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using polynomial and non-polynomial spline approximations, it is possible to obtain acceptable solutions in 
several interesting cases that are impossible when we use the classical approach. In the case of using local basis 
splines, many previously unsolvable problems turn out to be solvable. The results of the numerical experiments 
are presented. 
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1  Introduction 
First of all, let us recall how the Hermite-Birkhoff 
algebraic interpolation problem is formulated. 
Paper [1] provides us with a formulation of the 
Hermite-Birkhoff interpolation problem. Let's take a 
rectangular matrix 𝐼 = [𝜀𝑖0,𝜀𝑖1,, … , 𝜀𝑖𝑛]

𝑖=1

𝑚
 with 𝑚 

rows and 𝑛 + 1 columns.  Here 𝜀𝑖,𝑗 equals 0 or 1, 
and, ∑ 𝜀𝑖,𝑗 = 𝑛 + 1.𝑖,𝑗   Let 𝑒 be the set of ordered 
pairs  𝑒 = {(𝑖, 𝑗)|𝜀𝑖,𝑗 = 1}.  Thus, the number of 
ones among the elements of matrix 𝐼 is equal to the 
number of its columns. Matrix 𝐼 is called the 
incidence matrix. Let 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 be real 
numbers.  

The Hermite-Birkhoff problem is formulated as 
follows. We have to find a polynomial 𝑃(𝑥) of 
degree not greater than 𝑛 that satisfies the 
conditions  

𝑃(𝑗)(𝑥𝑖) = 𝑓𝑖
(𝑗)

, (𝑖, 𝑗) ∈ 𝑒. 
 
Here 𝑓𝑖

(𝑗)
 are given numbers.  

 
This problem was first considered by Birkhoff 

in 1906. Polya focused a lot of his attention on 
solving this problem. Of particular note, in 1931 he 
formulated the conditions for the existence of a 
solution to this problem in several important cases.  
Let us note that an important special case of the 

Hermite-Birkhoff problem is the Hermite 
interpolation problem. 

Currently, many authors are engaged in 
constructing a solution to the Hermite–Birkhoff 
problem. 
Paper [2], discusses various aspects of the Hermite–
Birkhoff interpolation that involve prescribed values 
of a function and/or its first derivative. An algorithm 
is given that finds the unique polynomial satisfying 
the given conditions if it exists. A mean value type 
error term is developed which illustrates the ill-
conditioning present when trying to find a solution 
to a problem that is close to a problem that does not 
have a unique solution. The author of paper [2], 
writes, that such problems may arise when using a 
collocation to solve two-point boundary value 
problems, [3], [4]. Another example arises in the 
numerical solution of ordinary differential equations 
with defect control when using Runge–Kutta 
methods, [5], [6]. 

As noted in [7], a Birkhoff interpolation 
problem is not always solvable even in the 
appropriate polynomial or rational space. In paper 
[7] the authors propose to split up a univariate 
unsolvable Hermite-Birkhoff interpolation problem 
into two or more solvable subproblems and to blend 
the local solutions by using multinode basis 
functions as blending functions. 

The classical Hermit-Birkhoff problem in [8] is 
considered for trigonometrical polynomials. 
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Paper [9] studies the problem of the Hermite-
Birkhoff interpolation with splines. In paper [9], 
interpolation knots and spline knots are considered 
as “dual” elements. This leads to a dual problem 
which is poised if and only if the original problem is 
poised. Estimations of the number of zeros in the 
appropriate interpolation kernel yield a Cauchy-type 
representation of the interpolation error for certain 
cases of Hermite problems. 

In this paper, we discuss the solution of the 
Hermite-Birkhoff interpolation using local 
polynomial and non-polynomial splines. Note that 
when using polynomial and non-polynomial spline 
approximations, it is possible to obtain acceptable 
solutions in several interesting cases that are 
impossible when we use the classical approach.  
 

 

2  Hermite-Birkhoff splines  
Suppose 𝑛 is an even integer, and 𝑎, 𝑏 are real. 
Suppose we have the nodes of the ordered grid {𝑥𝑗}: 

𝑎 = 𝑥0 <. . . < 𝑥𝑗−1 < 𝑥𝑗 < 𝑥𝑗+1 <. . . < 𝑥𝑛 = 𝑏. 
 

