concept is the complex fuzzy set (CFS), in which an
element’s membership grade is a complex integer
from the unit circle. However, many researchers,
[10], [11], [12], focus on CFS instead. Later, [13],
[14], developed the idea of CFS as a complex
intuitionistic fuzzy set (CIFS) by illustrating the
complexity of complex-valued non-membership
functions and introducing the concepts of complex
intuitionistic fuzzy relation and distance measure
in CIFS environments. Nevertheless, the range of
CIFS may lose some information, where p + q may
exceed one but p2 + q2 may not (and that for both
phase term and amplitude term). [15], established the
idea of a CPFS to handle Pythagorean fuzzy values
and extended several distance measures, where the
partner recognition issue is addressed using these
newly specified distance measures.

The main motivation for using the Pythagorean
fuzzy set (PFS) is when the IFS fails to deal with un-
certain and vague information in some fuzzy systems,
[6]. A CPFS has been introduced to cover uncertain
and periodicity information under a multiple at-
tributes decision-making (MADM) problem, [16]. In
2023, [17], improved and incorporated the notion of
Aczel-Alsin t-norm and t-conorm under the system of
CPFS. CPFS has been applied aggregation operators
to select a suitable candidate for a vacant post in a
multinational company. Therefore, the development
of algebraic structures under CPFSG can be an initial
and applicable framework to handle the special

type of information and application in the MADM
field. One of the most crucial aspects of algebra is
group theory, which provides a useful framework
for analyzing objects that appear to be symmetrical.
Classifying the symmetries of molecules, atoms,
regular polyhedral, and crystal structures is essential.
This idea has evolved into a common and effective
tool for research on the behavior of codon sequences
and the genetic code as a whole.

[18], in 1971, merged group theory with fuzzy
sets, for the first time, and presented a fuzzy subgroup
(FSG). Eighteen years later 1989, [19], introduced the
intuitionistic fuzzy subgroup (IFSG) notion and pre-
sented the intuitionistic fuzzification algebraic struc-
ture after IFS presentation by [3]. In manuscripts,
[20], [21], the intuitionistic fuzzy subgroup has fur-
ther developed. In 2020, [22], introduced and stud-
ied the algebraic characteristics of anti-intuitionistic
fuzzy subgroups on a selected averaging operator.
[23], introduced the concept of soft expert symmetric
group. They applied their concept to the multiple cri-
teria decision-making problems. Moreover, in 2024,
[24], studied the notion of intuitionistic fuzzy soft ex-
pert groups.

Pythagorean fuzzy subgroup (PFSG) was de-
fined recently, by [25], in 2020, who also dis-
cussed the algebraic features of the subgroup in
the fuzzy model and investigated related proper-
ties. [25], described some of the notion such
Pythagorean fuzzy subgroup (PFSG), Pythagorean
fuzzy coset and Pythagorean fuzzy normal subgroup.
Also, they introduced Pythagorean fuzzy level sub-
group and homomorphism on Pythagorean fuzzy sub-
group. After that, some researchers generalized
PFSG. In 2021, [26], [27], presented the concept
of (α, β)-Pythagorean fuzzy sets and characterized
(α, β)-Pythagorean fuzzy subgroups. [28], intro-
duced Pythagorean fuzzy order of elements of groups
and they discussed the algebraic properties of the
Pythagorean fuzzy subgroup. Also, in [28], intro-
duced the notion of a Pythagorean fuzzy quotient
group and prove Lagrange’s theorem

Also, [29], offered broad research on the nor-
mal subgroups and isomorphisms property under
Pythagorean fuzzy sets. It should be noted that sev-
eral developments have been widely presented in the
field of Algebra because Pythagorean fuzzy subsets
fail to work in some cases. This research emerged
after defining the q-rung orthopair fuzzy set by [30].
This limitation leads development of the notion of q-
rung orthopair fuzzy set to the complex plane and em-
ploying it in the algebra field as future research. [31],
defined the complex fuzzy subgroup (CFSG) in 2021
and described the subgroup’s relevant attributes. As a
generalization of CFSG, [32], defined the theory of
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complex intuitionistic fuzzy subgroup (CIFSG), by
employing a phase term and an amplitude term to the
subgroup structure. In 2023, a new structure of com-
plex Pythagorean fuzzy subfield (CPFSF) was pre-
sented by [33]. Also, they gave an application to
demonstrate that the direct product of two CPFSFs is
also a CPFSF. Furthermore, they studied the homo-
morphic images and inverse images of CPFSFs. [34],
introduced the (ϵ, δ)-complex anti fuzzy subgroups
and their applications.

The progressive development of FSG and IFSG
to PFSG and the existing notions of CFSG and
CIFSG introduced the present work of CPFSG.
This work investigates the CPFSG which is a con-
tinuation of earlier research. This study has been
designed according to the following structure, sec-
tion 2 introduces the literature review. Section 3
generalizes the notion of complex Pythagorean fuzzy
subgroups by adding two phase terms to the mem-
bership and non-membership functions of the PFSG
structure. The results highlighted some inherited
conditions from the characteristics of PFSG, (i.e.
the sum of square phase terms of membership and
non-membership values is less than or equal to 1).
The definitions of complex Pythagorean coset and
complex Pythagorean fuzzy normal subgroups are
followed by an analysis of their algebraic properties
in section 4. Then a discussion of homomorphism
and a demonstration of the Pythagorean fuzzy sub-
group’s attributes in the complex form, in section
5. Finally, a general discussion and future work
suggestions are presented in section 6.

2 Preliminaries
Zadeh defined FS in 1965, [1].
Definition 1. Let U be a crisp set. Then M : U →
[0, 1] is called a fuzzy set, denoted by FS, of U. Here
M(ϖ) is called a degree of membership.

Rosenfeld was the first who worked on fuzzy
graphs and defined fuzzy subgroups in 1971, [18].
Definition 2. LetM : U → [0, 1] be a fuzzy subset of
a group (U,2). ThenM is said to be a fuzzy subgroup
of (U,2), if the following conditions hold:
i)M(ϖ2κ) ≥ M(ϖ) ∧M(κ).
ii)M(ϖ−1) ≥ M(ϖ), for all ϖ,κ ∈ U

Ramot et. al. defined CFS on a crisp set in 2002,
[9].
Definition 3. Let U be a crisp set and defineM on U
to be complex fuzzy set, where M = {(ϖ,M(ϖ)) :
ϖ ∈ U} such that M(ϖ) : U → {ζ1 : ζ1 ∈
C, |ζ1| ≤ 1}, provided that:
M(ϖ) = p(ϖ)e2πiα(ϖ), where p(ϖ) and α(ϖ) ∈
[0, 1].

Recently in 2021, [31], defined CFSG.

Definition 4. Let M(ϖ) : U → {ζ1 : ζ1 ∈
C, |ζ1| ≤ 1} be a complex fuzzy subset of a group
(U,2). Then M is said to be a complex fuzzy sub-
group, of (U,2), if the following conditions hold:
i)M(ϖ2κ) ≥ M(ϖ) ∧M(κ).
ii)M(ϖ−1) ≥ M(ϖ), for all ϖ,κ ∈ U

Equivalently, for any ϖ,κ ∈ U and M(ϖ) =
p(ϖ)e2πiα(ϖ), we have:
i) p(ϖ2κ) ≥ p(ϖ) ∧ p(κ) and α(ϖ2κ) ≥ α(ϖ) ∧
α(κ).
ii) p(ϖ−1) ≥ p(ϖ) and α(ϖ−1) ≥ α(ϖ).

In 2013, [6], presented PFS of crisp set.

Definition 5. Let U be a crisp set and define P
on U to be pythagorean fuzzy set, where P =
{(ϖ,M(ϖ),N(ϖ)) : ϖ ∈ U}. Such that M(ϖ) ∈
[0, 1] and N(ϖ) ∈ [0, 1] are the degree of member-
ship and non-membership ofϖ ∈ U, which satisfying
the condition:
0 ≤ M2(ϖ) + N2(ϖ) ≤ 1, for all ϖ ∈ U.

