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Abstract: - The performance of a process running on an exponentially weighted moving average (EWMA) control 

chart is contingent upon the ability to detect changes in the process mean rapidly. This entails determining the 

shortest average run length (ARL) for when a process becomes out-of-control (ARL1). Herein, we propose a 

numerical integral equation  (NIE) method to approximate the ARL for a long-memory fractionally integrated 

moving-average process with an exogenous variable (FI-MAX)  with underlying exponential white noise running 

on an EWMA control chart using the Gauss-Legendre quadrature. In a numerical evaluation to compare its 

performance with that derived by using explicit formulas for this scenario, both performed equally well in terms of 

accuracy percentage (> 95%) and showed very consistent ARL1 values. Therefore, the NIE approach is acceptable 

for approximating the ARL for this specific situation. In addition, comparing their standard deviations of the run 

length (SDRLs) illustrates that the NIE method performed better in rapidly detecting a shift in the process mean. 

Real data consistent with an FI-MAX process were also analyzed to demonstrate the applicability of using the 

proposed method for FI-MAX processes on EWMA charts. 
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1   Introduction 
Statistical process control (SPC) refers to various 

analytical and statistical techniques to increase 

production efficiency. The control chart is an 

essential tool in SPC that is considered a significant 

instrument for monitoring manufacturing processes 

and detecting specific statistical variations. Walter A. 

Shewhart invented the control chart to identify 

manufacturing process variability, [1]. Despite its 

simplicity, the memoryless Shewhart control chart 

fails to detect small-to-moderate changes in process 

parameters. Researchers then developed memory-

type control charts like cumulative sum (CUSUM) 

and exponentially weighted moving average 

(EWMA). 

The study [2], proposed a CUSUM control chart 

as an alternative to the Shewhart control chart for 

detecting small-to-moderate changes in a process 

parameter. The study [3], introduced the EWMA 

statistic to improve the efficiency of control charts 

for small changes. In addition, EWMA statistics 

consider current and past information, resulting in 

superior performance compared to statistics that rely 

on current information alone. Other study, [4], used 

time-varying control limits instead of asymptotic 

ones to quickly detect mean changes on an EWMA 

control chart. 

Average run length (ARL) is the average number 

of samples taken before the process changes until it 

reaches an out-of-control state. We refer to the 

process determination of an in-control ARL ARL0 

and the process determination of an out-of-control 

ARL ARL1. Several researchers have evaluated the 

performance of EWMA control charts using ARL-

based Monte Carlo simulations, Markov chain 

methods, or integral equations, [5], [6], [7]. 
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The literature provides ARL computations to 

evaluate process performance on an EWMA control 

chart, [8], [9], [10]. Many have solved integral 

equations using analytical ARL with explicit 

formulas and approximated ARL with numerical 

integral equations. This study uses an NIE technique 

to approximate the ARL and measures its efficacy 

using the standard deviation of the run length 

(SDRL). We compared the effectiveness of this 

approach strategy to the explicit formulas 

documented in [11], [12], [13]. 

Time series analysis examines the autocorrelation 

functions, which decrease progressively in a 

hyperbolic manner. Other types of data, such as wind 

speed, air temperature, air quality, econometrics, and 

hydrologic phenomena, also exhibit these patterns. 

These processes exhibit a long-memory component 

and are often analyzed using the autoregressive 

fractionally integrated moving-average (ARFIMA) 

model, which is characterized by the fractional 

differencing parameter d. For a thorough 

comprehension of long-memory processes, consult 

the sources cited as [14], [15], [16], [17], [18]. In 

addition to the primary time series data, exogenous 

factors may have a strong link with the initial time 

series. These variables may be readily available or 

easily acquired. According to a research study, [19], 

incorporating these external factors into time series 

models enhances their performance and increases the 

accuracy of their predictions. The focus of the current 

work is on the fractionally integrated MA model with 

an exogenous variable (FI-MAX). 

Prior research has utilized control charts to detect 

shifts in the mean of long-memory processes 

characterized by white noise following a normal 

distribution, [20], [21], [22]. However, white noise 

following an exponential distribution, [23], [24] is 

another process worthy of investigation. 

Herein, we propose a solution to approximate the 

ARL of a long-memory FI-MAX process with 

underlying exponential white noise running on an 

EWMA control chart based on an NIE method using 

the Gauss-Legendre quadrature. To the best of our 

knowledge, this approach has not previously been 

investigated. Furthermore, the applicability of the 

suggested approach is compared with that of the 

ARL derived using explicit formulas.  

The rest of the paper is organized as follows. In 

Section 2 , we provide the basic structure of the 

EWMA control chart running a long-memory FI-

MAX process with exponential white noise. In 

Section 3, the approximation of the ARL for the 

specific situation mentioned above using the NIE 

method is derived and compared with the explicit 

formula approach. In Section 4 , the results of the 

computed ARLs and SDRLs for the proposed NIE 

and established empirical formula methods are 

discussed. Section 5  consists of an example of the 

implementation of the proposed method for 

approximating the ARL. Finally, conclusions are 

provided in Section 6. 

 

 

2 The EWMA Statistic and the FI-MAX 

 Process with Exponential White 

 Noise 
In [3] first provided a derivation of EWMA control 

charts by considering prior observations in the 

decision process, which is in contrast to the Shewhart 

control chart and better for detecting small-to-

moderate changes in the process mean, [8]. The 

EWMA statistic is defined as follows: 

1(1 ) ,  1,2,...t t tD D Y t       (1) 

where 1,t   the initial values of 0D  are set equal to 

,  and   is a smoothing parameter with a range of 

values from zero to one, [25]. In practice, its value is 

set between 0.05 and 0.3. For the in-control process, 

mean 0  and variance 
2  of the EWMA statistic 

are 

2 2

0( ) , ( ) 1 (1 ) ,
2

t

t tE D V D


  

     

    (2) 

respectively. 