We denote 𝑢𝑗 = 𝑢(𝑥𝑗), 𝑢′𝑗 = 𝑢′(𝑥𝑗). Let the 
values of the function 𝑢(𝑥) and its derivative 𝑢′(𝑥) 
be given at the nodes of the grid,  {𝑥𝑗}, in an 
alternative way, such as … , 𝑢𝑗, 𝑢′𝑗+1, 𝑢𝑗+2, … . 

We assume that the function 𝑢 ∈ 𝐶3([𝑎, 𝑏]). 
First, we suppose that the values of the function 
𝑢(𝑥) and its derivative 𝑢′(𝑥) are given in the 
following way ′0, 𝑢1, 𝑢′2, 𝑢3, … . On each interval 
[𝑥𝑗, 𝑥𝑗+1), 𝑗 = 1, 3, 5, … , 𝑛 − 1, we can approximate 
the function 𝑢(𝑥) with the expression 𝑢̃: 

 
𝑢̃(𝑥) = 𝑢′(𝑥𝑗−1)𝜔𝑗−1,1(𝑥) + 𝑢(𝑥𝑗)𝜔𝑗,0(𝑥) +

𝑢′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) , [𝑥𝑗, 𝑥𝑗+1).              (1) 
 

Let 1, 𝜑(𝑥) and 𝜓(𝑥) be sufficiently smooth 
and linearly independent functions. Suppose the 
system 1, 𝜑(𝑥), 𝜓(𝑥) forms a Chebyshev system on 
[𝑎, 𝑏] ⊂ 𝑅.  From the conditions 
 

𝑢̃(𝑥) = 𝑢(𝑥) with 𝑢 = 1, 𝜑(𝑥), 𝜓(𝑥) 
 

We obtain a system of linear algebraic equations 
𝜔𝑗,0(𝑥) = 1, 
𝜑′(𝑥𝑗−1)𝜔𝑗−1,1(𝑥) + 𝜑(𝑥𝑗)𝜔𝑗,0(𝑥)

+ 𝜑′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) = 𝜑(𝑥), 
𝜓′(𝑥𝑗−1)𝜔𝑗−1,1(𝑥) + 𝜓(𝑥𝑗)𝜔𝑗,0(𝑥)

+ 𝜓′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) = 𝜓(𝑥). 
 

We assume that the determinant of this system 
is not equal to 0. In the special case when 
𝜓(𝑥)=𝜑2(𝑥), the determinant of the system ∆𝑗 has 
the form: 

∆𝑗= 2𝜑𝑗−1
′ 𝜑𝑗+1

′ (𝜑𝑗−1– 𝜑𝑗+1). 
 

Here  𝜑𝑖 = 𝜑(𝑥𝑖). 
Under the assumption that the determinant of the 
system is not equal to 0, it is not difficult to obtain 
formulas for the basis splines on [𝑥𝑗, 𝑥𝑗+1): 

𝜔𝑗,0(𝑥) = 1, 
𝜔𝑗−1,1(𝑥) 
=  𝜑𝑗+1

′ (𝜑𝑗 −  𝜑(𝑥)) (2𝜑𝑗+1 – 𝜑𝑗 −  𝜑(𝑥)) /∆𝑗,  
𝜔𝑗+1,1(𝑥)

= 𝜑𝑗−1
′ (𝜑(𝑥)– 𝜑𝑗) (2𝜑𝑗−1 − 𝜑(𝑥)– 𝜑𝑗) ∆𝑗⁄ . 

 
Splines 𝑢̃(𝑥) we call Hermite-Birkhoff splines, 

and basis splines  𝜔𝑘,𝑖 we call Hermite-Birkhoff 
basis splines. 

