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1 Introduction
In mathematics, a partially ordered set, often abbrevi-
ated as a poset, is a set provided with a binary relation
(often denoted as ≤ ) that is reflexive, antisymmetric
and transitive. Partially ordered sets arise naturally in
various mathematical contexts, including order rela-
tions, such as less than or equal to (≤) on numbers,
subsets of sets under inclusion (⊆), and many other
situations where there’s a notion of ’precedence’ or
’ordering’ among elements, but not necessarily every
pair of elements can be compared.
Hausdorff introduced the first comprehensive the-
ory of partially ordered sets in 1914 in his book ”
Grundzüge der Mengenlehre ”. One significant out-
come of Hausdorff’s work is the maximal chain theo-
rem, which is equivalent to Zorn’s lemma..
The derivation is consequent topic to study, [1],
defined the derivation on ring and many mathe-
maticians have developed the derivation theory in
rings and prime rings, [2], [3]. Multi- derivations
(e.g. bi-derivations, tri-derivations, in general, n-
derivations) are studied in prime and semi-prime
rings, [4], [5], [6].
In this direction, the concept of derivation on lattice
was defined and developed in [7], [8], respectively.
In [9], the study defined symmetric bi-derivations of a
lattice and proved some results, and in [10], he applied
his concepts and theorems to the n-derivation of lat-
tices. Derivations on posets have also been a subject
of study. Recently, [11], started studying the deriva-
tions in poset, establishing several fundamental prop-
erties related to ideals and operations associated with
these derivations. On partially ordered sets, the notion
of bi- and tri-derivations are provided. and the funda-
mental Characteristics are studied (see, [12], [13], for
more details). Our research was mainly inspired by
the work in [11], [12]. This research presents a gener-
alization of derivations by introducing a new concept

of permuting n-derivations of partially ordered sets.
Moreover, we present the examples that demonstrate
the existence of this class of applications and we have
proved important properties. Additionally, we give
the fixed set Fixδ(G) = {a ∈ G : δ(a) = a} and
proved that is an ideal of G. The final section is de-
voted to studying some properties involving permut-
ing n-derivations and their traces.
As in [11], for p, q ∈ G and X ⊆ P , we define
(i) ↓ p = {w ∈ G : w ≤ p}.
(ii) ↑ q = {v ∈ G : q ≤ v}.
(iii) L(X) = {λ ∈ G : λ ≤ x, ∀ x ∈ X} the Lower

cone of the set X .
(iv) U(X) = {α ∈ G : x ≤ α, ∀ x ∈ X} the Upper

cone of X .
As mentioned in [14], we write ”L(U(L(Y ))) =

L(Y )” and ”U(L(U(M))) = U(M)”, for all Y,M ⊂
G. If Y = {y1, ..., yn}, we write L(Y ) =
L(y1, y2, ..., yn) and U(Y ) = U(y1, ..., yn−1, yn).
Further, ForX,Y ⊆ P ,L(X∪Y )will be represented
by L(X,Y ) and U(X ∪ Y ) by U(X,Y ). We write
also, ↓ X = {w ∈ P : w ≤ y for some y ∈ X}”.
According to [15], a set X is named a Lower set if
X =↓ X . The directed set is a nonempty set X that
for every finite subset of X , the supremum has ex-
isted in X . Given that X is nonempty, it suffices to
expect that every pair {a, b} of elements inX has the
supremum in X . For J ⊂ G is said ideal of G if J
is directed lower set.

2 Permuting n-Derivations on Posets
Throughout the present work,G represents a partially
ordered set, which will be abbreviated as poset
Definition 1. [11] Let G be a poset, a function D :
G → G is called a derivation on G if these two con-
ditions are verified, (∀a, b ∈ P ),
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(i) D(L(a, b)) = L(U(L(D(a), b), L(a,D(b))));

(ii) L(D(U(a, b))) = L(U(D(a), D(b)));

A mapping D : G × G → G is called symmetric
if D(s, t) = D(t, s), ∀ s, t ∈ G, and a mapping
δ : G → G given by δ(s) = D(s, s), ∀s ∈ G is
named a trace of D under which D is symmetric.

This section introduces a new notion called
permuting n-derivations for a partially ordered
set, followed by the examples that demonstrates the
existence of this type of application.