 

The center line (CL), upper control limit (UCL), 

and lower control limit (LCL)  for the EWMA 

control chart are: 

2

0

0

1 (1 ) ,
2

,

tUCL L

CL


  





     


 

2

0 1 (1 ) ,
2

tLCL L


  

     

 (3) 

 

respectively, where L  is the width of the control 

limits. In practice, the value of the in-control ARL 

ARL0 is predetermined. In this study, monitoring 

statistics tD  are plotted in relation to their 

corresponding control limits. If tD  is in the range of 
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the LCL to the UCL, the process is in-control, 

meaning that no change has been noticed in the 

process mean and the process is proceeding within 

acceptable parameters. Conversely, if the value of 

tD  is greater than or equal to the UCL or LCL, the 

process is out-of-control. 

The stopping time ( )  of the upper-sided EWMA 

control chart is given by: 

  ,inf 0; UCL , for UCLtt D      (4) 

 

In this study, we are concerned with a long-

memory ( )FI- MAX , ,d q k process, where d is the 

fractionally integrated/differentiated order, q is the 

MA order, and k is the order of the exogenous 

variables. The process is stationary and invertible 

when 0 0.5.d   Now, we consider the long-

memory FI-MAX process in the context of 

identifying changes in the process mean on an 

EWMA control chart, which can be written as 

           
1 1

(1 ) (1 ) ,
q k

d i

t i t j jt
i j

B Y B X  
 

      (5) 

 

where i  is the ith MA coefficient,  j  the j-th 

coefficient corresponding to ,k and t  is a white 

noise process assumed to be exponentially distributed 

as ~ ( ),t Exp v when shift parameter 0.   The 

fractional difference operator (1 )dB  is: 

 

2 3

0

(1 ) (1 )(2 )
( ) 1 ...,

2 6

p

p

d d d d d d
B dB B B

p





    
      

 


 

where d  is the degree of the differencing parameter, 

B  is a backward-shift operator, and p

t t pB Y Y  for 

order p . Therefore, the ( )FI- MAX , ,d q k  process 

can be expressed in the following general form: 

 

1 2
1

3
1

(1 )

2

(1 )(2 )
...

6

q

t t i t j t t
i

k

t j jt
j

d d
Y dY Y

d d d
Y X

  



  






   

 
  





 (6) 

 

where 1; 1,2,...,i i q    are MA coefficients and 

; 1,2,..., .jtX j k are exogenous variables, 

; 1,2,..., .j j k   are coefficients depending on 

exogenous variable. The initial value of a long-

memory ( )FI- MAX , ,d q k  process must satisfy 

1 2 3, , ,...,t t tY Y Y    and 1 2, ,...,t t ktX X X  = 1. For 

exponential white noise, the initial value of 

1 2 3, , ,...,t t t      is 1.  

The process in Eq. (6)  in conjunction with the 

EWMA statistic can be mathematically expressed as: 

 

1 1 2
1

3
1

1 1 2
1

3
1

(1 )
(1 ) (

2

(1 )(2 )
... )

6

(1 )
(1 )

2

(1 )(2 )
... )

6

q

t t t i t j t t
i

k

t j jt
j

q

t t i t j t t
i

k

t j jt
j

d d
D D dY Y

d d d
Y X

d d
D dY Y

d d d
Y X

    



      

 

   





   






     

 
  


     

 
  









 

  (7) 

 

The EWMA statistic for a long-memory 

( )FI- MAX , ,d q k  process being in-control when 

LCL = 0 is as follows. If 
1

Y  provides the control state 

for 
1
,D  then: 

 

0 1 1 0 0 2
2

(1 )
0 (1 )

2

q

i t j t
i

d d
D dY Y        

 



        

3
1

(1 )(2 )
... ) UCL

6

k

t j jt
j

d d d
Y X 




 
     (8) 

 

Eq. (8) provides the initial value of 
0

,D  which 

can be reformulated according to 
1
 as follows: 

 

1 0 0 2
2

3
1

1

1 0 0 2
2

3
1

(1 )
(1 )

2

(1 )(2 )
...

6

(1 )
UCL (1 )

2

(1 )(2 )
...

6

q

i t j t
i

k

t j jt
j

q

i t j t
i

k

t j jt
j

d d
dY Y

d d d
Y X

d d
dY Y

d d d
Y X

        

   



        

   

 





 






    



  
   



 


     



  
   











or .
t

L H   According to the bounds in the 

equation above, the probability distribution function 

1  can be rewritten as 
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1( ) ( ) ,

H

L

P L H f z dz     

where ( )f z  represents the probability density 

function of an exponential distribution. Thus, the 

approximated ARL  can now be computed using 

this structure for the EWMA statistic. 

 

 

3  Approximating the ARL 
Fredholm's approximation of the ARL  using an 

integral equation of the second kind can theoretically 

represent the ARL. [26], was the first to use this 

approach for a process on an EWMA chart. In this 

section, we approximate the ARL  by solving an 

integral equation using the Gauss-Legendre 

quadrature, [27]. 

 

3.1  The NIE Method 

Let ( )L   represent the ARL, which detects small 

changes in the mean of the long-memory 

( )FI- MAX , ,d q k  process, starting from the initial 

value 
0

( ).D   Subsequently, ( ) ( )EL   


   

representing the solution to the integral equation can 

be rewritten as: 

 

1

10

2 3

1

1 (1 )
( ) 1 ( ) (

(1 ) (1 )(2 )
...

2 6

UCL q

i t j t

i

k

t t j jt

j

z
L L z f dY

d d d d d
Y Y X dz

 
  

 



 



 



 
   

  
    







  (9) 

 

Since the integration interval can become infinite 

under Gaussian rules, the weight function ( )W z must 

not equal 1 and the set of points , 1,2,..,rz r n are 

spaced equally. The Gaussian function is in the form: 

10

( ) ( ) ( )

UCL m

r r

r

W z f z dz w f a


   

where interval [0, UCL] is partitioned into a sequence 

of points 1 20 .... UCL,ma a a     where: 

1
,

2
r

UCL
a r

m

 
  

 
; 1,2,..., .r

UCL
w r m

m
 

represents a set of constant weights. 

 

A numerical approximation for an integral 

equation can be obtained by applying the Gauss-

Legendre quadrature, which involves solving the 

following system of algebraic linear equations: 

 

1

1 1

2 3

1

(1 )1
( ) 1 ( )

(1 ) (1 )(2 )
...