 
Let us present expressions of the basis splines in 

several specific special cases: 
1) If 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 𝑥2, then the formulas take 

the form: 
𝜔𝑗,0(𝑥) = 1,  
𝜔𝑗−1,1(𝑥) = (𝑥𝑗 − 𝑥) (2𝑥𝑗+1– 𝑥𝑗 − 𝑥) ∆𝑗⁄ , 
𝜔𝑗+1,1(𝑥) = (𝑥 − 𝑥𝑗)(2𝑥𝑗−1– 𝑥𝑗 − 𝑥)/∆𝑗, 
where ∆𝑗= 2(𝑥𝑗−1– 𝑥𝑗+1). 
 

2) If 𝜑(𝑥) = 𝑒𝑥, 𝜓(𝑥) = 𝑒2𝑥, then the formulas 
take the form: 

𝜔𝑗,0(𝑥) = 1,  
𝜔𝑗+1,1(𝑥) = (𝑒2𝑥+𝑥𝑗−1 − 𝑒𝑥𝑗−1+2𝑥𝑗 
                     +2𝑒2𝑥𝑗−1+𝑥𝑗 − 2𝑒𝑥+2𝑥𝑗−1)/ ∆𝑗, 

𝜔𝑗−1,1(𝑥) = −(𝑒2𝑥+𝑥𝑗+1 − 𝑒𝑥𝑗+1+2𝑥𝑗 
+2𝑒2𝑥𝑗+1+𝑥𝑗 − 2𝑒𝑥+2𝑥𝑗+1)/∆𝑗, 

where  
 
∆𝑗= 2(𝑒𝑥𝑗−1+2𝑥𝑗+1 − 𝑒2𝑥𝑗−1+𝑥𝑗+1). 
 
Let 𝑥𝑗 = 0, 𝑥𝑗+1 = 𝑥𝑗 + ℎ = 0.12. The plots of 

the basis polynomial splines are given in Figure 1, 
Figure 2 and Figure 3. The plots of the basis 
exponential splines are given in Figure 4, Figure 5 
and Figure 6. 
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Fig. 1: The plot of the basis polynomial spline 
𝜔𝑗+1,1(𝑥) 

 

 
Fig. 2: The plot of the basis polynomial spline 
𝜔𝑗−1,1(𝑥) 

 

 
Fig. 3: The plot of the basis polynomial splines 
𝜔𝑗,0(𝑥) 

 

 
Fig. 4: The plot of the basis exponential splines 
𝜔𝑗+1,1(𝑥) 

 

 
Fig. 5: The plot of the basis exponential splines 
𝜔𝑗−1,1(𝑥) 

 
Fig. 6: The plot of the basis exponential splines 
𝜔𝑗,0(𝑥) 

 
On each interval [𝑥𝑗, 𝑥𝑗+1), 𝑗 = 0, 2, 4, … , 𝑛 − 2, 

we can approximate the function 𝑢(𝑥) with the 
expression 𝑢̃: 

𝑢̃(𝑥) = 𝑢′(𝑥𝑗)𝜔𝑗,1(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1,0(𝑥) +

𝑢′(𝑥𝑗+2)𝜔𝑗+2,1(𝑥).           (2) 
 

In the polynomial case, when 𝜑(𝑥) = 𝑥, 
𝜓(𝑥) = 𝑥2, we get: 

𝜔𝑗+1,0(𝑥) = 1, 

𝜔𝑗,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥 − 2𝑥𝑗+2 + 𝑥𝑗+1)

2(𝑥𝑗 − 𝑥𝑗+2)
, 

𝜔𝑗+2,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥 − 2𝑥𝑗 + 𝑥𝑗+1)

2(𝑥𝑗+2 − 𝑥𝑗)
 . 

 
Note, we can obtain the approximation of the 

first derivative with the formulae, obtained with (1) 
and (2): 

𝑢̃′(𝑥) = 𝑢′(𝑥𝑗−1)𝜔′
𝑗−1,1(𝑥) + 𝑢(𝑥𝑗)𝜔′

𝑗,0(𝑥)

+ 𝑢′(𝑥𝑗+1)𝜔′
𝑗+1,1(𝑥), 

𝑢̃′(𝑥) = 𝑢′(𝑥𝑗)𝜔′𝑗,1(𝑥) + 𝑢(𝑥𝑗+1)𝜔′𝑗+1,0(𝑥) +

𝑢′(𝑥𝑗+2)𝜔′𝑗+2,1(𝑥).   
 