Note that, in the previous definition, if the condition
was 0 ≤ M(ϖ) + N(ϖ) ≤ 1, for all ϖ ∈ U, then P
define an IFS on U, see, [3].

The following is the definition of PFSG, by the
2020 study, [25].

Definition 6. Let (U,2) be a group and P = (M,N),
be a PFS of U. Then P is said to be a pythagorean
fuzzy subgroup of U if the following conditions hold:

1. M2(ϖ2κ) ≥ M2(ϖ)∧M2(κ) andN2(ϖ2κ) ≤
N2(ϖ) ∨ N2(κ).

2. M2(ϖ−1) ≥ M2(ϖ) and N2(ϖ−1) ≤ N2(ϖ)

, ∀ ϖ, κ ∈ U

Note that, if we apply the previous conditions without
square, we get IFSG, [19].

The study developed the concept of CPFS in 2019,
[15].

Definition 7. Let U be a crisp set and define φ on
U to be complex pythagorean fuzzy set, where φ =
{(ϖ, M(ϖ),N(ϖ)) : ϖ ∈ U}. Such that M(ϖ) :
U →{ζ1 : ζ1 ∈ C, |ζ1| ≤ 1} andN(ϖ) : U →{ζ2 :
ζ2 ∈ C, |ζ2| ≤ 1}, are the degree of membership
and non-membership of ϖ ∈ U. Moreover, M(ϖ) =
p(ϖ)e2πiα(ϖ), N(ϖ) = q(ϖ)e2πiγ(ϖ) are satisfying
the conditions; 0 ≤ p2(ϖ) + q2(ϖ) ≤ 1 and 0 ≤
α2(ϖ) + γ2(ϖ) ≤ 1.
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For the preceding definition, if we let conditions be
0 ≤ p(ϖ) + q(ϖ) ≤ 1 and 0 ≤ α(ϖ) + γ(ϖ) ≤ 1,
for all ϖ ∈ U. Then φ define a CIFS on U, [13].

In [15], [16], operations on CPFS, such as union,
intersection and complement, were defined.

Definition 8. [16], let, φ1 = (M1,N1) and
φ2 = (M2,N2) are CPFS that defined on U, where:
Mj(ϖ) : U → {pj(ϖ)e2πiαj(ϖ) : 0 ≤
pj(ϖ), αj(ϖ) ≤ 1}, and Nj(ϖ) : U →
{qj(ϖ)e2πiγj(ϖ) : 0 ≤ qj(ϖ), γj(ϖ) ≤ 1},
for j = 1, 2, then:

1. φ1 ∩ φ2 = (M1 ∩M2,N1 ∩ N2), where:
a. (M1 ∩ M2)(ϖ) = (p1(ϖ) ∧
p2(ϖ))e2πi(α1(ϖ)∧α2(ϖ)).
b. (N1 ∩ N2)(ϖ) = (q1(ϖ) ∨
q2(ϖ))e2πi(γ1(ϖ)∨γ2(ϖ)).

2. φ1 ∪ φ2 = (M1 ∪M2,N1 ∪ N2), where:
a. (M1 ∪ M2)(ϖ) = (p1(ϖ) ∨
p2(ϖ))e2πi(α1(ϖ)∨α2(ϖ)).
b. (N1 ∪ N2)(ϖ) = (q1(ϖ) ∧
q2(ϖ))e2πi(γ1(ϖ)∧γ2(ϖ)).

Definition 9. [15], let, φ = (M,N) be CPFS defined
on U, where:
M(ϖ) : U → {p(ϖ)e2πiα(ϖ) : 0 ≤
p(ϖ), α(ϖ) ≤ 1}, and N(ϖ) : U →
{q(ϖ)e2πiγ(ϖ) : 0 ≤ q(ϖ), γ(ϖ) ≤ 1}. Then the
complement of φ defined by:

φc = φ̄ = (N,M), where:
a. Mc(ϖ) = N = q(ϖ)e2πiγ(ϖ).
b. Nc(ϖ) = M = p(ϖ)e2πiα(ϖ).

3 Complex Pythagorean Fuzzy
Subgroups

A generalization of PFSG and CPFS is introduced in
the proceeding definition.

Definition 10. Let (U,2) be a group and φ = (M =
p e2πiα,N = q e2πiγ), be a CPFS of U. Then φ is
said to be a complex Pythagorean fuzzy subgroups
(CPFSG) of U, where p2 + q2 ≤ 1 and α2 + γ2 ≤ 1,
ifM and N have the following property:
1a. M2(ϖ2κ) = p2(ϖ2κ)e2πiα

2(ϖ2κ) ≥
p2(ϖ)e2πiα

2(ϖ)∧p2(κ)e2πiα2(κ) = M2(ϖ)∧M2(κ).
where, p2(ϖ2κ) ≥ p2(ϖ) ∧ p2(κ) and
α2(ϖ2κ) ≥ α2(ϖ) ∧ α2(κ).
1b. N2(ϖ2κ) = q2(ϖ2κ)e2πiγ

2(ϖ2κ) ≤
q2(ϖ)e2πiγ

2(ϖ) ∨ q2(κ)e2πiγ
2(κ) = N2(ϖ)∨N2(κ)

where, q2(ϖ2κ) ≤ q2(ϖ) ∨ q2(κ) and
γ2(ϖ2κ) ≤ γ2(ϖ) ∨ α2(κ)

2a. M2(ϖ−1) = p2(ϖ−1)e2πiα
2(ϖ−1) ≥

p2(ϖ)e2πiα
2(ϖ) = M2(ϖ)

where, p2(ϖ−1) ≥ p2(ϖ) and α2(ϖ−1) ≥ α2(ϖ).
2b. N2(ϖ−1) = q2(ϖ−1)e2πiγ

2(ϖ−1) ≤
q2(ϖ)e2πiγ

2(ϖ) = N2(ϖ)
where, q2(ϖ−1) ≤ q2(ϖ) and γ2(ϖ−1) ≤ γ2(ϖ)

Note that, if we apply the previous conditions without
square, we get a CIFSG, [32].

Proposition 1. Letφ = (M = p e2πiα,N = q e2πiγ),
be a CPFSG of a group (U,2), then the following
holds:

1. M2(id) = p2(id)e2πiα
2(id) ≥

p2(ϖ)e2πiα
2(ϖ) = M2(ϖ),

where p2(id) ≥ p2(ϖ) and α2(id) ≥ α2(ϖ).

2. N2(id) = q2(id)e2πiγ
2(id) ≤ q2(ϖ)e2πiγ

2(ϖ) =
N2(ϖ), where q2(id) ≤ q2(ϖ) and γ2(id) ≤
γ2(ϖ).

3. M2(ϖ−1) = p2(ϖ−1)e2πiα
2(ϖ−1) =

p2(ϖ)e2πiα
2(ϖ) = M2(ϖ), where

p2(ϖ−1) = p2(ϖ) and α2(ϖ−1) = α2(ϖ).

4. N2(ϖ−1) = q2(ϖ−1)e2πiγ
2(ϖ−1) =

q2(ϖ)e2πiγ
2(ϖ) = N2(ϖ), where q2(ϖ−1) =

q2(ϖ) and γ2(ϖ−1) = γ2(ϖ).

for allϖ ∈ U, where id is the identity of all elements.

Proof. Since φ is CPFSG then by Definition 10:
”1” and ”2” can be proved as follow, M2(id) =

p2(id)e2πiα
2(id) = p2(ϖ2ϖ−1) e2πiα

2(ϖ2ϖ−1)

≥ min{p2(ϖ)e2πiα
2(ϖ), p2(ϖ−1)e2πiα

2(ϖ−1)}
= min{p2(ϖ), p2(ϖ−1)} e2πimin{α

2(ϖ),α2(ϖ−1)}

= p2(ϖ)e2πiα
2(ϖ) = M2(ϖ). In addition, N2(id) =

q2(id) e2πiγ
2(id) = q2(ϖ2ϖ−1)e2πiγ

2(ϖ2ϖ−1)

≤ max{q2(ϖ)e2πiγ
2(ϖ), q2(ϖ−1)e2πiγ

2(ϖ−1)}
= max{q2(ϖ), q2(ϖ−1)}e2πimax{γ2(ϖ),γ2(ϖ−1)}

= q2(ϖ)e2πiγ
2(ϖ) = N2(ϖ). Similarly, ”3” and ”4”

can be proved. ■
In the following theorem, we proved that any

CIFSG is CPFSG, whereas CIFS is a subclass of
CPFS, [15].