Let n ∈ N such that n ⩾ 2 and Gn =
G×G× . . .×G︸ ︷︷ ︸

n times

. The map D : G → G is said to

be permuting if the equation

D(a1, a2, . . . , an) = D(aπ(1), aπ(2), . . . , aπ(n)) (1)

holds ∀ ai ∈ G and for every permutation π(i),
i = 1, ..., n.

Definition 2. Let G be a poset and D : Gn → G be
a map. We say D is n-derivation if D is a derivation
for all components, which means:
(1) D(L(a1, w), a2, . . . , an) =

L(U(L(D(a1, . . . , an), w), L(a1, D(w, a2, . . . , an))))

D(a1, L(a2, w), a3, . . . , an) =

L(U(L(a2, D(a1, w, a3, . . . , an)), L(D(a1, a2, . . . , an), w)))

. . .

D(a1, a2, . . . , an−1, L(an, w)) =

L(U(L(an, D(a1, . . . , an−1, w)), L(D(a1, a2, . . . , an), w)))

(2 ) L(D(U(a1, w), a2, . . . , an)) =

L(U(D(a1, a2, . . . , an), D(w, a2, . . . , an)));

. . .

L(D(a1, a2, a3, . . . , an−1, U(an, w)) =

L(U(D(a1, a2, . . . , an), D(a1, . . . , an−1, w)));

are valid, (∀ai, w ∈ P ).

Example 1
Let D : Nn → N be a function defined by
D(m1,m2, . . . ,mn) = min{m1,m2, . . . ,mn}.
It is simple to confirm that D is a permuting n-
derivation on N.

Example 2
Let 0 be the least element of a poset G. A function
D : Gn → G defined by D(a1, a2, . . . , an) = 0 is a
permuting and a n-derivation on G.

In the following, we assume that G is a poset
and D is a permuting n-derivation on G.

Proposition 1. Let 0 be the least element of a poset
G and δ be the trace of D. Then

(i) D(a1, a2, a3, . . . , an) ≤ ai, ∀ai ∈ G;

(ii) D(a1, . . . , an) ∈ L(a1, a2, . . . , an), ∀ ai ∈ G;

(iii) D(a1, a2, ..., an) = 0 if there exist i ∈
{1, 2, . . . , n} which satisfy ai = 0;

(iv) For each i in {1, 2, . . . , n}, if ai ≤ bi, then
D(a1, ..., ai, . . . , an) ≤ D(a1, . . . , bi, . . . , an);

(v) δ(a) ≤ a, ∀ a ∈ G;

(vi) δ(0) = 0;

(vii) δ(L(a)) ⊂ L(δ(a)), ∀ a ∈ G;

(viii) ∀ g1, g2 ∈ G, g1 ≤ g2 implies δ(g1) ≤ δ(g2);

(ix) δ2(s) = δ(s), ∀ s ∈ G;

Proof. (i) From Definition 2 (i), we have

D(L(a1), a2, . . . , an) = D(L(a1, a1), a2, . . . , an)

= L(U(L(D(a1, . . . , an), a1), L(a1, D(a1, a2, . . . , an))))

= L(U(L(a1,D(a1, a2, . . . , an)))) = L(D(a1, a2, . . . , an), a1)

Then,

D(L(a1), a2, . . . , an) = L(D(a1, a2, . . . , an), a1) (2)

SinceD(a1, a2, a3, . . . , an) ∈ D(L(a1), a2, . . . , an),
the above result (2) imply that

D(a1, a2, . . . , an) ∈ L(D(a1, a2, . . . , an), a1).

Therefore, D(a1, . . . , an) ≤ a1.
Similar to above processe, we can see that
D(a1, a2, . . . , an) ≤ ai, ∀ ai ∈ G.

It is evident that (ii) and (iii) are induced by (i).
(iv) Suppose that ai ≤ bi for ai, bi ∈ G. By using
Definition 2 (ii), we get

L(D(a1, a2, . . . , U(bi), . . . , an−1, an)) =
L(D(a1, . . . , U(ai, bi), . . . , an)) =

L(U(D(a1, . . . , ai, ai+1, . . . , an), D(a1, . . . , bi−1, bi, . . . , an))).