There is another form of the approximation. 
Now, we suppose that the values of the function 
𝑢(𝑥) and its derivative 𝑢′(𝑥) are given in the 
following way 𝑢0, 𝑢′1, 𝑢2, … . 

On each interval [𝑥𝑗, 𝑥𝑗+1), 𝑗 = 0, 2, 4, … , 𝑛 − 2, 
we can also approximate the function 𝑢(𝑥) with the 
expression 𝑢̃: 

𝑢̃(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗,0(𝑥) + 𝑢′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) +

𝑢′(𝑥𝑗+3)𝜔𝑗+3,1(𝑥). 
 
From the conditions: 
𝑢̃(𝑥) = 𝑢(𝑥) with 𝑢 = 1, 𝜑(𝑥), 𝜓(𝑥)  
 

We obtain a system of linear algebraic 
equations: 

𝜔𝑗,0(𝑥) = 1, 
𝜑(𝑥𝑗)𝜔𝑗,0 (𝑥) +  𝜑′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥)

+ 𝜑′(𝑥𝑗+3)𝜔𝑗+3,1(𝑥) = 𝜑(𝑥) ,  
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𝜓(𝑥𝑗)𝜔𝑗,0 (𝑥) +  𝜓′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) 
+𝜓′(𝑥𝑗+3)𝜔𝑗+3,1(𝑥) = 𝜓(𝑥).  

 
In the polynomial case, when 𝜑(𝑥) = 𝑥, 

𝜓(𝑥) = 𝑥2, we get: 
𝜔𝑗,0(𝑥) = 1, 

𝜔𝑗+1,1(𝑥) =
−(𝑥 − 𝑥𝑗)(𝑥 − 2𝑥𝑗+3 + 𝑥𝑗)

2(𝑥𝑗+3 − 𝑥𝑗+1)
, 

𝜔𝑗+3,1(𝑥) =
(𝑥 − 𝑥𝑗)(𝑥 − 2𝑥𝑗+1 + 𝑥𝑗)

2(𝑥𝑗+3 − 𝑥𝑗+1)
. 

 
On each interval [𝑥𝑗, 𝑥𝑗+1), 𝑗 = 1, 3, 5, … , 𝑛 − 1, 

we can approximate the function 𝑢(𝑥) with the 
expression 𝑢̃: 

𝑢̃(𝑥) = 𝑢′(𝑥𝑗)𝜔𝑗,1(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1,0(𝑥) +

𝑢′(𝑥𝑗+2)𝜔𝑗+2,1(𝑥), 
 
where in the polynomial case basis splines have the 
form: 

𝜔𝑗+1,0(𝑥) = 1, 

𝜔𝑗,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥 − 2𝑥𝑗+2 + 𝑥𝑗+1)

2(𝑥𝑗 − 𝑥𝑗+2)
, 

𝜔𝑗+2,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥 − 2𝑥𝑗 + 𝑥𝑗+1)

2(𝑥𝑗+2 − 𝑥𝑗)
 . 

 
In the exponential case the basis splines have 

the form: 
𝜔𝑗+1,0(𝑥) = 1, 

𝜔𝑗,1(𝑥) =
𝑞(𝑥)

2(exp (𝑥𝑗 + 2𝑥𝑗+2) − exp (2𝑥𝑗 + 𝑥𝑗+2))
, 

𝜔𝑗+2,1(𝑥)

=
𝑔(𝑥)

2(exp (𝑥𝑗 + 2𝑥𝑗+2) − exp (2𝑥𝑗 + 𝑥𝑗+2))
 . 

𝑞(𝑥) = exp (2𝑥𝑗+1 + 𝑥𝑗+2) − exp (2 𝑥 + 𝑥𝑗+2) 
−2exp (𝑥𝑗+1 + 2𝑥𝑗+2) + 2 exp(𝑥 + 2𝑥𝑗+2), 
𝑔(𝑥) = 2exp (2𝑥𝑗 + 𝑥𝑗+1) − 2exp (𝑥 + 2𝑥𝑗) 

−exp (2𝑥𝑗+1 + 𝑥𝑗) + exp(2𝑥 + 𝑥𝑗). 
 