Theorem 3.1. If φ is a CIFSG of the group (U,2),
then φ is a CPFSG of the group (U,2).

Proof. At first, to show that p2(ϖ2κ)e2πiα
2(ϖ2κ) ≥

p2(ϖ)e2πiα
2(ϖ) ∧ p2(κ)e2πiα

2(κ) and
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q2(ϖ2κ)e2πiγ
2(ϖ2κ) ≤ q2(ϖ)e2πiγ

2(ϖ) ∨
q2(κ)e2πiγ

2(κ). We know that φ is a CIFSG, then
p(ϖ2κ)e2πiα(ϖ2κ) ≥ p(ϖ)e2πiα(ϖ) ∧ p(κ)e2πiα(κ)

and q(ϖ2κ)e2πiγ(ϖ2κ) ≤ q(ϖ)e2πiγ(ϖ) ∨
q(κ)e2πiγ(κ), where p + q ≤ 1 and α + γ ≤ 1.
Then, we have four cases to consider:

a) Let p(ϖ)e2πiα(ϖ) ≥ p(κ)e2πiα(κ)

and q(ϖ)e2πiγ(ϖ) ≥ q(κ)e2πiγ(κ), then
p(ϖ2κ)e2πiα(ϖ2κ) ≥ p(κ)e2πiα(κ). Now con-
sider p2(ϖ2κ)e2πiα

2(ϖ2κ) ≥ p2(κ)e2πiα
2(κ)

= p2(ϖ)e2πiα
2(ϖ) ∧ p2(κ)e2πiα

2(κ). Moreover,
q(ϖ2κ)e2πiγ(ϖ2κ) ≤ q(ϖ)e2πiγ(ϖ). Now con-
sider q2(ϖ2κ)e2πiγ

2(ϖ2κ) ≤ q2(ϖ)e2πiγ
2(ϖ)

= q2(ϖ)e2πiγ
2(ϖ) ∨q2(κ)e2πiγ2(κ).

b) Let p(ϖ)e2πiα(ϖ) ≤ p(κ)e2πiα(κ) and
q(ϖ)e2πiγ(ϖ) ≤ q(κ)e2πiγ(κ), then with same
argument of case a, we get the result.

c) Let p(ϖ)e2πiα(ϖ) ≤ p(κ)e2πiα(κ)

and q(ϖ)e2πiγ(ϖ) ≥ q(κ)e2πiγ(κ), then
p(ϖ2κ)e2πiα(ϖ2κ) ≥ p(ϖ)e2πiα(ϖ). Now con-
sider p2(ϖ2κ)e2πiα

2(ϖ2κ) ≥ p2(ϖ)e2πiα
2(ϖ)

= p2(ϖ)e2πiα
2(ϖ) ∧ p2(κ)e2πiα

2(y). Moreover,
q(ϖ2κ)e2πiγ(ϖ2κ) ≤ q(ϖ)e2πiγ(ϖ). Now con-
sider q2(ϖ2κ)e2πiγ

2(ϖ2κ) ≤ q2(ϖ)e2πiγ
2(ϖ)

= q2(ϖ)e2πiγ
2(ϖ) ∨q2(κ)e2πiγ2(κ).

d) Let p(ϖ)e2πiα(ϖ) ≥ p(κ)e2πiα(y) and
q(ϖ)e2πiγ(ϖ) ≤ q(κ)e2πiγ(κ), then with same
argument of case c, we get the result.

Secondly, since p(ϖ−1)e2πiα(ϖ
−1) ≥ p(ϖ)e2πiα(ϖ)

and q(ϖ−1)e2πiγ(ϖ
−1) ≤ q(ϖ)e2πiγ(ϖ), then

p2(ϖ−1)e2πiα
2(ϖ−1) ≥ p2(ϖ)e2πiα

2(ϖ) and
q2(ϖ−1)e2πiγ

2(ϖ−1) ≤ q2(ϖ)e2πiγ
2(ϖ) too. ■

The converse of Theorem 3.1 is not always true,
please see the following example.

Example 1. For the set U = {1,−1, i,−i}, define
a group (U, .), where ′.′ is the known multiplication.
Also define φ = (M,N) be a CPFS on U, where:
M(1) = 0.7e2πi(0.8), N(1) = 0.1e2πi(0.2),
M(−1) = 0.6e2πi(0.6), N(−1) = 0.2e2πi(0.3),
M(i) = 0.4e2πi(0.3), N(i) = 0.7e2πi(0.4),
M(−i) = 0.4e2πi(0.3), N(−i) = 0.7e2πi(0.4).
Now, to check that Definition 7 is satisfied, we get for
ϖ = 1 that 0.49 + 0.01 and 0.64 + 0.04 both are in
the closed interval [0, 1]. It is easy to check that for all
ϖ ∈ U, the property satisfied andφ is CPFS. But, it is

not CIFS, where atϖ = −i we have p+q = 1.1 ≰ 1.

In addition, this set φ = (M,N) is CPFSG, see
Definition 10:
i) For first property consider:
a) M2(−1 . − 1) = M2(1) = 0.49e2πi(0.64), and
M2(−1) ∧ M2(−1) = M2(−1) = 0.36e2πi(0.36).
Since, 0.49 ≥ 0.36 and 0.64 ≥ 0.36, then
M2(−1 . − 1) ≥ M2(−1) ∧ M2(−1). Simi-
larly check M2(i . i) = M2(−1) = 0.36e2πi(0.36) ≥
M2(i) = 0.16e2πi(0.09). Hence, it is straight forward
thatM2(ϖ2κ) ≥ M2(ϖ) ∧M2(κ).
b) N2(−1 . i) = N2(−i) = 0.49e2πi(0.16),
and N2(−1) ∨ N2(i) = max{0.04, 0.49}
e2πimax{0.09,0.16} = 0.49e2πi(0.16). Then
N2(−1 . i) ≤ N2(−1) ∨ N2(i). Similarly to
check that N2(ϖ2κ) ≤ N2(ϖ) ∨ N2(κ) for all
ϖ, κ ∈ U.

ii) For second property, we have 1 = 1−1, −1 =
−1−1 and i = −i−1, hence for ϖ = 1, −1 are triv-
ially true and since φ(i) = φ(−i), the property sat-
isfied too.
Proposition 2. For a CPFS φ = (M = p e2πiα,N =
q e2πiγ) of a group (U, 2), it is a CPFSG if and only
if:
1. M2(ϖ2κ−1) = p2(ϖ2κ−1)e2πiα

2(ϖ2κ−1) ≥
p2(ϖ)e2πiα

2(ϖ)∧p2(κ)e2πiα
2(κ) = M2(ϖ)∧M2(κ)

, where p2(ϖ2κ−1) ≥ p2(ϖ) ∧ p2(κ) and
α2(ϖ2κ−1) ≥ α2(ϖ) ∧ α2(κ)

2. N2(ϖ2κ−1) = q2(ϖ2κ−1)e2πiγ
2(ϖ2κ−1) ≤

q2(ϖ)e2πiγ
2(ϖ) ∨ q2(κ)e2πiγ

2(κ) = N2(ϖ) ∨ N2(κ)
, where q2(ϖ2κ−1) ≤ q2(ϖ) ∨ q2(κ) and
γ2(ϖ2κ−1) ≤ γ2(ϖ) ∨ γ2(κ)

Proof. (=⇒) According to Proposition 1, we have
p2(ϖ−1) e2πiα

2(ϖ−1) = p2(ϖ) e2πiα
2(ϖ) and

q2(ϖ−1)e2πiγ
2(ϖ−1) = q2(ϖ)e2πiγ

2(ϖ) for all
ϖ ∈ U, then results follow by Definition 10.