(3)
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Since D(a1, . . . , ai−1, ai, ai+1, . . . , an) ∈
L(U(D(a1, . . . , ai, . . . , an), D(a1, . . . , bi, . . . , an))),
equation (3) proves that

D(a1, a2, . . . , ai, . . . , an) ∈ L(D(a1, . . . , U(bi), ai+1, . . . , an))

Therefore,

D(a1, . . . , ai, . . . , an) ≤ D(a1, . . . , bi, . . . , an)

(v) Let a ∈ G, we have δ(a) = D(a, a, . . . , a).
By (i), we get D(a, . . . , a) ≤ a, ∀ a ∈ G. Hence,
δ(a) ≤ a, ∀ a ∈ G.
(vi) Since δ(0) ≤ 0 by (v), we get 0 ≤ δ(0) ≤ 0.
This means that δ(0) = 0.
(vii) Let a ∈ G,
D(L(a), . . . , L(a)) = D(L(a, a), L(a), . . . , L(a))
= {D(L(a, a), y2, . . . , yn) | yi ∈ G and yi ⩽ a, ∀
i = 2, ..., n}
= {L(U(L(D(a, y2, . . . , yn), a), L(a,D(a, y2, . . . , yn))))
| yi ∈ G and yi ⩽ a, ∀ i = 2, ..., n}
= {L(U(L(D(a, y2, . . . , yn))) | yi ∈ G and yi ⩽ a, ∀
i = 2, ..., n}
= {L(D(a, y2, . . . , yn)) | yi ∈ G and yi ⩽ a, ∀
i = 2, ..., n}
then

D(L(a), ..., L(a)) = L(D(a, L(a), ..., L(a))). (4)

Since δ(L(a)) ⊂ D(L(a), . . . , L(a)), the Equation
(4) implies that δ(L(a)) ⊂ L(D(a, L(a), . . . , L(a))),
so δ(L(a)) ⊂ L(D(a, a, . . . , a)). This shows that
δ(L(a)) ⊂ L(δ(a)), for all a ∈ G.
(viii) Let g1 and g2 be two different elements in G
which satisfy the condition g1 ≤ g2, then g1 ∈ L(g2),
and this implies that δ(g1) ∈ δ(L(g2)). By using
(vii), we can get δ(g1) ∈ L(δ(g2)), so δ(g1) ≤ δ(g2).
(ix) According to (v) and (viii), we can see
δ(δ(a)) ≤ δ(a), ∀ a ∈ P , so

δ2(a) ≤ δ(a). (5)

Let a ∈ G, combining (v) and (viii) we get δ2(a) ∈
L(a) and by using (4), we obtain

δ(L(a)) ⊂ L(D(a, δ2(a), . . . , δ2(a))). (6)
since d(a, δ2(a), . . . , δ2(a)) ≤ δ2(a) by (i), we have

L(D(a, δ2(a), . . . , δ2(a))) ⊂ L(δ2(a)). (7)

Adding the equations (6) and (7), we find that δ(L(a))
is included in L(δ2(a)), ∀ a ∈ G. Since δ(a) ∈
δ(L(a)), we obtain δ(a) ∈ L(δ2(a)), so

δ(a) ≤ δ2(a), ∀a ∈ P. (8)

Therefore, (5) and (8) imply that δ2(a) = δ(a), ∀ a ∈
G.

Theorem 1. Let D : Gn → G be a permuting map-
ping on poset G. D is an n-derivation on G if and
only if

(1) D(L(a1, w), a2, . . . , an) = L(D(a1, . . . , an), w) =
L(a1, D(w, a2, . . . , an));

(2) L(D(U((a1, w), a2, . . . , an))
= L(U(D(a1, . . . , an), D(w, a2, . . . , an)));

∀ ai, w ∈ G and i = 1, . . . , n.

Proof. Assume that the condition (1) holds. Then,

D(L(a1, w), a2, . . . , an−1, an) = L(D(a1, a2, . . . , an), w)

= L(U(L(D(a1, . . . , an), w)))
= L(U(L(w,D(a1, a2, . . . , an))), L(D(a1, . . . , an), w)))
= L(U(L(w,D(a1, . . . , an−1, an))), L(a1, D(w, a2, . . . , an)).
In addition to the condition (2), we deduce that D is
an n-derivation on G.
Inversement, suppose that D is a n-derivation on G.
it holds that:
L(D(a1, . . . , an), w) = L(U(L(D(a1, . . . , an), w))
⊂ L(U(L(w,D(a1, . . . , an))), L(a1, D(w, a2, a3, . . . , an))
= D(L(a1, w), a2, . . . , an),
then