Note, that it is impossible to construct the 
approximation on the interval [𝑥𝑗 , 𝑥𝑗+1) in the form: 

𝑢̃(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗,0(𝑥) + 𝑢′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥) +

𝑢(𝑥𝑗+2)𝜔𝑗+2,0(𝑥). 
 

In next section we will consider estimates of 
approximation errors. 
 

 

 

3  The Errors of the Approximation 

In [10], error estimates using non-polynomial 
splines were obtained in the general case. Here we 
obtain estimates of the errors of approximation of 
the function 𝑢(𝑥) on the interval [𝑥𝑗 , 𝑥𝑗+1)  with 
the spline expressions 𝑢̃(𝑥) with 𝜓(𝑥) = 𝜑2(𝑥) , 
when  𝜑(𝑥) = 𝑒𝑥 or 𝜑(𝑥) = 𝑥. 

First, let 𝜑(𝑥) = 𝑒𝑥, 𝜓(𝑥) = 𝑒2𝑥. Following the 
method proposed in [10], we construct a 
homogeneous linear differential equation having a 
fundamental system of solutions: 1, 𝜑(𝑥), 𝜓(𝑥): 

𝐿𝑢 = 𝑢′′′ − 3𝑢′′ + 2𝑢′ = 0. 
Let us use approximation (1). Using the basis 

spline estimates 
 |𝜔𝑗−1,1(𝑥)| ≤ ℎ 4⁄ , |𝜔𝑗+1,1(𝑥)| ≤ 3 ℎ 4⁄ , 
 

We obtain the required estimate of the 
approximation error on the interval [𝑥𝑗 , 𝑥𝑗+1) : 

|𝑢̃(𝑥) − 𝑢(𝑥)| ≤ 
𝐾ℎ3 ∥ 𝑢′′′ − 3𝑢′′ + 2𝑢′ ∥[𝑥𝑗−1,𝑥𝑗+1], 

where 𝐾 ≈ 0.58 . 
    

Similarly, when 𝜑(𝑥) = 𝑥, 𝜓(𝑥) = 𝑥2, we 
obtain an estimate for the approximation error on 
the interval [𝑥𝑗 , 𝑥𝑗+1)    in the form: 

|𝑢̃(𝑥) − 𝑢(𝑥)| ≤
ℎ3

2
∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1]. 

 

Similar estimations can be found when we use 
expression (2). 
 
 
4  Numerical Experiments  
In this section we present the results of numerical 
experiments on the approximation of some of the 
functions on the interval [−1,1]. Suppose the values 
of the function 𝑢(𝑥) and its derivative 𝑢’(𝑥) be 
given at the nodes of the grid  {𝑥𝑗}, in an alternative 
way: … , 𝑢𝑗, 𝑢′𝑗+1, 𝑢𝑗+2, … . Using an equidistant grid 
with step ℎ and expressions (1), (2), we construct 
the approximation of function 𝑢 on [−1,1]. All 
calculations were done in the Maple environment. 
Figure 7 shows the plot of the error of 
approximation of 𝑢(𝑥) = sin(𝑥) with the 
polynomial Hermite-Birkhoff splines. Figure 8 
shows the plot of the error of approximation of 
𝑢′(𝑥) = cos(𝑥) with the Hermite-Birkhoff 
polynomial splines. 
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Fig. 7: The plot of the error of approximation of 
𝑢(𝑥) = sin(𝑥) with the polynomial splines  
(𝑛 = 16) 
 

 
Fig. 8: The plot of the error of approximation of 
𝑢′(𝑥) = cos(𝑥) with the polynomial splines 

 
4.1 The Lagrange Interpolation and the 

Hermite Interpolation 
In this subsection we discuss the Lagrange and the 
Hermite interpolation. 