(⇐=) At first, φ is CPFS and is defined on group
(U,2), then:
(a1) M2(id) = p2(id)e2πiα

2(id) =

p2(ϖ2ϖ−1)e2πiα
2(ϖ2ϖ−1) ≥ p2(ϖ)e2πiα

2(ϖ) =
M2(ϖ), where p2(ϖ2ϖ−1) ≥ p2(ϖ) and
α2(ϖ2ϖ−1) ≥ α2(ϖ).
(b1) M2(ϖ−1) = p2(ϖ−1)e2πiα

2(ϖ−1) =

p2(id 2ϖ−1)e2πiα
2(id 2ϖ−1) ≥

min{p2(id)e2πiα2(di), p2(ϖ)e2πiα
2(ϖ)}

= min{p2(id), p2(ϖ)}e2πimin{α2(di),α2(ϖ)}

= p2(ϖ)e2πiα
2(ϖ) = M2(ϖ), by (a1).
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(c1) M2(ϖ2κ) = M2(ϖ2 (κ−1)−1) ≥
M2(ϖ) ∧ M2(κ−1) ≥ M2(ϖ) ∧ M2(κ), by
(b1).

Similarly, we have:
(a2) N2(id) = q2(id)e2πiγ

2(id) =

q2(ϖ2ϖ−1)e2πiγ
2(ϖ2ϖ−1) ≤ q2(ϖ)e2πiγ

2(ϖ) =
N2(ϖ), where q2(ϖ2ϖ−1) ≤ q2(ϖ) and
γ2(ϖ2ϖ−1) ≤ γ2(ϖ).
(b2) N2(ϖ−1) = q2(ϖ−1)e2πiγ

2(ϖ−1) =

q2(id 2ϖ−1)e2πiγ
2(id 2ϖ−1) ≤

max{q2(id)e2πiγ2(di), q2(ϖ)e2πiγ
2(ϖ)}

= max{q2(id), q2(ϖ)}e2πimax{γ2(id),γ2(ϖ)}

= q2(ϖ)e2πiγ
2(ϖ) = N2(ϖ), by (a2).

(c2) N2(ϖ2κ) = N2(ϖ2 (κ−1)−1) ≤
N2(ϖ) ∨ N2(κ−1) ≤ N2(ϖ) ∨ N2(κ), by (b2).

Finally, by (c1) and (c2) the first condition is satisfied,
and by (b1) and (b2) the second condition is satisfied,
hence φ is CPFSG of a group (U,2). ■

Proposition 3. The intersection of two CPFSGs of a
group (U,2) is a CPFSG.

Proof. Let A, B be two CPFSGs of U and using
previous proposition, then:
i)M2

A∩B(ϖ2κ−1)

= p2A∩B(ϖ2κ−1)e2πiα
2
A∩B(ϖ2κ−1)

= (p2A(ϖ2κ−1) ∧ p2B(ϖ2κ−1))

e2πi(α
2
A(ϖ2κ−1)∧ α2

B(ϖ2κ−1))

≥ (min{p2A(ϖ), p2A(κ)} ∧ min{p2B(ϖ), p2B(κ)})
e2πi(min{α

2
A(ϖ),α2

A(κ)}∧ min{α2
B(ϖ),α2

B(κ)})

= (min{p2A(ϖ), p2B(ϖ)} ∧ min{p2A(κ), p2B(κ)})
e2πi(min{α

2
A(ϖ),α2

B(ϖ)}∧ min{α2
A(κ),α2

B(κ)})

= (p2A∩B(ϖ) ∧ p2A∩B(κ))

e2πi(α
2
A∩B(ϖ)∧ α2

A∩B(κ))

= p2A∩B(ϖ)e2πiα
2
A∩B(ϖ) ∧ p2A∩B(κ)e

2πiα2
A∩B(κ)

= (M2
A∩B(ϖ) ∧ M2

A∩B(κ)).

ii) N2
A∩B(ϖ2κ−1)

= q2A∩B(ϖ2κ−1)e2πiγ
2
A∩B(ϖ2κ−1)

= (q2A(ϖ2κ−1) ∨ q2B(ϖ2κ−1))

e2πi(γ
2
A(ϖ2κ−1)∨ γ2

B(ϖ2κ−1))

≤ (max{q2A(ϖ), q2A(κ)} ∨ max{q2B(ϖ), q2B(κ)})
e2πi(max{γ

2
A(ϖ),γ2

A(κ)}∨ max{γ2
B(ϖ),γ2

B(κ)})

= (max{q2A(ϖ), q2B(ϖ)} ∨ max{q2A(κ), q2B(κ)})
e2πi(max{γ

2
A(ϖ),γ2

B(ϖ)}∨ max{γ2
A(κ),γ2

B(κ)})

= (q2A∩B(ϖ) ∨ q2A∩B(y))e
2πi(γ2

A∩B(ϖ)∨γ2
A∩B(κ))

= q2A∩B(ϖ)e2πiγ
2
A∩B(ϖ) ∨ q2A∩B(κ)e

2πiγ2
A∩B(y)

= (N2
A∩B(ϖ) ∨ N2

A∩B(κ)).
■

The union of two CPFSG is not necessary a

CPFSG, see the following example.

Example 2. Let (U,2) = (Z,+) be a group,
also φ1 = 3Z and φ2 = 2Z be two CPFSG of Z.
Where, φj = (Mφj = pφj (ϖ)e2πiαφj

(ϖ), Nφj =

qφj (ϖ)e2πiγφj
(ϖ)); j = 1, 2.

They defined by:

Mφ1(ϖ) =

{
0.4e2πi 0.5 : ϖ ∈ 3Z
0.0e2πi 0.0 : elsewhere

Nφ1(ϖ) =

{
0.0e2πi 0.0 : ϖ ∈ 3Z
0.5e2πi 0.5 : elsewhere

Mφ2(ϖ) =

{
0.04e2πi 0.1 : ϖ ∈ 2Z
0.0e2πi 0.0 : elsewhere

Nφ2(ϖ) =

{
0.3e2πi 0.2 : ϖ ∈ 2Z
0.4e2πi 0.3 : elsewhere

For φ = φ1 ∪ φ2, we get:

Mφ(ϖ) =

 0.4e2πi 0.5 : ϖ ∈ 3Z
0.04e2πi 0.1 : ϖ ∈ 2Z− 3Z
0.0e2πi 0.0 : elsewhere

Nφ(ϖ) =

 0.0e2πi 0.0 : ϖ ∈ 3Z
0.03e2πi 0.2 : ϖ ∈ 2ζ − 3Z
0.4e2πi 0.3 : elsewhere

Here, ϖ1 = 9 and ϖ2 = −2, then:
M2

φ(9 + −2) = M2
φ(7) = 0.0e2πi 0.0, and

M2
φ(9) ∧M2

φ(−2)

= min{(0.4)2e2πi (0.5)2 , (0.04)2e2πi (0.1)2}
= min{0.16, 0.0016}e2πi min{0.25,0.01}

= 0.0016e2πi 0.01

Hence, 0.0e2πi 0.0 ≱ 0.0016e2πi 0.01

i.e. M2
φ(9 + −2) ≱ M2

φ(9) ∧M2
φ(−2)

Similarly for non-membership, we get that (after
calculation):
N2

φ(9 + −2) ≰ N2
φ(9) ∨ N2

φ(−2), where
0.16e2πi 0.09 ≰ 0.09e2πi 0.04. Therefore, φ = φ1 ∪
φ2 = (pφ(ϖ)e2πiαφ(ϖ), qφ(ϖ)e2πiγφ(ϖ)) is not a
CPFSG of (Z,+).