2 6

qm
r l

l r r i t j t

r i

k

t t j jt

j

a a
L a w L a f dY

d d d d d
Y Y X


 

 



 

 

 



 
   



  
    



 



 

for 1,2,..., .l m  Thus, 

1
1 1

1 1

2 3

1

2
2 1

1 1

2 3

(1 )1
( ) 1 ( )

(1 ) (1 )(2 )
...

2 6

(1 )1
( ) 1 ( )

(1 ) (1 )(2 )
...

2 6

qm
r

r r i t j t

r i

k

t t j jt

j

qm
r

r r i t j t

r i

t t j jt

a a
L a w L a f dY

d d d d d
Y Y X

a a
L a w L a f dY

d d d d d
Y Y X


 

 




 

 



 

 

 



 

 

 

 
   



  
    



 
   



  
   

 



 

1

1

1 1

2 3

1

(1 )1
( ) 1 ( )

(1 ) (1 )(2 )
... .

2 6

k

j

qm
r m

m r r i t j t

r i

k

t t j jt

j

a a
L a w L a f dY

d d d d d
Y Y X


 

 





 

 

 







 
   



  
    





 



 

 

This can be reformulated in matrix format as: 
 

   
1 1 1m m m m m    L 1 R L   (10) 

 

where 
1 1 2( ), ( ), ..., ( )ˆ ,ˆ ˆ

m ma L aL L a

 
 

L is a column 

vector of ( ); 1, 2, ..., ,lL a l m  
1 (1,1, ,1)m diag I  is 

the unit matrix order ,m   1 1,1,...,1m
1  is a column 

vector of ones, and 
m mR  is a matrix having the 

element  ,
th

m m , which can be expressed as: 

 

...

...
,

...

11 12 1m

21 22 2m

m m

m1 m2 mm

R R R

R R R

R R Rr



 
 
 
 
 
 

R
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with 
1

1

(1 )1 q

r l
lr r i t j t

i

a a
R w f dY


 

 
 



 
  


  

2 3

1

(1 ) (1 )(2 )
...

2 6

k

t t j jt

j

d d d d d
Y Y X 



  
    


  

where ; , 1,2,...., .lrR l r m   

 

As the inverse of 1( )m m m



I L  both exists and is 

invertible, approximating the ARL  using the NIE

method can be mathematically represented as the 

following system of linear equations in matrix form: 

 

   1

1 1( ) ,m m m m m



   L I L 1   (11) 

 

Finally, la  is replaced with   in ( ).lL a  

Therefore, approximating the ARL for a long-

memory ( )FI- MAX , ,d q k  process on a EWMA 

control chart using the NIE method becomes: 

 

1

1 1

2 3

1

(1 )1
( ) 1 ( )

(1 ) (1 )(2 )
...

2 6

qm
r

r r i t j t

r i

k

t t j jt

j

a
L w L a f dY

d d d d d
Y Y X

 
  

 



 

 

 



 
   



  
    



 



 

                (12) 

 

where 
1

,
2

r

UCL
a r

m

 
  

 
; 1,2,..., .r

UCL
w r m

m
    

 

3 . 2  The Explicit Formulas for the Analytical 

 ARL 
The ARL  computed via explicit formulas used to 

verify the proposed method covered in the previous 

subsection is obtained by solving the integral equation 

as follows: 

 

1 2
1 1

(1 ) UCL

1 (1 )
...

2

( 1)
( ) 1 .

( 1)

qk

j jt i t j t t
j i

v v

d d UCLX dY Y
v

e e
L

e e

 

 

  






  

 




 
       

 


 

 
 

 

                (13) 

 

Moreover, the explicit formula for 
0

ARL when the 

exponential parameter 0   is: 

 

0 0

1 2
1 10 0

(1 ) UCL

0
1 (1 )

...
2

( 1)
ARL 1 .

( 1)

qk

j jt i t j t t
j i

v v

d d UCL
X dY Y

v v

e e

e e

 

 

  




  

 




 
       

 


 

 
 

 (14) 

 

The explicit formula for ARL1 when 1,   is: 

 

1 1

1 2
1 11 1

(1 ) UCL

1
1 (1 )

...
2

( 1)
ARL 1 .

( 1)

qk

j jt i t j t t
j i

v v

d d UCL
X dY Y

v v

e e

e e

 

 

  




  

 




 
       

 


 

 
 

 (15) 

 

Using the above-mentioned equations, the 

Wolfram Mathematica program was written and run 

using the code of both methods. The ARLs for in-

control or non-shifted processes were approximated 

and analyzed ARL for mean monitoring under long-

memory FI-MAX with exponential white noise for 

different process settings.  

 

 

4 Performance Evaluation and 

Comparison 
We compared the ARL for a long-memory FI-MAX

process with exponential white noise on an EWMA 

control chart obtained using the proposed NIE  

method by applying the Gaussian rule with 800m 

subintervals, as described in Eq. (12) , with that 

using the explicit formulas specified in Eqs. (13)  and 

(14).  The optimal values for parameters   and 

UCL  were obtained by minimizing the out-of-

control ARL  for process mean shifts of 

0.03,  0.05,  or 0.10.  

It is assumed that the white noise has an 

exponential distribution ( ( ))t Exp   with the mean 

parameter 0( )  equal to 1 for the in-control 

process and 1 0(1 )       for the out-of-control 

process (therein,   = 0.01, 0.02, 0.04, 0.08, 0.10, 

0.20, 0.40, or 0.80). Four long-memory FI-MAX

models were constructed: FI-MAX(d, 1, 1), FI-

MAX(d, 2, 1), FI-MAX(d, 2, 1) and FI-MAX(d, 2, 2) 

with d =0.1, 0.2, 0.4, 1 2 10.1, 0 10..2,     and 

2 0.2.    

Eq. (12) can be solved via a grid search of various 

combinations of possible values when the value of 
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the smoothing constant ( ) is specified. Se pre-

specified the value of ARL0 = 370 and calculated the 

UCL for each process, as reported in Table 1. 