Let us construct the equidistant set of nodes 
{𝑥𝑘}, 𝑘 = 0,1, … , 𝑛, with step ℎ = 2 𝑛⁄  on [−1,1]. 
We construct the Lagrange interpolation of the 
function 𝑢(𝑥) with the interpolation polynomial 
𝑃𝑛(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ +𝑎0. We construct 𝑃𝑛(𝑥) using 
𝑛 + 1 function values at the grid nodes 𝑥𝑘. The 
polynomial 𝑃𝑛(𝑥) has the form: 

 

𝑃𝑛(𝑥) = ∑ 𝑢(𝑥𝑘)
𝑤(𝑥)

𝑤′(𝑥𝑘)(𝑥 − 𝑥𝑘)
,

𝑛

𝑘=0

 

𝑤(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛). 
 

As is known, Runge noted in 1901 that in this 
case the approximation of the function 𝑢(𝑥) =
1 (1 + 25𝑥2)⁄  gives us an unsatisfactory result. For 
example, let 𝑛 = 10. The plot of the function 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  and its approximation with 
the interpolation polynomial is shown in Figure 9. 

 
Fig. 9: The plot of the function 𝑢(𝑥) =
1 (1 + 25𝑥2)⁄  (red) and its approximation (blue) 
with the interpolation polynomial (𝑛 = 10). 

 
Now we construct the approximation of the 

Runge function using the local cubic Hermite 
splines of the first level. Note that local spline 
approximations give good results. 

Note that Hermitian cubic splines are well 
known. They are constructed separately on each grid 
interval in the form of a third-degree polynomial. 
These splines form a continuously differentiable 
piecewise function on the interval [−1,1]. 
Following Professor S.G. Mikhlin, we write 
Hermitian cubic splines of first height on the 
interval [𝑥𝑗 , 𝑥𝑗+1] in the form: 

𝑢̃(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗,0(𝑥) + 𝑢′(𝑥𝑗)𝜔𝑗,1(𝑥) 

+𝑢(𝑥𝑗+1)𝜔𝑗+1,0(𝑥) + 𝑢′(𝑥𝑗+1)𝜔𝑗+1,1(𝑥). 
 

The basis splines 𝜔𝑘,𝑖, 𝑘 = 𝑗, 𝑗 + 1, 𝑖 = 0,1, are 
as follows: 

𝜔𝑗,0(𝑥) =
(𝑥𝑗+1 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)2
+ 2

(𝑥 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)3
 , 

𝜔𝑗,1(𝑥) =
(𝑥𝑗 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)2
+ 2

(𝑥𝑗+1 − 𝑥)(𝑥𝑗 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)3
 , 

𝜔𝑗,1(𝑥) =
(𝑥 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)2
 

𝜔𝑗+1,1(𝑥) =
(𝑥 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥)2

(𝑥𝑗+1 − 𝑥𝑗)2
 

 
These splines are well known and widely used. 
 

On each interval [𝑥𝑗, 𝑥𝑗+1]  these splines provide 
the fourth order of approximation: 

|𝑢̃(𝑥) − 𝑢(𝑥)| ≤ 𝐾ℎ4, 
 
Here  𝑥𝑗+1 − 𝑥𝑗 = ℎ. 
    

The plot of the of the error of approximation of 
function 𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the 
interpolation cubic splines on [−1,1]  is shown in 
Figure 10.  
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Fig. 10: The plot of the error of approximation of 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the polynomial splines 
(𝑛 = 10) 

 
4.2  The Spline Approximation 
Next, we present the results of approximation of 
function 𝑢 with the Hermite-Birkhoff splines. We 
suppose that the values of the function 𝑢(𝑥) and its 
derivative 𝑢′(𝑥) are given in the following way 
𝑢′0, 𝑢1, 𝑢′2, 𝑢3, … . On each interval [𝑥𝑗, 𝑥𝑗+1), 𝑗 =

1, 3, 5, … , 𝑛 − 1, we can approximate the function 
𝑢(𝑥) with the expression (1) or (2).  Figure 11, 
Figure 12, Figure 13, Figure 14 and Figure 15 show 
the plot of the Runge function, its approximation, 
and the error of approximation of the Runge 
function 𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the Hermite-
Birkhoff polynomial splines.  Figure 11 shows the 
function and its approximation with Hermite-
Birkhoff splines when 𝑛 = 16. In this case, the 
approximation error turns out to be large and it is 
visible in Figure 11. Figure 12, Figure 13, Figure 14 
and Figure 15 present only plots of the errors of 
approximation of the function and its first 
derivative. It can be seen that with an increase in the 
number of grid nodes, the approximation error 
decreases. This is consistent with the theoretical 
estimates obtained in the previous section. 
 