Proposition 4. For a CPFS φ =
(M = pe2πiα,N = qe2πiγ) of a group
(U,2). Then M2(ϖ2ϖ2 . . .2ϖ) =

p2(ϖ2ϖ2 . . .2ϖ)e2πiα
2(ϖ2ϖ2...2ϖ)

≥ p2(ϖ)e2πiα
2(ϖ) = M2(ϖ), where

p2(ϖ2ϖ2 . . .2ϖ) ≥ p2(ϖ) and
α2(ϖ2ϖ2 . . .2ϖ) ≥ α2(ϖ). Also,
N2(ϖ2ϖ2 . . .2ϖ)

= q2(ϖ2ϖ2 . . .2ϖ)e2πiγ
2(ϖ2ϖ2...2ϖ)

≤ q2(ϖ)e2πiγ
2(ϖ) = N2(ϖ),

where q2(ϖ2ϖ2 . . .2ϖ) ≤ q2(ϖ) and
γ2(ϖ2ϖ2 . . .2ϖ) ≤ γ2(ϖ).
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Proof. By induction the results will follow, such that
p2(ϖ2ϖ)e2πiα

2(ϖ2ϖ) ≥ p2(ϖ)e2πiα
2(ϖ), where

p2(ϖ2ϖ) ≥ p2(ϖ) and α2(ϖ2ϖ) ≥ α2(ϖ). Also,
q2(ϖ2ϖ)e2πiγ

2(ϖ2ϖ) ≤ q2(ϖ)e2πiγ
2(ϖ), where

q2(ϖ2ϖ) ≤ q2(ϖ) and γ2(ϖ2ϖ) ≤ γ2(ϖ). ■

Theorem 3.2. For a CPFS φ = (M =
pe2πiα,N = qe2πiγ) of a group (U,2). The
set L = {ϖ ∈ U : p2(id)e2πiα

2(id) =

p2(ϖ)e2πiα
2(ϖ) and q2(id)e2πiγ

2(id) =

q2(ϖ)e2πiγ
2(ϖ)}, is a subgroup of U, where id

is the identity of it.

Proof. At first, we have id ∈ L, hence L is not
empty. Moreover, we need to show thatϖ2κ−1 ∈ L
for all x, kappa ∈ U.
Assume that ϖ, kappa ∈ L, where φ is CPFSG of
U, then, by Proposition 2, p2(ϖ2κ−1)e2πiα

2(ϖ2κ−1)

≥ p2(ϖ)e2πiα
2(ϖ) ∧ p2(κ)e2πiα

2(y) =

p2(id)e2πiα
2(id), according to definition of L.

But, ϖ2κ−1 ∈ φ, hence p2(id)e2πiα
2(id) ≥

p2(ϖ2κ−1)e2πiα
2(ϖ2κ−1), by Proposition 1.

So that equality holds and p2(id)e2πiα
2(id) =

p2(ϖ2κ−1)e2πiα
2(ϖ2κ−1)). Similarly, we can prove

that q2(id)e2πiγ
2(id) = q2(ϖ2κ−1)e2πiγ

2(ϖ2κ−1),
by Proposition 1 and Proposition 2. So that
ϖ2κ−1 ∈ L and L is subgroup of U. ■

4 Complex Pythagorean Fuzzy
Normal Subgroup

In this section, we define complex Pythagorean fuzzy
normal subgroup (CPFNSG) and gives equivalent
conditions and some properties for it.

Definition 11. Let φ = (M = pe2πiα,N = qe2πiγ)
be a CPFSG of a group (U,2). Then for κ ∈ U,
the complex Pythagorean fuzzy left coset of φ is the
CPFS κφ = (κM = κpe2πi κα, κN = κq e2πi κγ),
which defined for membership by, (κM)2(ϖ) =

κp2(ϖ)e2πi κα2(ϖ) = p2(κ−1 2ϖ)e2πiα
2(κ−1 2ϖ)

= M2(κ−1 2 ϖ). Also, for nonmembership it
defined by, (κN)2(ϖ) = κq2(ϖ)e2πi κγ2(ϖ) =

q2(κ−1 2ϖ)e2πiγ
2(κ−1 2ϖ) = N2(κ−1 2 ϖ).

In the same manner, the complex Pythagorean fuzzy
right coset of φ is the CPFS φκ = (Mκ,Nκ)
and is defined by (Mκ)2(ϖ) = M2(ϖ2κ−1) and
(Nκ)2(ϖ) = N2(ϖ2κ−1), for membership and non-
membership, respectively.

Definition 12. Let φ = (M(ϖ) =
p(ϖ)e2πiα(ϖ),N(ϖ) = q(ϖ)e2πiγ(ϖ)) be a CPFSG
of a group (U,2). Then φ is a CPFNSG, of the group

(U,2) if every complex Pythagorean fuzzy left coset
is complex pythagorean fuzzy right coset of φ in U,
equivalently, κφ = φκ.
Example 3. Let (U,2) = (Z5,+5) be a group with
addition integer modulo 5. Define a CPFS φ =
(M(ϖ) = p(ϖ)e2πiα(ϖ), N(ϖ) = q(ϖ)e2πiγ(ϖ)),
as follows:

M(ϖ) =


0.8e2πi 0.5 : ϖ = 0
0.7e2πi 0.6 : ϖ = 1
0.7e2πi 0.8 : ϖ = 2
0.2e2πi 0.5 : ϖ = 3
0.9e2πi 0.8 : ϖ = 4

N(ϖ) =


0.1e2πi 0.3 : ϖ = 0
0.6e2πi 0.5 : ϖ = 1
0.5e2πi 0.4 : ϖ = 2
0.5e2πi 0.7 : ϖ = 3
0.3e2πi 0.3 : ϖ = 4

Now, we need to show that φ is a CPFSG of U. For
ϖ = 1 ∈ U, the complex Pythagorean fuzzy left coset
of φ is, the CPFS 1φ = (1M, 1N) and defined by:
(1M)2(ϖ) = M2(1−1+5ϖ)

= p2(1−1+5ϖ)e2πiα
2(1−1+5ϖ)

and
(1N)2(ϖ) = N2(1−1+5ϖ)

= q2(1−1+5ϖ)e2πiγ
2(1−1+5ϖ)

Similarly, the CPF right coset of φ is, the CPFS
φ1 = (M1, N1) and defined by:
(M1)2(ϖ) = M2(ϖ+51

−1)

= p2(ϖ+51
−1)e2πiα

2(ϖ+51
−1)

and
(N1)2(ϖ) = N2(ϖ+51

−1)

= q2(ϖ+51
−1)e2πiγ

2(ϖ+51
−1)

Assume that ϖ = 0, then:
(1M)2(0) = M2(1−1+50)

= p2(1−1+50)e
2πiα2(1−1+50)

= p2(4+50)e
2πiα2(4+50) =

p2(4)e2πiα
2(4) = 0.9e2πi 0.8

and
(1N)2(0) = N2(1−1+50)

= q2(1−1+50)e
2πiγ2(1−1+50)

= q2(4+50)e
2πiγ2(4+50) =

q2(4)e2πiγ
2(4) = 0.3e2πi 0.3

In addition, we can find (M1)2(0) equal
0.9e2πi 0.8, and (N1)2(0) equal 0.3e2πi 0.3. Hence,
(1M)2(0) = (M1)2(0) and (1N)2(0) = (N1)2(0).
For ϖ = 1, 2, 3, 4, it is easy to check that
(1M)2(ϖ) = (M1)2(ϖ) and (1N)2(ϖ) =
(N1)2(ϖ), that is 1φ = φ1.

In the same manner, we can show that,ϖφ= φϖ for
all ϖ ∈ U. Hence, φ = (M, N) is a CPFNSG of the
group (Z5,+5).
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Note that, φ is not CIFS, where M(1) + N(1) =
0.7e2πi 0.6 + 0.6e2πi 0.5 does not satisfied the condi-
tions; 0.7 + 0.6 = 1.3 ≰ 1 and 0.6 + 0.5 = 1.1 ≰ 1.