The performance metric used to compare the ARL 

values calculated using the proposed method and 

explicit formulas is the accuracy percentage, which is 

defined as follows: 

 

( ) ( )
%Accuracy 100 100%,

( )

L L

L

 




    (16) 

 

where ( )L  and ( )L   represent the ARL values using 

the NIE  and explicit formulas methods, respectively. 

A high accuracy percentage (>95%) means that the 

ARL value obtained using the proposed method is 

close to that obtained using the explicit formulas. 

Note that all of the coefficient parameters for a long-

memory FI-MAX were determined, and the optimal 

smoothing parameter was used to compute the UCL. 

The out-of-control ARL (ARL1) values obtained 

using both methods for the different process settings 

are provided in Table 2, Table 3 and Table 4. It can 

be seen that the ARL1 values depend on the value of

 : as the value of   was increased, the ARL1values 

decreased, and vice versa. For example, from Table 

2, the ARL1 values using the proposed NIE method 

for the long-memory FI- MAX( 0.1,  1,  1)d   process 

with   = 0.01, 0.02, 0.04, 0.08, 0.10, 0.20, 0.40, or 

0.80 were 303.176, 249.390, 170.717, 83.564, 

59.699, 13.599, 2.101,and 1.041, respectively. 

Importantly, the ARL1 values calculated using the 

NIE method obtained accuracy percentages of 100% 

in every case, meaning that it is highly accurate at 

detecting shifts in the mean for all of the processes. 

Intriguingly, we also observed that its detection 

sensitivity was greater for the long-memory 

processes with d = 0.4  than d = 0.2 or 0.1. The 

proposed method also performed well when chart 

parameter   = 0.3, 0.1, or 0.05 when 

0.01 0.2,  and the optimal smoothing constant 

value was 0.3. Similarly, for 0.2 0.8,  the 

optimal smoothing constant value was 0.05, as shown 

in Figure 1 for FI- MAX(0.4, , ).q k  

Another performance metric used in the study was 

the standard deviation of the run length (SDRL) [28]. 

The results in Table 5 indicate that for the optimal 

smoothing constant value of 0.3, the 
1

SDRL  values 

for all of the long-memory FI- MAX( , , )d q k

processes evaluated using both methods were 

consistently less than their 
1

ARL  counterparts, albeit 

the outcomes were the 

In summary, the proposed NIE method could 

rapidly detect changes in the mean of FI-MAX

processes with underlying exponential white noise on 

an EWMA control chart as consistently as the 

established explicit formulas method. 

 

 

 

Table 1. The parameter values for long-memory FI- MAX( , , )d q k processes on an EWMA control chart for ARL0 = 

370. 

Long-memory process 
Coefficient parameters    

1  2  1  2   0.05 0.10 0.30 

d = 0.1 FI-MAX(d, 1, 1) 0.1 - 0.1 -  0.0000000869061 0.00372766 0.28380500 

 FI-MAX(d, 1, 2) 0.1 - 0.1 0.2  0.0000000711527 0.00304198 0.22572572 

 FI-MAX(d, 2, 1) 0.1 0.2 0.1 -  0.0000001061474 0.004571322 0.35982135 

 FI-MAX(d, 2, 2) 0.1 0.2 0.1 0.2  0.0000000869061 0.00372766 0.28380500 

d = 0.2 FI-MAX(d, 1, 1) 0.1 - 0.1 -  0.0000000744650 0.00318577 0.23765043 

 FI-MAX(d, 1, 2) 0.1 - 0.1 0.2  0.0000000609667 0.00260101 0.18995314 

 
FI-MAX(d, 2, 1) 0.1 0.2 0.1 -  0.0000000909517 0.00390448 0.29930070 

 FI-MAX(d, 2, 2) 0.1 0.2 0.1 0.2  0.0000000744650 0.00318577 0.23765043 

d = 0.4 FI-MAX(d, 1, 1) 0.1 - 0.1 -  0.0000000576464 0.002457675 0.178574370 

 FI-MAX(d, 1, 2) 0.1 - 0.1 0.2  0.0000000471969 0.002007845 0.143620154 

 
FI-MAX(d, 2, 1) 0.1 0.2 0.1 -  0.0000000704095 0.003009740 0.223070220 

 FI-MAX(d, 2, 2) 0.1 0.2 0.1 0.2  0.0000000576464 0.002457672 0.178574370 
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Table 2. The ARL1 values were derived by using the proposed NIE  and explicit formulas methods for long-memory 

FI- MAX( , , )d q k  processes on an EWMA control chart when 0.05.   

Long-

memory 
  

FI-MAX(d, 1, 1) FI-MAX(d, 1, 2) FI-MAX(d, 2, 1) FI-MAX(d, 2, 2) 

NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc 

d = 0.1 0.01 303.176 303.176 100% 302.578 302.578 100% 303.775 303.775 100% 303.176 303.176 100% 

0.02 249.390 249.390 100% 248.428 248.428 100% 250.377 250.377 100% 249.390 249.390 100% 

0.04 170.717 170.717 100% 169.417 169.417 100% 172.028 172.028 100% 170.717 170.717 100% 

0.08 83.564 83.564 100% 82.349 82.349 100% 84.796 84.796 100% 83.564 83.564 100% 

0.10 59.699 59.699 100% 58.642 58.642 100% 60.777 60.777 100% 59.699 59.699 100% 

0.20 13.599 13.599 100% 13.177 13.177 100% 14.017 14.017 100% 13.590 13.590 100% 

0.40 2.101 2.101 100% 2.040 2.040 100% 2.166 2.166 100% 2.101 2.101 100% 

0.80 1.041 1.041 100% 1.037 1.037 100% 1.045 1.045 100% 1.041 1.041 100% 

d = 0.2 0.01 302.714 302.714 100% 302.117 302.117 100% 303.312 303.312 100% 302.714 302.714 100% 

0.02 248.649 248.649 100% 247.679 247.679 100% 249.622 249.622 100% 248.649 248.649 100% 

0.04 169.712 169.712 100% 168.419 168.419 100% 171.014 171.014 100% 169.712 169.712 100% 