 

 
Fig. 11: The plot of the function 𝑢(𝑥) =
1 (1 + 25𝑥2)⁄  (blue) and its approximation (red) 
with the polynomial spline interpolation (𝑛 = 16) 

 
 

 
Fig. 12: The plot of the error of approximation of 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the polynomial splines 
(𝑛 = 64) 

 

 
Fig. 13: The plot of the error of approximation of 
the first derivative of the function 
 𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the polynomial splines 
(𝑛 = 64) 
 

 
Fig. 14: The plot of the error of approximation of 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the polynomial splines 
(𝑛 = 128) 

 

 
Fig. 15: The plot of the error of approximation of 
the first derivative of the function 
 𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the polynomial splines 
(𝑛 = 128) 
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Figure 16 and Figure 17 show the plot of the 
error of approximation of the Runge function 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the Hermite-Birkhoff 
exponential splines. 

 

 
Fig. 16: The plot of the error of approximation of 
𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the exponential splines 
(𝑛 = 64) 

 

 
Fig. 17: The plot of the error of approximation of 
the first derivative of the function 
 𝑢(𝑥) = 1 (1 + 25𝑥2)⁄  with the exponential splines 
(𝑛 = 64) 
 

Figure 18 and Figure 19 show the plot of the 
error of approximation of the Runge function 
𝑢(𝑥) = exp (𝑥) with the Hermite-Birkhoff 
exponential splines (Digits=15). 

 

 
Fig. 18: The plot of the error of approximation of 
𝑢(𝑥) = exp (𝑥) with the exponential splines 
 (𝑛 = 10, 𝐷𝑖𝑔𝑖𝑡𝑠 = 15) 

 
 

 
Fig. 19: The plot of the error of approximation of 
the first derivative of the function 
 𝑢(𝑥) = exp (𝑥) with the exponential splines 
 (𝑛 = 10, 𝐷𝑖𝑔𝑖𝑡𝑠 = 15) 
 

Suppose the values of function 𝑢  or its 
derivative are given on interval [0,1]  and 𝑛 = 10.  
The values of function 𝑢 and/or its derivative are 
specified at the nodes of a uniform grid with step 
ℎ = 0.1.  

Table 1 shows the actual approximation errors ( 
max
[0,1]

|𝑢̃(𝑥) − 𝑢(𝑥)|) when 𝜓(𝑥) = 𝜑2(𝑥), obtained 

by solving the Hermite–Birkhoff problem in the 
Maple environment. At each grid interval, an 
approximation was constructed using Hermite-
Birkhoff splines using formulas (1) or (2). Next, the 
maximum approximation error in absolute value 
was found at each grid interval, and then the 
maximum error among the values at each grid 
interval was selected over the entire interpolation 
interval. These values are given in the following 
Tables. 

 
Table 1. The actual approximation errors 

𝜑\ 𝑢 sin(𝑥) 𝑒𝑥 
 

cos(𝑥) 
 

𝑥5 
 

𝑥 3 · 10−4 7 · 10−4 2 · 10−4 1 · 10−2 

 𝑒𝑥 9 · 10−4 
 

0 
 

9 · 10−4 
 

4 · 10−3 
 

For comparison, in Table 2 we present the 
values of the theoretical error estimates. When 
constructing the data for Table 2, the theoretical 
estimates obtained in Section 3 were used at each 
grid interval. Next, the maximum value was 
selected, which was placed in Table 2. 