Proposition 5. Let φ = (M = pe2πiα,N =
qe2πiγ) be a CPFSG of a group (U,2).
Then φ is a CPFNSG of U if and only
if M2(ϖ2κ) = p2(ϖ2κ)e2πiα

2(ϖ2κ) =

p2(κ2ϖ)e2πiα
2(κ2ϖ) = M2(κ2ϖ) and

N2(ϖ2κ) = q2(ϖ2κ)e2πiγ
2(ϖ2κ) =

q2(κ2ϖ)e2πiγ
2(κ2ϖ) = N2(κ2ϖ).

Proof. ⇒ Assume that φ is a CPFNSG
of U, then (κM)2(ϖ) = (Mκ)2(ϖ),
for all ϖ, κ ∈ U. Equivalently,
M2(κ−12ϖ) = p2(κ−12ϖ)e2πiα

2(κ−12ϖ) =

p2(ϖ2κ−1)e2πiα
2(ϖ2κ−1) = M2(ϖ2κ−1).

Hence, M2(κ2ϖ) = p2(κ2ϖ)e2πiα
2(κ2ϖ)

= p2((κ−1)−12ϖ)e2πiα
2((κ−1)−12ϖ) =

p2(ϖ2(κ−1)−1)e2πiα
2(ϖ2(κ−1)−1) =

p2(ϖ2κ)e2πiα
2(ϖ2κ) = M2(ϖ2κ). More-

over, by similar method we can verify that
N2(ϖ2κ) = N2(κ2ϖ).

⇐ Assume that ζ = ϖ−1, then for arbitrary ϖ,κ ∈
U. We have M2(ϖ2κ) = M2(κ2ϖ), hence
M2(ζ−12κ) = M2(κ2ζ−1) for any ζ, κ ∈ U. So
that, (ζM)2(κ) = (Mζ)2(κ). Similarly, we can prove
that (ζN)2(κ) = (Nζ)2(κ), then ζφ = φζ for all
ζ ∈ U, which implies that φ is CPFNSG of a group
(U,2). ■
Proposition 6. For a group (U,2) that is de-
fined on CPFSG, φ = (M = pe2πiα,N =
qe2πiγ). Then φ is a CPFNSG of U if
and only if M2(ϖ) = p2(ϖ)e2πiα

2(ϖ) =

p2(a2ϖ2a−1)e2πiα
2(a2ϖ2a−1) =

M2(a2ϖ2a−1), and N2(ϖ) = q2(ϖ)e2πiγ
2(ϖ) =

q2(a2ϖ2a−1)e2πiγ
2(a2ϖ2a−1) = N2(a2ϖ2a−1),

for all a,ϖ ∈ U
Proof. At first consider, M2(x) =

p2(ϖ)e2πiα
2(ϖ) = p2(ϖ2id)e2πiα

2(ϖ2id)

= p2(ϖ2a2a−1)e2πiα
2(ϖ2a2a−1) =

M2(ϖ2(a2a−1)) = M2((ϖ2a)2a−1)

= p2((ϖ2a)2a−1)e2πiα
2((ϖ2a)2a−1)

= p2(a−12(ϖ2a))e2πiα
2(a−12(ϖ2a)) =

M2(a−12(ϖ2a)), whereas φ is CPFNSG
of U. But a = (a−1)−1 and by similarity
M2(ϖ) = M2(a2ϖ2a−1). Also, it is easy to
show that N2(ϖ) = N2(a2ϖ2a−1) too.

Conversely, M2(a2ϖ) =

p2(a2ϖ2id)e2πiα
2(a2ϖ2id) = p2(a2(ϖ2a)2a−1)

e2πiα
2(a2(ϖ2a)2a−1) = p2(ϖ2a)e2πiα

2(ϖ2a)

= M2(ϖ2a). Also, it is easy to show that
N2(a2ϖ) = N2(ϖ2a). Then by previous proposi-
tion, φ is CPFNSG of U. ■
Theorem 4.1. Letφ be a CPFNSG of a group (U,2).
Then the set L = {ϖ ∈ U : p2(id)e2πiα

2(id) =

p2(ϖ)e2πiα
2(ϖ) and q2(id)e2πiγ

2(id) =

q2(ϖ)e2πiγ
2(ϖ)}, is a normal subgroup of U,

where id is the identity of it.

Proof. At first id ∈ L, i.e. L is not
empty. Moreover, it is subgroup of U, by
Theorem 3.2. So that, p2(id)e2πiα

2(id) =

p2(ϖ2κ−1)e2πiα
2(ϖ2κ−1) and q2(id)e2πiγ

2(id) =

q2(ϖ2κ−1)e2πiγ
2(ϖ2κ−1). But, φ is a CPFNSG

of (U,2). Then p2(ϖ2κ−1)e2πiα
2(ϖ2κ−1) =

p2(κ−12ϖ)e2πiα
2(κ−12ϖ) and

q2(ϖ2κ−1)e2πiγ
2(ϖ2κ−1) =

q2(κ−12ϖ)e2πiγ
2(κ−12ϖ). Hence, (κ−12ϖ) ∈ L

and L is a normal subgroup of U. ■

5 Homomorphism on Complex
Pythagorean Fuzzy Subgroup

In this section, we discuss the effect of homomor-
phism on CPFSG.

Definition 13. A homomorphism function f : U → V
from group U to group V. Let A be CPFSG of U and
B be CPFSG of V. Let ϖ ∈ U and ζ ∈ V, then we
have:
f(A)(ζ) = {(ζ, f(MA)(ζ), f(NA)(ζ))}, is the
image of A, where:

f(M2
A) =

{
sup

ϖ∈f−1(ζ)

M2
A(ϖ) , f(ϖ) = ζ

0 , otherwise.

=



( sup
ϖ∈f−1(ζ)

p2A(ϖ))·

, f(ϖ) = ζ

e
2πi( sup

ϖ∈f−1(ζ)

α2
A(ϖ))

0 e2πi 0 , otherwise.

f(N2
A) =


inf

ϖ∈f−1(ζ)
N2

A(ϖ) , f(ϖ) = ζ

1 , otherwise.

=



( inf
ϖ∈f−1(ζ)

q2A(ϖ))·

, f(ϖ) = ζ

e
2πi( inf

ϖ∈f−1(ζ)
γ2
A(ϖ))

1 , otherwise.
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And the set of pre-image of B is f−1(B)(ϖ)
= {(ϖ, f−1(MB)(ϖ), f−1(NB)(ϖ))},
where:
f−1(M2

B)(ϖ)
= (MB)

2(f(ϖ))

= p2B(f(ϖ))e2πα
2
B(f(ϖ)),

f−1(N2
B)(ϖ)

= (NB)
2(f(ϖ))

= q2B(f(ϖ))e2πγ
2
B(f(ϖ)), ∀ϖ ∈ U.

Lemma 5.1. Let f : U → V be a homomorphism
from group U to group V, and let A be CPFSG of U,
B be CPFSG of V. Then:

1) f(M2
A)(ζ) = f(p2A)(ζ)e

2πif(α2
A)(ζ) ∀ζ ∈ V.

2) f(N2
A)(ζ) = f(q2A)(ζ)e

2πif(γ2
A)(ζ) ∀ζ ∈ V.

3) f−1(M2
B)(ϖ) = f−1(p2B)(ϖ)e2πif

−1(α2
B)(ϖ)

∀ϖ ∈ U.

4) f−1(N2
B)(ϖ) = f−1(q2B)(ϖ)e2πif

−1(γ2
B)(ϖ)

∀ϖ ∈ U.

Proof.

1) f(M2
A)(ζ)

= sup
ϖ∈f−1(ζ)

{M2
A(ϖ); f(ϖ) = ζ}

= sup
ϖ∈f−1(ζ)

{p2A(ϖ)e2πiα
2
A(ϖ); f(ϖ) = ζ}

= sup
ϖ∈f−1(ζ)

{p2A(ϖ)}e
2πi sup

ϖ∈f−1(ζ)

{α2
A(ϖ)}

= f(p2A)(ζ)e
2πif(α2

A)(ζ) .