0.08 82.625 82.625 100% 81.424 81.424 100% 83.843 83.843 100% 82.625 82.625 100% 

0.10 58.881 58.881 100% 57.838 57.838 100% 59.943 59.943 100% 58.881 58.881 100% 

0.20 13.270 13.270 100% 12.868 12.868 100% 13.686 13.686 100% 13.270 13.270 100% 

0.40 2.053 2.053 100% 1.995 1.995 100% 2.115 2.115 100% 2.053 2.053 100% 

0.80 1.038 1.038 100% 1.035 1.035 100% 1.042 1.042 100% 1.038 1.038 100% 

d = 0.4 0.01 301.949 301.949 100% 301.355 301.355 100% 302.547 302.547 100% 301.949 301.949 100% 

0.02 247.409 247.409 100% 246.445 246.445 100% 248.377 248.377 100% 247.409 247.409 100% 

0.04 168.059 168.059 100% 166.778 166.778 100% 169.349 169.349 100% 168.059 168.059 100% 

0.08 81.091 81.091 100% 79.914 79.914 100% 82.287 82.287 100% 81.091 81.091 100% 

0.10 57.550 57.550 100% 56.531 56.531 100% 58.587 58.587 100% 57.550 57.550 100% 

0.20 12.757 12.757 100% 12.372 12.372 100% 13.156 13.156 100% 12.757 12.757 100% 

0.40 1.979 1.979 100% 1.925 1.925 100% 2.037 2.037 100% 1.979 1.979 100% 

0.80 1.034 1.034 100% 1.031 1.031 100% 1.037 1.037 100% 1.034 1.034 100% 

 

 

Table 3. The ARL1 values derived by using the proposed NIE  and explicit formulas methods for long-memory 

FI- MAX( , , )d q k  processes on an EWMA control chart when 0.10.   

Long-

memory 
  

FI-MAX(d, 1, 1) FI-MAX(d, 1, 2) FI-MAX(d, 2, 1) FI-MAX(d, 2, 2) 

NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc 

d = 0.1 0.01 334.508 334.508 100% 333.808 333.808 100% 335.212 335.212 100% 334.508 334.508 100% 

0.02 302.999 302.999 100% 301.745 301.745 100% 304.263 304.263 100% 302.999 302.999 100% 

0.04 249.984 249.984 100% 247.962 247.962 100% 252.031 252.031 100% 249.984 249.984 100% 

0.08 173.729 173.729 100% 171.043 171.043 100% 176.469 176.469 100% 173.729 173.729 100% 

0.10 146.237 146.237 100% 143.473 143.473 100% 149.068 149.068 100% 146.237 146.237 100% 

0.20 67.279 67.279 100% 64.994 64.994 100% 69.658 69.658 100% 67.279 67.279 100% 

0.40 19.990 19.990 100% 18.888 18.888 100% 21.167 21.167 100% 19.990 19.990 100% 

0.80 4.428 4.428 100% 4.125 4.125 100% 4.761 4.761 100% 4.428 4.428 100% 

d = 0.2 0.01 333.966 333.966 100% 333.269 333.269 100% 334.668 334.668 100% 333.966 333.966 100% 

0.02 302.029 302.029 100% 300.782 300.782 100% 303.286 303.286 100% 302.029 302.029 100% 

0.04 248.419 248.419 100% 246.416 246.416 100% 250.448 250.448 100% 248.419 248.419 100% 

0.08 171.649 171.649 100% 169.003 169.003 100% 174.348 174.348 100% 171.649 171.649 100% 

0.10 144.096 144.096 100% 141.379 141.379 100% 146.875 146.875 100% 144.096 144.096 100% 

0.20 65.506 65.506 100% 63.289 63.289 100% 67.812 67.812 100% 65.506 65.506 100% 

0.40 19.133 19.133 100% 18.084 18.084 100% 20.251 20.251 100% 19.133 19.133 100% 

0.80 4.192 4.192 100% 3.911 3.911 100% 4.501 4.501 100% 4.191 4.191 100% 

d = 0.4 0.01 333.074 333.074 100% 332.379 332.379 100% 333.771 333.771 100% 333.074 333.074 100% 

0.02 300.435 300.435 100% 299.199 299.199 100% 301.679 301.679 100% 300.435 300.435 100% 

0.04 245.859 245.859 100% 243.883 243.883 100% 247.857 247.857 100% 245.859 245.859 100% 

0.08 168.272 168.272 100% 165.688 165.688 100% 170.904 170.904 100% 168.271 168.271 100% 

0.10 140.631 140.631 100% 137.991 137.991 100% 143.329 143.329 100% 140.631 140.631 100% 

0.20 62.684 62.684 100% 60.573 60.573 100% 64.877 64.877 100% 62.683 62.683 100% 

0.40 17.802 17.802 100% 16.835 16.835 100% 18.832 18.832 100% 17.802 17.802 100% 

0.80 3.838 3.838 100% 3.590 3.590 100% 4.110 4.110 100% 3.838 3.838 100% 
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Table 4. The ARL1 values derived by using the proposed NIE  and explicit formulas methods for long-memory 

FI- MAX( , , )d q k  processes on an EWMA control chart when 0.30.   

Long-

memory 
  

FI-MAX(d, 1, 1) FI-MAX(d, 1, 2) FI-MAX(d, 2, 1) FI-MAX(d, 2, 2) 

NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc NIE Explicit %Acc 

d = 0.1 0.01 240.321 240.321 100% 228.369 228.369 100% 255.158 255.158 100% 240.321 240.321 100% 

0.02 176.309 176.309 100% 163.478 163.478 100% 193.095 193.095 100% 176.309 176.309 100% 

0.04 113.018 113.018 100% 102.283 102.283 100% 127.776 127.776 100% 113.018 113.018 100% 

0.08 63.276 63.276 100% 56.148 56.148 100% 73.417 73.417 100% 63.276 63.276 100% 

0.10 51.092 51.092 100% 45.105 45.105 100% 59.665 59.665 100% 51.092 51.092 100% 

0.20 24.342 24.342 100% 21.229 21.229 100% 28.823 28.823 100% 24.342 24.342 100% 

0.40 10.568 10.568 100% 9.168 9.168 100% 12.557 12.557 100% 10.568 10.568 100% 

0.80 4.542 4.542 100% 3.975 3.975 100% 5.328 5.328 100% 4.542 4.542 100% 

d = 0.2 0.01 230.899 230.899 100% 220.414 220.414 100% 243.389 243.389 100% 230.899 230.899 100% 