L(D(a1, . . . , an), w) ⊂ D(L(a1, w), a2, . . . , an).
(9)

Now, let z ∈ D(L(a1, w), a2, . . . , an), then there ex-
ixts t ∈ L(a1, w) satisfying z = D(t, a2, . . . , an).
Since t ∈ L(a1, w), we get t ≤ a1 and by us-
ing Proposition 1 (iv) we obtain D(t, a2, . . . , an) ≤
D(a1, . . . , an), so z ≤ D(a1, . . . , an). From Propo-
sition 1 (i), we can get D(t, a2, . . . , an) ≤ t ≤ w, so
z ≤ w and this imply that z ∈ L(D(a1, . . . , an), w).
Therefore,

D(L(a1, w), a2, . . . , an) ⊂ L(D(a1, . . . , an), w).
(10)

Combining the results (9) and (10), we get
D(L(a1, w), a2, . . . , an) = L(D(a1, . . . , an), w), ∀
ai, w ∈ G.

Symmetrically, we can also prove the
second equality D(L(a1, w), a2, . . . , an) =
L(a1, D(w, a2, . . . , an)), ∀ ai, w ∈ G.

Lemma 1. Let G be a poset. If s ≤ t and L(s) =
L(t), then s = t.

Proof. Assume that s ≤ t and L(s) = L(t). It is
evident that t ∈ L(t), ∀ t ∈ G, then t ∈ L(s), so
t ≤ s. By hypothesis, we conclude that s = t.

Lemma 2. Let G be a poset. If δ be the trace of D,
then the subsequent claims are valid:
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(1) If D(L(s), s, . . . , s, s) = L(t), then δ(s) = t, ∀
s, t ∈ G;

(2) If D(U(s), s, . . . , s) = U(t), then δ(s) = t, ∀
s, t ∈ G.

Proof. Let s, t ∈ G such that

D(L(s), s, . . . , s) = L(t). (11)

By using Theorem 1 (1) and Proposition 1 (v), we get

D(L(s), s, . . . , s) = D(L(s, s), s, . . . , s)

= L(D(s, . . . , s), s)

= L(D(s, . . . , s))

then
D(L(s), s, . . . , s) = L(δ(s)). (12)

For all s ∈ P.
Using (11) and (12), we infer that L(δ(s)) = L(t).
SinceD(s, s, . . . , s) ∈ D(L(s), s, . . . , s) = L(t), we
find δ(s) ≤ t and with Lemme 1 the result holds.

Definition 3. Let G be a poset, a mapping
ϕ : G → G is known as a L-homomorphism of G if
U(ϕ(L(λ, µ))) = U(L(ϕ(λ), ϕ(µ))), (∀λ, µ ∈ G).

Proposition 2. LetG be a poset andD : Gn → G be
a permuting n-derivation on G.
Then, D(L(a1, w), a2, a3, . . . , an−1, an) =
L(D(a1, . . . , an), D(w, a2, . . . , an)), ∀ai, w ∈ G.

Proof. Let z ∈ D(L(a1, w), a2, . . . , an) then, ∃t ∈
L(a1, w):

z = D(t, a2, . . . , an). (13)
Since t ∈ L(a1, w), we get t ≤ a1 and t ≤ w. Propo-
sition 1 (iv) implies that

z = D(t, a2, . . . , an) ≤ D(a1, a2, . . . , an−1, an)).
(14)

and

z = D(t, a2, . . . , an) ≤ D(w, a2, ..., an). (15)

Combining (14) and (15), we get
z ∈ L(D(a1, . . . , an), D(w, a2, . . . , an)). This
shows that, ∀ai, w ∈ G, we have
D(L(a1, w), a2, a3, . . . , an) ⊂

L(D(a1, a2, a3, . . . , an−1, an), D(w, a2, . . . , an)))
(16)

Moreover, we suppose that
v ∈ L(D(a1, a2, . . . , an), D(w, a2, . . . , an)), then
v ≤ D(a1, . . . , an) and v ≤ D(w, a2, . . . , an) ≤
w, so v ∈ L(D(a1, . . . , an), w) =

D(L(a1, w), a2, . . . , an) by application of Theo-
rem 1 (1). Consequently,

L(D(a1, a2, . . . , an), D(w, a2, . . . , an)) ⊂
D(L(a1, w), a2, . . . , an),∀ai, w ∈ G. (17)

The results (16) and (17) proves the theorem.