2) f(N2
A)(ζ)

= inf
ϖ∈f−1(ζ)

{N2
A(ϖ); f(ϖ) = ζ}

= inf
ϖ∈f−1(ζ)

{q2A(ϖ)e2πiγ
2
A(ϖ); f(ϖ) = ζ}

= inf
ϖ∈f−1(ζ)

{q2A(ϖ)}e
2πi inf

ϖ∈f−1(ζ)
{γ2

A(ϖ)}

= f(q2A)(ζ)e
2πif(γ2

A)(ζ).

3) f−1(M2
B)(ϖ) = (MB)

2(f(ϖ))

= p2B(f(ϖ))e2πα
2
B(f(ϖ))

= f−1(p2B)(ϖ)e2πif
−1(α2

B)(ϖ)

.

4) f−1(N2
B)(x) = (NB)

2(f(x))

= q2B(f(ϖ))e2πγ
2
B(f(ϖ))

= f−1(q2B)(ϖ)e2πif
−1(γ2

B)(ϖ).
■

Example 4. Let (Z5,+5) and (Z,+) be complex
Pythagorean fuzzy group (CPFG), where we define
(Z5,+5) as in example 3.
The map f : (Z,+) → (Z5,+5) is com-
plex Pythagorean fuzzy homomorphism. Con-
sider A = {1, 2, 7, 9, 13, 14} ⊆ Z, then
f(A) = (ϖ, f(MA)(ϖ), f(NA)(ϖ)). Whereas,

1) f(M2
A)(ζ)

= sup
ϖ∈f−1(ζ)

{M2
A(ϖ); f(ϖ) = ζ (mod 5) }

= sup{M2
A(1),M2

A(2),M2
A(7),M2

A(9),
M2

A(13),M2
A(14)}

= sup{p2A(1)e2πiα
2
A(1), p2A(2)e

2πiα2
A(2),

p2A(7)e
2πiα2

A(7), p2A(9)e
2πiα2

A(9),

p2A(13)e
2πiα2

A(13), p2A(14)e
2πiα2

A(14)}
= sup{p2A(1), . . . , p2A(14)}e2πi sup{α

2
A(1),...,α2

A(14)}

= sup{0.49, 0.81, 0.04}e2πi sup{0.36,0.64,0.25}

= 0.81e2πi 0.64.

2) f(N2
A)(ζ)

= inf
ϖ∈f−1(ζ)

{N2
A(ϖ); f(ϖ) = ζ (mod 5) }

= inf{N2
A(1),N2

A(2),N2
A(7),N2

A(9),N2
A(13),N2

A(14)}
= inf{q2A(1)e2πiγ

2
A(1), q2A(2)e

2πiγ2
A(2), q2A(7)e

2πiγ2
A(7),

q2A(9)e
2πiγ2

A(9), q2A(13)e
2πiγ2

A(13), q2A(14)e
2πiγ2

A(14)}
= inf{q2A(1), . . . , q2A(14)}e2πi inf{γ

2
A(1),...,γ2

A(14)}

= inf{0.36, 0.25, 0.09}e2πi inf{0.25,0.16,0.49,0.09}

= 0.09e2πi 0.09

Theorem 5.2. Let f : U epimorphism−−−−−−−−−→ V, from
(U,21) to (V,22), and let A be CPFSG of U. Then
f(A) is CPFSG of V.

Proof. For A = (MA = pAe
2πiαA ,NA = qAe

2πiγA)
we want to show that f(A) = (f(MA), f(NA))
= (f(pA)(ζ)e

2πif(αA)(ζ), f(qA)(ζ)e
2πif(γA)(ζ)) is

CPFSG.
Part 1: Since A is CPFSG, the set S1 =
{(ϖ, pA(ϖ), qA(ϖ)) : ϖ ∈ U, 0 ≤ p2A(ϖ) +
q2A(ϖ) ≤ 1} and S2 = {(ϖ,αA(ϖ), γA(ϖ)) : ϖ ∈
U, 0 ≤ α2

A(ϖ)+ γ2
A(ϖ) ≤ 1} are the amplitude and

phase terms of CPFSG. Then by Theorem[6.1], [25];
f is epimorphism, we have:
i)
a) (f(pA))2(ζ122 ζ2)
= f(p2A)(ζ122 ζ2)
≥ f(p2A)(ζ1) ∧ f(p2A)(ζ2)
= (f(pA))

2(ζ1) ∧ (f(pA))
2(ζ2).

b) (f(qA))2(ζ122 ζ2)
= f(q2A)(ζ122 ζ2)
≤ f(q2A)(ζ1) ∨ f(q2A)(ζ2)
= (f(qA))

2(ζ1) ∨ (f(qA))
2(ζ2).
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c) (f(αA))
2(ζ122 ζ2)

= f(α2
A)(ζ122 ζ2)

≥ f(α2
A)(ζ1) ∧ f(α2

A)(ζ2)
= (f(αA))

2(ζ1) ∧ (f(αA))
2(ζ2).

d) (f(γA))2(ζ122 ζ2)
= f(γ2

A)(ζ122 ζ2)
≤ f(γ2

A)(ζ1) ∨ f(γ2
A)(ζ2)

= (f(γA))
2(ζ1) ∨ (f(γA))

2(ζ2).

ii)
a) (f(pA))2(ζ−1)
= f(p2A)(z

−1) = f(p2A)(ζ)
= (f(pA))

2(ζ).

b) (f(qA))2(ζ−1)
= f(q2A)(ζ

−1)
= f(q2A)(ζ)
= (f(qA))

2(ζ).

c) (f(αA))
2(ζ−1)

= f(α2
A)(ζ

−1)
= f(α2

A)(ζ)
= (f(αA))

2(ζ).

d) (f(γA))2(ζ−1)
= f(γ2

A)(ζ
−1)

= f(γ2
A)(ζ)

= (f(γA))
2(ζ).

Part 2: Using part 1 and Lemma 5.1, we have:

1) (f(MA))
2(ζ122 ζ2)

= f(M2
A)(ζ122 ζ2)

= f(p2A)(ζ122 ζ2)e
2πi f(α2

A)(ζ122 ζ2)

≥ (f(p2A)(ζ1) ∧ f(p2A)(ζ2))e
2πi(f(α2

A)(ζ1)∧f(α2
A)(ζ2))

= f(p2A)(ζ1)e
2πi f(α2

A)(ζ1)∧f(p2A)(ζ2)e2πi f(α2
A)(ζ2)

=f(M2
A)(ζ1) ∧ f(M2

A)(ζ2)
= (f(MA))

2(ζ1) ∧ (f(MA))
2(ζ2).

2) (f(NA))
2(ζ122 ζ2)

= f(N2
A)(ζ122 ζ2)

=f(q2A)(ζ122 ζ2)e
2πi f(γ2

A)(ζ122 ζ2)

≤ (f(q2A)(ζ1) ∨ f(q2A)(ζ2))e
2πi(f(γ2

A)(ζ1)∨f(γ2
A)(ζ2))

= f(q2A)(ζ1)e
2πi f(γ2

A)(ζ1) ∨ f(q2A)(ζ2)e
2πi f(γ2

A)(ζ2)

= f(N2
A)(ζ1) ∨ f(N2

A)(ζ2)
= (f(NA))

2(ζ1) ∨ (f(NA))
2(ζ2).

3) (f(MA))
2(ζ−1)

= f(M2
A)(ζ

−1)

=f(p2A)(ζ−1)e2πi f(α2
A)(ζ−1)

=f(p2A)(ζ)e2πi f(α2
A)(ζ)

=f(M2
A)(ζ) = (f(MA))

2(ζ).

4) (f(NA))
2(ζ−1)

= f(N2
A)(ζ

−1)

= f(q2A)(ζ
−1)e2πi f(γ2

A)(ζ−1)

=f(q2A)(ζ)e2πi f(γ2
A)(ζ)

=f(N2
A)(ζ) = (f(NA))

2(ζ).
Hence result is followed. ■

Theorem 5.3. Let f : U isomorphism−−−−−−−−→ V, from
(U,21) to (V,22), and let B be CPFSG of V. Then
f−1(B) is CPFSG of U.