0.02 166.147 166.147 100% 155.256 155.256 100% 179.701 179.701 100% 166.147 166.147 100% 

0.04 104.478 104.478 100% 95.641 95.641 100% 115.933 115.933 100% 104.478 104.478 100% 

0.08 57.589 57.589 100% 51.841 51.841 100% 65.247 65.247 100% 57.589 57.589 100% 

0.10 46.312 46.312 100% 41.504 41.504 100% 52.754 52.754 100% 46.312 46.312 100% 

0.20 21.855 21.855 100% 19.367 19.367 100% 25.208 25.208 100% 21.855 21.855 100% 

0.40 9.451 9.451 100% 8.327 8.327 100% 10.956 10.956 100% 9.451 9.451 100% 

0.80 4.091 4.091 100% 3.632 3.632 100% 4.697 4.697 100% 4.091 4.091 100% 

d = 0.4 0.01 217.737 217.737 100% 208.879 208.879 100% 227.798 227.798 100% 217.737 217.737 100% 

0.02 152.545 152.545 100% 143.766 143.766 100% 162.879 162.879 100% 152.545 152.545 100% 

0.04 93.490 93.490 100% 86.656 86.656 100% 101.794 101.794 100% 93.490 93.490 100% 

0.08 50.463 50.463 100% 46.142 46.142 100% 55.828 55.828 100% 50.463 50.463 100% 

0.10 40.355 40.355 100% 36.761 36.761 100% 44.837 44.837 100% 40.355 40.355 100% 

0.20 18.775 18.775 100% 16.934 16.934 100% 21.090 21.090 100% 18.775 18.775 100% 

0.40 8.060 8.060 100% 7.228 7.228 100% 9.106 9.106 100% 8.060 8.060 100% 

0.80 3.522 3.522 100% 3.182 3.182 100% 3.950 3.950 100% 3.522 3.522 100% 

 

 

Table 5. The ARL1 values derived from NIE  and 
1

SDRL  values derived from [28] for various shift sizes in the 

mean of long-memory FI- MAX( , , )d q k  processes on an EWMA control chart when 0.30.   

Long-

memory 
  

FI-MAX(d, 1, 1) FI-MAX(d, 1, 2) FI-MAX(d, 2, 1) FI-MAX(d, 2, 2) 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

d = 0.1 0.01 240.321 239.820 228.369 227.868 255.158 254.658 240.321 239.820 

0.02 176.309 175.808 163.478 162.977 193.095 192.594 176.309 175.808 

0.04 113.018 112.517 102.283 101.782 127.776 127.275 113.018 112.517 

0.08 63.276 62.774 56.148 55.646 73.417 72.915 63.276 62.774 

0.10 51.092 50.590 45.105 44.602 59.665 59.163 51.092 50.590 

0.20 24.342 23.837 21.229 20.723 28.823 28.319 24.342 23.837 

0.40 10.568 10.056 9.168 8.654 12.557 12.047 10.568 10.056 

0.80 4.542 4.011 3.975 3.439 5.328 4.802 4.542 4.011 

d = 0.2 0.01 230.899 230.398 220.414 219.913 243.389 242.888 230.899 230.398 

0.02 166.147 165.646 155.256 154.755 179.701 179.200 166.147 165.646 

0.04 104.478 103.977 95.641 95.140 115.933 115.432 104.478 103.977 

0.08 57.589 57.087 51.841 51.339 65.247 64.745 57.589 57.087 

0.10 46.312 45.809 41.504 41.001 52.754 52.252 46.312 45.809 

0.20 21.855 21.349 19.367 18.860 25.208 24.703 21.855 21.349 

0.40 9.451 8.937 8.327 7.811 10.956 10.444 9.451 8.937 

0.80 4.091 3.556 3.632 3.092 4.697 4.167 4.091 3.556 

d = 0.4 0.01 217.737 217.236 208.879 208.378 227.798 227.297 217.737 217.236 

0.02 152.545 152.044 143.766 143.265 162.879 162.378 152.545 152.044 

0.04 93.490 92.989 86.656 86.155 101.794 101.293 93.490 92.989 

0.08 50.463 49.960 46.142 45.639 55.828 55.326 50.463 49.960 

0.10 40.355 39.852 36.761 36.258 44.837 44.334 40.355 39.852 

0.20 18.775 18.268 16.934 16.426 21.090 20.584 18.775 18.268 

0.40 8.060 7.543 7.228 6.709 9.106 8.591 8.060 7.543 

0.80 3.522 2.980 3.182 2.635 3.950 3.414 3.522 2.980 
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Fig. 1: Graphical displays of the ARL1 values derived by using the NIE method for long-memory 

FI- MAX( 0.4, , )d q k  processes on an EWMA control chart 

 

 

5 An Empirical Example with Real 

Data 

We demonstrate the applicability and performance of 

the proposed method and compare it with the explicit 

formulas for a real-life scenario. To this end, a 

dataset of the Bank of America Corporation (BAC) 

stock price and accompanying Bitcoin USD (BTC-

USD) prices and EUR/USD exchange rates as 

exogenous variables were obtained from 

https://th.investing.com. The dataset consisted of 212 

weekly observations from March 8, 2020, to March 

24, 2024, for which the best-fitting long-memory 

FI-MAXprocess was determined. In Table 6 , 

estimates of the process coefficients are d̂ =0.499999, 

1̂ =0.423979, 1̂ =0.000141, and 2̂ =42.22037 for a 

long-memory  FI-MAX 0.499999, 1, 2  process. 