 
Table 2. Theoretical estimates of the approximation 

error 
𝜑\𝑢 

 

sin(𝑥) 𝑒𝑥 cos(𝑥) 𝑥5 

𝑥 5 · 10−4 1 · 10−3 5 · 10−4 3 · 10−2 

𝑒𝑥 2 · 10−3 
 

0 2 · 10−3 7 · 10−3  
 

 

The results presented in Table 1 and Table 2 
confirm the accuracy of the found constant in the 
inequalities of approximation. 
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5  Conclusion 
This paper discussed using local splines to solve 
Hermite-Birkhoff interpolation problems. Note that 
these splines can provide a solution to this problem 
even if the classical solution to the Hermite-
Birkhoff problem has no solution.  

This paper discussed spline interpolations using 
values of the functions and their first derivatives. In 
the future, we will consider other types of Hermite-
Birkhoff splines. 

Many papers are devoted to the construction of 
adaptive grids when solving various problems. The 
use of adaptive grids is advisable when applying 
grid methods to solve integral and differential 
equations. On one hand, adaptive grids allow us to 
reduce the number of grid nodes while on the other 
hand, it allows us to increase the accuracy of the 
solution. Using local Hermite-Birkhoff basis splines 
makes it easy to apply adaptive grids. It will be done 
in the next paper. 
 
 
Acknowledgement: 

The author is grateful to Professor Ryabov and the 
reviewers for their invaluable comments. 
 
 

References: 

[1] I. J. Schoenberg, On Hermite-Birkhoff 
interpolation, Journal of Mathematical 

Analysis and Applications. Vol. 16, No. 
3,1966, pp. 538–543. doi:10.1016/0022-
247X(66)90160-0 

[2] W.F. Finden, An error term and uniqueness 
for Hermite–Birkhoff interpolation involving 
only function values and/or first derivative 
values, Journal of Computational and Applied 

Mathematics, Vol. 212, 2008, pp. 1–15. 
[3] W. Finden, Higher order approximations 

using interpolation applied to collocation 
solutions of two point boundary value 
problems, J. Comput. Appl. Math., Volume 
206, Iss.1, 2007, pp 99-115, 
doi:10.1016/j.cam.2006.06.003. 

[4] H. Jin, S. Pruess, Uniformly superconvergent 
approximations for linear two-point boundary 
value problems, SIAM J. Numer. Anal., Vol. 
35, No 1, 1998, pp. 363–375. 

[5]  D.J. Higham, Runge–Kutta defect control 
using Hermite–Birkhoff interpolation, SIAM 

J. Sci. Comput. , Vol. 12, 1991, pp. 991–999. 
[6] W.H. Enright, The relative efficiency of 

alternative defect control schemes for high-
order continuous Runge–Kutta formulas, 

SIAM J. Numer. Anal., Vol. 30, No 5,  1993, 
pp. 1419–1445. 

[7] Francesco Dell’Accio, Filomena Di 
Tommaso, Kai Horman, Reconstruction of a 
function from Hermite–Birkhoff data, Journal 

Applied Mathematics and Computation, Vol. 
318, February 2018, pp. 51–69. 

[8] Darell J. Johnson, The Trigonometric 
Hermite-Birkhoff Interpolation Problem, 
Transactions of the American Mathematical 

Society, Vol. 212, Oct. 1975, pp. 365-374, 
https://doi.org/10.2307/1998632 

[9] Kurt Jetter, Duale Hermite-Birkhoff problem, 
Journal of Approximation Theory, Vol. 17, 
No 2, June 1976, pp. 119-134. 

[10] I.G. Burova, On left integro-differential 
splines and Cauchy problem, International 

Journal of Mathematical Models and Methods 

in Applied Sciences, Vol.9, 2015, pp. 683-
690. 

 
 
Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Conflict of Interest 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.62 I. G. Burova

E-ISSN: 2224-2880 598 Volume 23, 2024

https://doi.org/10.1016%2F0022-247X%2866%2990160-0
https://doi.org/10.1016%2F0022-247X%2866%2990160-0
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0022-247X%2866%2990160-0
https://doi.org/10.1016%2F0022-247X%2866%2990160-0
https://doi.org/10.2307/1998632
https://www.sciencedirect.com/journal/journal-of-approximation-theory
https://www.sciencedirect.com/journal/journal-of-approximation-theory/vol/17/issue/2
https://www.sciencedirect.com/journal/journal-of-approximation-theory/vol/17/issue/2
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