Theorem 2. Let G be a poset and 1 its greatest ele-
ment and δ be the trace of D. Then,
δ(1) = 1 ⇐⇒ D(a, 1, .., 1, ., 1) = a, ∀ a ∈ G.

Proof. Suppose thatD(a, 1, 1, 1, ..., 1) = a, ∀ a ∈ G,
then D(1, ..., 1, 1) = 1, hence δ(1) = 1.
Conversely, we suppose that δ(1) = 1. Let a ∈ G, by
using Theorem 1, we have

D(L(a), 1, 1, 1, ..., 1) = D(L(a, 1), 1, ..., 1, 1)

= L(a,D(1, 1, ..., 1))

= L(a, δ(1))

= L(a, 1)

= L(a),

then
D(L(a), 1, 1, ..., 1, 1) = L(a). (18)

Furthermore,

D(L(a), 1, 1, ..., 1, .., 1) = D(L(a, a), 1, ..., 1)

= L(D(a, 1, ..., 1, 1), a)

= L(D(a, 1, 1, 1, ..., 1)),

then,

D(L(a), 1, ..., 1) = L(D(a, 1, 1, ..., 1, 1)). (19)

Hence, (18) and (19) implies that

L(D(a, 1, ..., 1)) = L(a). (20)

By using Proposition 1 (i), we get

D(a, 1, ..., 1) ≤ a. (21)

In view of Lemma 1 together (20) and (21), we con-
clude that D(a, 1, ..., 1) = a, ∀ a ∈ G.

Theorem 3. LetG be a poset and δ be the trace ofD
on G. We have,
δ(L(a1, ..., an)) ⊂ L(δ(a1), .., δ(an)), ∀ ai ∈ G.

Proof. Let t ∈ δ(L(a1, a2, ..., an)), then there ex-
ists y ∈ L(a1, a2, a3, ..., an) such that t = δ(y).
The relation y ∈ L(a1, a2, ..., an−1, an) implies that
y ≤ ai, ∀ ai ∈ G, and by using Proposition 1
(viii), we get δ(y) ≤ δ(ai), ∀ i = 1, .., n, then
t = δ(y) ∈ L(δ(a1), .., δ(an)). This means that
δ(L(a1, a2, ..., an)) ⊂ L(δ(a1), .., δ(an)), ∀ ai ∈
G.
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Corollary 1. Let G be a poset and 1 be the greatest
element of G and δ be the trace of D. If a ≤ δ(1),
then D(a, 1, ..., 1) = a, ∀ a ∈ G.

Proof. Let a ∈ G, assume that a ≤ δ(1), from Theo-
rem 1 we can get,

D(L(a), 1, 1, ..., 1) = D(L(a, 1), 1, ..., 1, 1)

= L(a,D(1, 1, ..., 1))

= L(a, δ(1))

= L(a).

Then,
D(L(a), 1, ..., 1) = L(a). (22)

In addition,

D(L(a), 1, 1, 1, ..., 1) = D(L(a, a), 1, 1, ..., 1, 1, 1)

= L(D(a, 1, ..., 1, 1), a)

= L(D(a, 1, ..., 1)).

Then,

D(L(a), 1, ..., 1) = L(D(a, 1, 1, ..., 1)). (23)

Therefore, (22) and (23) shows that
L(D(a, 1, 1, ..., 1)) = L(a).
Combining Lemma 1 and Proposition 1 (i), we can
get D(a, 1, ..., 1) = a, ∀ a ∈ G.

Proposition 3. LetG be a poset and 1 its greatest ele-
ment. Let δ be a the trace of a permuting n-derivation
D on G. Then δ(1) = 1 ⇐⇒ δ = idD.