The exponential distribution of the white noise was 

confirmed by using the Kolmogorov-Smirnov test  

(KS = 1.3340; p−value > 0.05). The exponential 

parameter 0( )   was 1.2772, .1 ).2 2( 77t Exp  

Table 6. Parameter estimation for fitting the BAC 

stock price dataset with BTC-USD prices and 

EUR/USD exchange rates as exogenous variables to 

an FI-MAX process 
Parameters: Coefficient Std. Error t-Statistic Prob. 

EUR/USD 42.22037 7.789263 5.420330 0.0000* 

BTC/USD 0.000141 0.000027 5.216840 0.0000* 

d  0.499999 0.000424 1178.181 0.0000* 

MA(1) 0.423979 0.064186 6.605506 0.0000* 

Testing distribution of the white noise 

Exponential Parameter ( 0  ) 1.2772 

Kolmogorov-Smirnov  1.3340 

Asymptotic Significance (2-Sided) 0.0570ns 

* significance level of 0.05  
ns non-significance level of 0.05. 

 

Afterward, the proposed NIE method in Eq. (12) 

was applied to the long-memory 

 FI-MAX 0.499999, 1, 2  on an EWMA control chart 

as follows: 
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(17) 

where 
1

,
2

r

UCL
a r

m

 
  

 
; 1,2,..., .r

UCL
w r m

m
 

represents a set of constant weights. 

 

Table 7. 
1

ARL  values derived by using the NIE  and 

explicit formulas methods and 
1

SDRL  values for the 

long-memory  FI-MAX 0.499999, 1, 2 process on an 

EWMA control chart 

  UCL   
ARL1 

SDRL1 %Acc 
NIE Explicit 

0.05 101.89 10  0.01 284.703 284.703 284.203 100% 

 0.02 220.228 220.228 219.727 100% 

  0.04 133.831 133.831 133.330 100% 

  0.08 52.502 52.502 52.000 100% 

  0.10 33.891 33.891 33.387 100% 

  0.20 5.353 5.353 4.827 100% 

  0.40 1.178 1.178 0.458 100% 

  0.80 1.002 1.002 0.045 100% 

0.10 174.8 10  0.01 245.554 245.554 245.053 100% 

 0.02 164.388 164.388 163.887 100% 

  0.04 75.647 75.647 75.145 100% 

  0.08 17.998 17.998 17.491 100% 

  0.10 9.445 9.445 8.931 100% 

  0.20 1.363 1.363 0.703 100% 

  0.40 1.002 1.002 0.045 100% 

  0.80 1.000 1.000 0.000 100% 

0.30 175.5 10  0.01 242.907 242.907 242.406 100% 

  0.02 160.905 160.905 160.404 100% 

  0.04 72.558 72.558 72.056 100% 

  0.08 16.670 16.670 16.162 100% 

  0.10 8.643 8.643 8.128 100% 

  0.20 1.302 1.302 0.627 100% 

  0.40 1.002 1.002 0.045 100% 

  0.80 1.000 1.000 0.000 100% 

 

The proposed NIE method was used to compute 

ARL1 values for a fixed ARL0 = 370 ,  = 0.05, 0.10, 

or 0.30; and UCL values were calculated using Eq. 

(12). For   = 0.05, 
10 17U ,CL 1.89 10 4.8 10    , and 

17 ,5.5 10 . Table 7 reports the ARL1 and SDRL1 for 

a range of shifts (δ) in the process mean. The ARL1 

results using both methods are similar, and the high 

accuracy percentages indicate the excellent efficacy 

of the proposed NIE results. The ARL1 results are 

also consistent with those in Table 2, Table 3  a n d 

Table 4. The ARL1 and SDRL1 results also yield the 

same results, showing a decreasing pattern as the 

shift size increased for this real-life scenario, 

mirroring the findings in Table 5. Overall, the 

proposed NIE approach is a highly efficient option. 

 

 

6   Conclusions  
We used the Gauss-Legendre quadrature to 

approximate the ARL for a long-memory FI-MAX 

process with exponential white noise running on an 

EWMA control chart. It performed well in 

comparison with the established explicit formulas 

method and is thus a novel method for verifying ARL 

computations for long-memory FI-MAX scenarios. 

Its applicability to real-life scenarios involving FI-

MAX processes was effectively demonstrated by 

using BAC stock prices with BTC-USD price and 

EUR/USD exchange rates as exogenous variables. 

In future research, we will expand on the 

practicability of our approach for FI-MAX processes 

on other control charts such as CUSUM and for other 

white noise distributions. 

 

 

Acknowledgement: 

The author would like to express her gratitude to the 

Faculty of Applied Science, King Mongkut’s 

University of Technology North Bangkok, Thailand 

for support with research grant No. 672170. 

 

 

Declaration of Generative AI and AI-assisted 

technologies in the writing process 

During the preparation of this work, the author used 

Google Gemini in order to study the source and 

importance of research.. After using this tool/service, 

the author reviewed and edited the content as needed 

and took full responsibility for the content of the 

publication. 

 

 

References: 

[1]  Shewhart, W. A., Quality control charts, Bell 

System Technical Journal, Vol.5, No.4, 1926, pp. 

593–603.  

[2]  Page, E.S., Continuous inspection schemes, 

Biometrika, Vol.41, No.1-2, 1954, pp. 100-115. 

[3]  Roberts, S.W., Control Chart Test Based on 

Geometric Moving Averages, Technometrics, 

Vol.1, 1959, pp. 239-250. 

[4]  Steiner, S.H., EWMA control charts with time-

varying control limits and fast initial response, 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.61 Wilasinee Peerajit

E-ISSN: 2224-2880 588 Volume 23, 2024



Journal of Quality Technology, Vol.31, 1999, 

pp. 75–86. 

[5]  Piyaphon, P., Areepong, Y. and Sukparungsee, 

S., Exact Expression of Average Run Length of 

EWMA chart for SARIMA(P, D, Q)L 

procedure, International Journal of Applied 

Mathematics and Statistics, Vol.52, 2014, pp. 

62-73. 

[6]  Hawkins, D. M. and Wu, Q., The CUSUM and 

the EWMA Head-to-Head, Quality 

Engineering, Vol.26, No.2, 2014, pp. 215–222. 