Proof. Let B = (MB = pBe
2πiαB ,NB =

qBe
2πiγB) be CPFSG of V, we want to

show that f−1(B) = (f−1(MB), f
−1(NB))

= (f−1(pB)(ϖ)e2πif
−1(αB)(ϖ),

f−1(qB)(ϖ)e2πif
−1(γB)(ϖ)) is CPFSG of U, by

following Definition 10 of CPFSG.
Part 1: Since B is CPFSG, the set S1 =
{(ζ, pB(ζ), qB(ζ)) : ζ ∈ V, 0 ≤ p2B(ζ) + q2B(ζ) ≤
1} and S2 = {(ζ, αB(ζ), γB(ζ)) : ζ ∈ V, 0 ≤
α2
B(ζ) + γ2

B(ζ) ≤ 1} are the amplitude and phase
terms of CPFSG. Then by Theorem[6.2], [25]; f is
isomorphism, we have:
i) a) (f−1(pB))

2(ϖ121 ϖ2) = f−1(p2B)(ϖ121 ϖ2)
≥ f−1(p2B)(ϖ1) ∧ f−1(p2B)(ϖ2) =
(f−1(pB))

2(ϖ1) ∧ (f−1(pB))
2(ϖ2).

b) (f−1(qB))
2(ϖ121 ϖ2) = f−1(q2B)(ϖ121 ϖ2)≤

f−1(q2B)(ϖ1)∨ f−1(q2B)(ϖ2) = (f−1(qB))
2(ϖ1)∨

(f−1(qB))
2(ϖ2).

Hence, similarly for set S2:
c) (f−1(αB))

2(ϖ121 ϖ2) ≥ (f−1(αB))
2(ϖ1) ∧

(f−1(αB))
2(ϖ2).

d) (f−1(γB))
2(ϖ121 ϖ2) ≤ (f−1(γB))

2(ϖ1) ∨
(f−1(γB))

2(ϖ2).
ii) By same strategy in (i) we get:
a) (f−1(pB))

2(ϖ−1) = (f−1(pB))
2(ϖ).

b) (f−1(qB))
2(ϖ−1) = (f−1(qB))

2(ϖ).
c) (f−1(αB))

2(ϖ−1) = (f−1(αB))
2(ϖ).

d) (f−1(γB))
2(ϖ−1) = (f−1(γB))

2(ϖ).

Part 2: Using part 1 and Lemma 5.1, we have:

1) (f−1(MB))
2(ϖ121 ϖ2)

= f−1(M2
B)(ϖ121 ϖ2)

= f−1(p2B)(ϖ121 ϖ2)e
2πi f−1(α2

B)(ϖ121 ϖ2)

≥ (f−1(p2B)(ϖ1) ∧ f−1(p2B)(ϖ2))

e2πi(f
−1(α2

B)(ϖ1)∧f−1(α2
B)(ϖ2))

= f−1(p2B)(ϖ1)e
2πi f−1(α2

B)(ϖ1) ∧
f−1(p2B)(ϖ2)e

2πi f−1(α2
B)(ϖ2)

= f−1(M2
B)(ϖ1) ∧ f−1(M2

B)(ϖ2)
= (f−1(MB))

2(ϖ1) ∧ (f−1(MB))
2(ϖ2).

2) Similarly we can show that
(f−1(NB))

2(ϖ121 ϖ2) ≤
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(f−1(NB))
2(ϖ1) ∨ (f−1(NB))

2(ϖ2).

3) (f−1(MB))
2(ϖ−1)

= f−1(M2
B)(ϖ

−1)

= f−1(p2B)(ϖ
−1)e2πi f−1(α2

B)(ϖ−1)

= f−1(p2B)(ϖ)e2πi f−1(α2
B)(ϖ)

= f−1(M2
B)(ϖ) = (f−1(MB))

2(ϖ).

4) Similarly we can show that
(f−1(NB))

2(ϖ−1) = (f−1(NB))
2(ϖ).

Hence the result is followed. ■

Theorem 5.4. Let f : U epimorphism−−−−−−−−−→ V, from
(U,21) to (V,22), and letA be CPFNSG ofU. Then
f(A) is CPFNSG of V.

Proof. Let A be a CPFNSG of U, so that sets S1

and S2 are the amplitude and phase terms in the
CPFNSG, as in part 1 of the proof of Theorem 5.2.
Then, according to Definition 13 and Theorem[6.3],
[25], we have:

(f(MA))
2(ζ122ζ2)

= f(M2
A)(ζ122ζ2)

= sup
ϖ∈f−1(ζ122ζ2)

{M2
A(ϖ); f(ϖ) = ζ122ζ2}

= sup
ϖ∈f−1(ζ122ζ2)

{p2A(ϖ)e2πiα
2
A(ϖ);

f(ϖ) = ζ122ζ2}

= sup
ϖ∈f−1(ζ122ζ2)

{p2A(ϖ)}e
2πi sup

ϖ∈f−1(ζ122ζ2)

{α2
A(ϖ)}

= sup
ϖ∈f−1(ζ222ζ1)

{p2A(ϖ)}e
2πi sup

ϖ∈f−1(ζ222ζ1)

{α2
A(ϖ)}

= sup
ϖ∈f−1(ζ222ζ1)

{p2A(ϖ)e2πiα
2
A(ϖ); f(ϖ) =

ζ222ζ1}
= sup

ϖ∈f−1(ζ222ζ1)

{M2
A(ϖ); f(ϖ) = ζ222ζ1}

= f(M2
A)(ζ222ζ1) = (f(MA))

2(ζ222ζ1)
Also, by same strategy we can show that
(f(NA))

2(ζ122ζ2) = (f(NA))
2(ζ222ζ1). Hence,

by Proposition 5 result is followed. ■

Theorem 5.5. Let f : U isomorphism−−−−−−−−→ V, from
(U,21) to (V,22), and let B be CPFNSG ofV. Then
f−1(B) is CPFNSG of U.

Proof. Let B be a CPFNSG of V, so that sets S1

and S2 are the amplitude and phase terms in the
CPFNSG, as in part 1 of the proof of Theorem 5.3.
Then, according to Definition 13 and Theorem[6.4],
[25], we have:

f−1(M2
B)(ϖ121ϖ2) = (MB)

2(f(ϖ121ϖ2))

= p2B(f(ϖ121ϖ2))e
2πα2

B(f(ϖ121ϖ2))

= p2B(f(ϖ221ϖ1))e
2πα2

B(f(ϖ221ϖ1))

= f−1(p2B)(ϖ221ϖ1)e
2πif−1(α2

B)(ϖ221ϖ1)

= (MB)
2(f(ϖ221ϖ1)) = f−1(M2

B)(ϖ221ϖ1)
Also, by same strategy we can show that
f−1(N2

B)(ϖ121 ϖ2) = f−1(N2
B)(ϖ221 ϖ1)

Hence, by Proposition 5 result is followed. ■

6   Conclusion
This research generalized the notion of CPFSG and
discussed various algebraic attributes of CPFSG. This
generalization happened by applying phase terms of
complex numbers to the PFSG structure and its condi-
tions. Therefore, CPFSG is considered a generaliza-
tion of CIFSG and CFSG. Some results between the
current concept and CIFSG were improved and dis-
cussed. Also, coset, normality, and homeomorphism
under complex Pythagorean fuzzy subgroups were in-
troduced and their properties investigated. The limi-
tation of this research is that there are some values
indicated out of the range of complex Pythagorean
fuzzy sets and subgroups, which can be covered (as
future research) by introducing the notion of complex
Fearmatean fuzzy subgroups and Q-rung orthonormal
fuzzy subgroups. Also, as future research and pos-
sible appropriate applications indicate, the need for
secure communication between two sides that are us-
ing CPF information encourages us to use the alge-
braic structure of CPFSG to construct a suitable cryp-
tographic primitive and system. Also, we may extend
the presented works to some algebraic notions, such
as factor groups, rings, fields, and integral domains.
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