Proof. It is obvious that if δ = idD, then δ(1) = 1.
Inversely, let a ∈ G. Combining Theorem 1 and
Proposition 1 (v) we can get

D(L(a), a, ..., a) = D(L(a, a), a, ..., a)

= L(a,D(a, ..., a))

= L(a, δ(a))

= L(δ(a))

D(L(a), a, ..., a) = L(δ(a)). (24)
Moreover,

D(L(a), a, ..., a) = D(L(a, 1), a, ..., a)

= L(a,D(1, a, ..., a, a))

= L(D(1, a, ..., a))

D(L(a), a, ..., a) = L(D(1, a, .., a)). (25)
According (24) and (25) we get

L(D(1, a, a, ..., a)) = L(δ(a)). (26)

Proposition 1 (iv) implies that δ(a) =
D(a, a, ..., a) ≤ D(1, a, ..., a), which, be-
cause of (26) together Lemma 1, Show that
δ(a) = D(1, a, ..., a), ∀ a ∈ G. SinceD is a per-
muting map, we get D(1, a, ..., a) = D(a, ..., a, 1).
Hence,

δ(a) = D(a, ..., a, 1). (27)
With the similar process, we show that δ(a) =
D(a, ..., a, 1, 1). In fact, Combining Theorem 1 (1)
and Proposition 1 (v) we have

D(L(a), a, ..., a, 1) = D(L(a, 1), a, ..., a, 1)

= L(a,D(1, a, a, ..., a, 1))

= L(D(1, a, a, ..., a, a, 1))

D(L(a), a, a, ..., a, 1) = L(D(1, a, ..., a, a, 1)).
(28)

Moreover,

D(L(a), a, a, ..., a, 1) = D(L(a, a), a, ..., a, 1)

= L(D(a, a, ..., a, 1), a)

= L(D(a, a, ..., a, 1))

D(L(a), a, ..., a, a, 1) = L(D(a, ..., a, 1)). (29)

Adding these last tow equations (28) and (29) we see
that

L(D(1, a, ..., a, 1)) = L(D(a, ..., a, 1)) (30)

Proposition 1 (iv) implies that D(a, a, ..., a, 1) ≤
D(1, a, ..., a, 1) which, because of (30) to-
gether Lemma 1, implies that D(1, a, ..., a, 1) =
D(a, a, ..., a, 1). SinceD is a permuting map, we
have D(1, a, ..., a, 1) = D(a, ..., a, 1, 1). Hence,

D(a, ..., a, 1) = D(a, ..., a, 1, 1). (31)

Combining (27) and (31), we cleam that

δ(a) = D(a, ..., a, 1, 1). (32)

Similarly, we get

D(L(a), a, ..., a, 1, 1) = D(L(a, 1), a, a, ..., a, 1, 1)

= L(a,D(1, a, a, a, ..., a, 1, 1))

= L(D(1, a, ..., a, 1, 1)),

then

D(L(a), a, ..., a, 1, 1) = L(D(1, a, ..., a, 1, 1)).
(33)
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Furthermore,

D(L(a), a, a, ..., a, 1, 1) = D(L(a, a), a, ..., a, 1, 1)

= L(D(a, ..., a, a, 1, 1), a)

= L(D(a, a, ..., a, 1, 1)),

then

D(L(a), a, ..., a, 1, 1) = L(D(a, a, ..., a, 1, 1)).
(34)

Combining (33) and (34), we get
L(D(1, a, ..., a, 1, 1)) = L(D(a, a, ..., a, 1, 1)),
and by using Proposition 1 (iv) we see that
D(a, a, ..., a, a, 1, 1) ≤ D(1, a, ..., a, 1, 1) and
from Lemma 1, we deduce that

D(a, ..., a, 1, 1) = D(1, a, ..., a, ..., a, 1, 1)

= D(a, ..., a, a, 1, 1, 1). (35)

Therefore, (32) and (35) show that

δ(a) = D(a, a, ..., a, a, 1, 1, 1). (36)

According to the results (27), (32) and (36), we
get δ(a) = D(a, ..., a, 1) = D(a, ..., a, 1, 1) =
D(a, ..., a, 1, 1, 1), ∀ a ∈ G.
Using the same method of proof, we arrive at the fol-
lowing conclusion
δ(a) = D(a, a, ..., a, 1) = D(a, a, ..., a, 1, 1) =
D(a, a, ..., a, 1, 1, 1) = ... = D(a, 1, 1, ..., 1), ∀ a ∈
G.
To complete this demonstration, it is enough to show
that D(a, 1, 1, ..., 1) = a.
From Theorem 2, since δ(1) = 1, we get
D(a, 1, 1, ..., 1) = a, ∀ a ∈ G. This means that
δ(a) = a, ∀ a ∈ G. Thus, the theorem is proved..