[7]  Sunthornwat, R., Areepong, Y. and 

Sukparungsee, S., Analytical and numerical 

solutions of average run length integral 

equations for an EWMA control chart over a 

long memory SARFIMA process, 

Songklanakarin Journal of Science and 

Technology, Vol.40, No.4, 2018, pp. 885-895. 

[8]  Lucas, J. M. and Saccucci, M. S., 

Exponentially weighted moving average 

control schemes: properties and enhancements, 

Technometrics, Vol.32, No.1, 1990, pp. 1-29. 

[9]  Knoth, S., Accurate ARL Computation for 

EWMA-S 2 Control Charts, Statistics and 

Computing, Vol.15, No.4, 2005, pp. 341–352. 

[10]  Knoth, S., Run Length Quantiles of EWMA 

Control Charts Monitoring Normal Mean 

or/and Variance, International Journal of 

Production Research, 53(15), 2015, pp. 4629– 

4647. 

[11]  Suraiykat, W., Areepong, Y., Sukparungsee, S. 

and Mititelu, G., On EWMA Procedure for an 

AR(1) Observations with Exponential White 

Noise, International Journal of Pure and 

Applied Mathematics, Vol.77, No.1, 2012, pp. 

73-83. 

[12]  Bualuang, D. and Peerajit, W., Performance of the 

CUSUM Control Chart Using Approximation to 

ARL for Long-Memory Fractionally Integrated 

Autoregressive Process with Exogenous Variable, 

Applied Science and Engineering Progress, 

Vol.16, No.2, 2023, pp. 1-13. 

[13]  Areepong, Y. and Peerajit, W., Integral 

equation solutions for the average run length 

for monitoring shifts in the mean of a 

generalized seasonal ARFIMAX(P, D, Q, 

r)s process running on a CUSUM control chart, 

PLoS ONE, Vol.17, No.2, 2022, pp. 1-25. 

[14]  Granger C. W. J. and Joyeux, R., An 

Introduction to Long Memory Time Series 

Models and Fractional Differencing, Journal of 

Time Series Analysis, Vol.1, No.1, 1980, pp. 

15-29. 

[15]  Hosking J. R. M., Fractional differencing, 

Biometrika, Vol.68, No.1, 1981, pp. 165-176.  

[16]  Beran, J., Statistics for long-memory processes, 

Chapman & Hall, London, 1994. 

[17]  Palma, W., Long-memory time series: theory 

and methods, Wiley, New York, 2007. 

[18]  Beran, J., Feng, Y., Ghosh, S. and Kulik, R., 

Long-memory processes—probabilistic 

properties and statistical methods, Springer, 

New York, 2013. 

[19]  Ebens H., Realized stock index volatility, 

Department of Economics, Johns Hopkins 

University. 1999. 

[20]  Ramjee, R., Crato, N. and Ray B.K., Note  on 

Moving Average Forecasts of Long Memory 

Processes with an Application to Quality 

Control, International Journal of Forecasting, 

Vol. 18, No.2, 2022, pp. 291-297. 

[21]  Pan, J.N. and Chen, S.T., Monitoring Long-

memory Air Quality Data Using ARFIMA 

Model, Environmetrics, Vol.19, No.2, 2008, pp. 

209-219. 

[22]  Rabyk, L. and Schmid, W., EWMA Control 

Charts for Detecting Changes in the Mean of a 

Long-memory Process, Metrika, Vol.79, No.3, 

2016,  pp. 267–301. 

[23]  Ibazizen, M. and Fellag, H., Bayesian 

estimation of an AR(1) process with 

exponential white noise, Statistics, Vol.37, 

No.5, 2003, pp. 365-372. 

[24]  Suparman, S., A new estimation procedure 

using a reversible jump MCMC algorithm for 

AR models of exponential white noise, 

International Journal of GEOMATE, Vol.15, 

No.49, 2018, pp. 85-91. 

[25]  Lazariv, T., Okhrin, Y. and Schmid, W., 

Behavior of EWMA type control charts for 

small smoothing parameters, Computational 

Statistics and Data Analysis, Vol.89, 2015, pp. 

115-125. 

[26]  Crowder S.V., A Simple Method for Studying 

Run Length Distributions of Exponentially 

Weighted Moving Average Charts, 

Technometrics, Vol.29, No.4, 1987, pp. 401-

407. 

[27]  Matheus G. and Dmitry P., Numerical 

Mathematics. Sudbury (Massachusetts) 

Boston: Jones and Bartlett, 2008. 

[28]  Fonseca, A., Ferreira, P. H., Nascimento, D. C., 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.61 Wilasinee Peerajit

E-ISSN: 2224-2880 589 Volume 23, 2024

https://www.scopus.com/authid/detail.uri?authorId=57200692086
https://www.scopus.com/authid/detail.uri?authorId=57190249783
https://www.scopus.com/authid/detail.uri?authorId=54896286500
https://www.scopus.com/authid/detail.uri?authorId=57190249783


Fiaccone, R., Correa, C. U., Piña A. G., 

Louzada, F., Water Particles Monitoring in the 

Atacama Desert: SPC Approach Based on 

Proportional Data, Axioms, Vol.10, 2021, 

10.3390/axioms10030154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Conceptualization: Wilasinee Peerajit.  

Data curation: Wilasinee Peerajit.  

Formal analysis:  Wilasinee Peerajit.  

Funding acquisition: Wilasinee Peerajit.  

Investigation: Wilasinee Peerajit.  

Methodology: Wilasinee Peerajit. 

Software: Wilasinee Peerajit.  

Validation: Wilasinee Peerajit. 

Writing – original draft: Wilasinee Peerajit.  

Writing – review and editing: Wilasinee Peerajit 

 

The authors contributed in the present research, at all 

stages from the formulation of the problem to the 

final findings and solution. 

 

Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

The author would like to express her gratitude to the 

Faculty of Applied Science, King Mongkut’s 

University of Technology North Bangkok, Thailand 

for support with research grant No. 672170. 

 

Conflict of Interest 

The authors declare no conflict of interest. 

 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en_

US 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.61 Wilasinee Peerajit

E-ISSN: 2224-2880 590 Volume 23, 2024

https://www.mdpi.com/2075-1680/10/3/154
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