Proposition 4. Considered G be a poset and 0 its
least element. Let δ be the trace of D. Denote
Fixδ(G) = {a ∈ G : δ(a) = a}. Then,
(1) 0 ∈ Fixδ(G).

(2) If a ∈ Fixδ(G) and b ≤ a, then b ∈ Fixδ(G).

(3) If G is directed, then ∀ b1, b2 ∈ Fixδ(P ),
∃k ∈ Fixδ(G) : b1 ≤ k and b2 ≤ k.

Proof. (1) It is clear that since δ(0) = 0.
(2) Let a, b ∈ G. Assume that a ∈ Fixδ(G) and
b ≤ a, then δ(a) = a. By using Theorem 1 (1), we
have

D(L(b), a, ..., a) = D(L(a, b), a, ..., a, a)

= L(D(a, ..., a), b)

= L(δ(a), b)

= L(a, b)

= L(b).

Since b ∈ L(b), it follows that b ∈
D(L(b), a, ..., a, a). Hence, ∃t ∈ L(b) provided
that b = D(t, a, ..., a), by using Proposition 1 (iv)
and (i), we get
b = D(t, a, ..., a) ≤ D(b, a, ..., a) ≤ b, so

D(b, a, ..., a) = b. (37)

Again,

D(b, L(b), a, ..., a) = D(b, L(a, b), a, ..., a)

= L(D(b, a, ..., a), b)

= L(b, b) using (37)
= L(b).

Since b ∈ L(b), we get b ∈ D(b, L(b), a, ..., a).
Hence, there exists t ∈ L(b) such that b =
D(b, t, a, ..., a), by using Proposition 1 (iv) and (i),
we get
b = D(b, t, a, ..., a) ≤ D(b, b, a, a, ..., a, a) ≤ b, so

D(b, b, a, ..., a) = b. (38)

Also by using Theorem 1 (1), we have

D(b, b, L(b), a, a, a, ..., a) = D(b, b, L(a, b), a, ..., a)

= L(D(b, b, a, a, ..., a, a), b)

= L(b, b) by , using (38)
= L(b).

Since b ∈ L(b), we find b ∈ D(b, b, L(b), a, ..., a).
Hence, we can find an t ∈ L(b) which b =
D(b, b, t, a, ..., a), by using Proposition 1 (iv) and (i),
we get
b = D(b, b, t, a, ..., a) ≤ D(b, b, b, a, a, ..., a) ≤ b, so

D(b, b, b, a, ..., a) = b. (39)
From the results (37), (38) and (39), we ob-
tain D(b, a, ..., a) = D(b, b, a, a, ..., a) =
D(b, b, b, a, ..., a) = b, ∀ a, b ∈ G.
With the same method, we arrive at
D(b, a, ..., a) = D(b, b, a, ..., a) =
D(b, b, b, a, ..., a) = ... = D(b, b, ..., b, b, a) = b, ∀
b ∈ G. So

D(b, b, ..., b, a) = b. (40)
Moreover,

D(b, ..., b, b, L(b)) = D(b, ..., b, L(a, b))

= L(D(b, ..., b, a), b)

= L(b, b) by (40)
= L(b).
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Then D(b, ..., b, L(b)) = L(b), application Lemma 2
(1) yields that δ(b) = b, ∀ b ∈ G. This shows that
b ∈ Fixδ(G).
(3) Let b1, b2 ∈ G, since G is directed, ∃c ∈ G :
b1 ≤ c and b2 ≤ c. Since b1, b2 ∈ Fixδ(G), we
get δ(b1) = b1 and δ(b2) = b2. By Proposition 1
(viii) we can get b1 ≤ δ(c) and b2 ≤ δ(c). Put
k = δ(c), by Proposition 1 (ix) we get δ(t) = t, hence
t ∈ Fixδ(G).

Corollary 2. Let 0 be the least element ofG and δ be
the trace of D, then Fixδ(G) is an ideal of G.

Proposition 5. Let d1 and d2 be two permuting n-
derivations onGwith traces δ1, δ2, respectively. Then
δ1 = δ2 ⇐⇒ Fixδ1(G) = Fixδ2(G).

Proof. It is obvious that δ1 = δ2 implies Fixδ1(G) =
Fixδ2(G). Conversely, let Fixδ1(G) = Fixδ2(G)
and a ∈ G. By Proposition 1 (ix), we have δ1(a) ∈
Fixδ1(G) = Fixδ2(G), so

δ2(δ1(a)) = δ1(a). (41)

Combining (v) and (viii) in Proposition 1, we get

δ2(δ1(a)) ≤ δ2(a). (42)

These last two equations (41) and (42) show that

δ1(a) ≤ δ2(a). (43)

Similarly, we can get δ1(δ2(a)) = δ2(a) and
δ1(δ2(a)) ≤ δ2(a). Then

δ2(a) ≤ δ2(a).U( (44)

Adding these last two arguments (43) and (44), we
find that δ2(a) = δ2(a), ∀ a ∈ G. So δ1 = δ2.

3 Some properties of posets
involving permuting n-derivations

Theorem 4. Let G be a poset and δ be the of D. If
0 be the least element of G, Then kerδ = {a ∈ G :
δ(a) = 0} is a nonempty and a lower set of G.

Proof. By Proposition 1 (vi), we can see that δ(0) = 0
imply 0 ∈ kerδ. Therefore kerδ ̸= ϕ. Furthermore,
if a ∈ kerδ and b ∈ G in which b ≤ a, since δ(b) ≤
δ(a) by Proposition 1 (viii) and δ(a) = 0, so δ(b) = 0.
Therefore, b ∈ kerδ and thus forces the results.

Proposition 6. Let G be a poset, 0 be the least ele-
ment of G and δ be the of D on G.
If J is an ideal of G, then δ−1(J ) is an ideal of G.

Proof. Assume that J is an ideal of G, then 0 ∈ J
and so, δ(0) = 0 ∈ I . Hence, 0 ∈ δ−1(J ), then
δ−1(J ) ̸= ϕ. Suppose that a ∈ δ−1(J ) and b ∈ G

where b ≤ a, then δ(a) ∈ J and δ(b) ≤ δ(a) by
Proposition 1 (viii), this imply that δ(b) ∈ J and so
b ∈ δ−1(J ). This means that δ−1(J ) is an ideal of
G.

Proposition 7. Let G be a poset and δ the trace of a
permuting n-derivation D on G.
Let I1 and I2 be two ideals of G, we have
I1 ⊆ I2 ⇒ δ(I1) ⊆ δ(I2).

Proof. Let b ∈ δ(I1), then ∃ a ∈ I1 ⊆ I2 : δ(a) = b.
Hence, b ∈ δ(I2). It follows that δ(I1) ⊆ δ(I2).

Theorem 5. Let G be a poset and D1, D2 be two
permuting n-derivations on G with traces δ1, δ2, re-
spectively. Then, ∀ a ∈ G,
δ1(a) ≤ δ2(a) ⇐⇒ δ2(δ1(a)) = δ1(a).

Proof. Assume that δ1(a) ≤ δ2(a), ∀ a ∈ G, that
is, δ1(δ1(a)) ≤ δ2(δ1(a)). By Proposition 1 (ix),
δ1(a) = δ1(δ1(a)). So

δ1(a) ≤ δ2(δ1(a)). (45)

Moreover, the Proposition 1 (v) gives that

δ2(δ1(a)) ≤ δ1(a). (46)

From the above arguments (45) and (46), we can get
δ2(δ1(a)) = δ1(a), ∀ a ∈ G. Inversely, suppose that
δ2(δ1(a)) = δ1(a), ∀ a ∈ G. By using Proposition
1 (v) and (viii), we obtain δ2(δ1(a)) ≤ δ2(a), and by
hypothesis, we can get δ1(a) ≤ δ2(a), ∀ a ∈ G.

4 Conclusion
This work has provided a comprehensive analysis of
derivations and permuting n-derivations in the con-
text of partially ordered sets (posets), which are gen-
eralizations of derivations on a poset. We have in-
troduced and studied the concept of permuting n-
derivations on posets and presented several character-
ization theorems and fundamental properties related
to permuting n-derivations. Additionally, we have in-
troduced the fixed set of permuting n-derivations in
posets and discussed the relationships among deriva-
tions, ideals and fixed sets within posets. This study
opens up further avenues for research, inviting deeper
exploration into the interactions between derivations
and poset structures. Our future research on posets
will be inspired by our recent work on lattices in [16]
which involves generalized derivations. We aim to
explore how these concepts can be applied to posets
to develop new theories and applications.
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