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Abstract: - This paper proposes the confidence intervals for the mean and difference of means of Birnbaum-
Saunders (BirSau) distributions based on the Bootstrap confidence interval (BCI), Percentile bootstrap 
confidence interval (PBCI), Generalized confidence interval (GCI), Bayesian credible interval (BayCrI) and the 
highest posterior density (HPD). The simulation study used R statistical software to evaluate the coverage 
probabilities and average lengths. The concerning results of the mean suggest that HPD is the recommended 
method for constructing confidence intervals in the BirSau distributions, except for small sample sizes where 
the GCI method proves more efficient. For the difference of means, PBCI emerges as the preferred way to 
construct confidence intervals, except in some cases where small sample sizes with the HPD method are more 
efficient. Moreover, the average lengths of these proposed confidence intervals decreased as both sample size 
and shape parameters increased. To illustrate the effectiveness of the suggested confidence intervals, we 
applied them to wind speed datasets collected in Ayutthaya and Ratchaburi provinces, Thailand. 
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1   Introduction 
In 1969, [1], initially concentrated on creating a 
model to describe the lifespan of material samples 
during fatigue and establishing the corresponding 
fatigue-life distribution. In this scenario, the 
proposed fatigue-life distribution introduced by [1], 
was formulated using a model that outlines the 
entire period until accumulated damage, arising 
from the formation and expansion of the primary 
crack, surpasses a defined threshold, leading to the 
material failure. In addition to being utilized in the 
fatigue of materials, the Birnbaum-Saunders 
(BirSau) distribution has also found application in 
other fields, such as [2], [3], examined the incidence 
of chronic cardiac diseases and diverse forms of 
cancer arising from the cumulative harm inflicted by 
various risk factors, ultimately resulting in 
degradation and giving rise to a fatigue process. The 
findings study of [4], constructing a framework to 
handle intangibles within the software execution 
process gives rise to cumulative damage that 
degrades its performance and ultimately culminates 
in failure. The study [5], [6], found that the 
disruption in the renewal process causes the death of 

small-diameter trees at chest height. According to 
the study, [7], [8], [9], employed the BirSau 
distribution to evaluate air quality, accounting for 
the buildup of pollutants in the air. Research by 
[10], also applied the BirSau distribution to explore 
wind energy flow patterns and climatic conditions. 
Due to the widespread application of the BirSau 
distribution, particularly in environmental contexts, 
this study is interested in exploring the BirSau 
distribution.  

Wind energy is a clean and renewable energy 
source derived from nature, free from pollutants. 
Currently, Thailand is placing more importance and 
interest in developing renewable energy. Wind 
energy has been utilized to reduce the combustion of 
fossil fuels for electricity production, thereby 
mitigating the problem of global warming caused by 
the consequent carbon dioxide emission, [11]. Due 
to this reason, we are interested in utilizing wind 
speed data in this study. However, the inherent 
natural variability in wind speed introduces 
uncertainty. Therefore, we focus on estimating the 
mean wind speed and the difference in mean wind 
speeds using the BirSau distribution. 
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Several researchers have contributed to 
developing parameter estimation methods for 
BirSau distribution. In 1969, [12], introduced the 
maximum likelihood estimators (MLEs) for the 
shape ( ) and scale (  ) parameters. In a 
subsequent study [13], demonstrated the asymptotic 
joint distribution of these MLEs, establishing their 
asymptotic independence. Findings by [14], devised 
modified moment estimators (MMEs) and a 
straightforward bias correction technique to enhance 
the MLEs and MMEs. The work of [15], 
investigated the asymptotic confidence ellipses of 
parameters for the BirSau distribution. Research by 
[16], contributed to the field by presenting 
percentile bootstrap and generalized pivotal 
processes that create confidence intervals (CIs) for 
the   and   parameters of the BirSau distribution. 
The study of [17], formulated a bootstrap method 
for forecasting intervals related to the BirSau 
distribution in a different approach and based on the 
research by [18], compared CIs for a population 
mean obtained using the dependent bootstrap 
procedure to those generated using the independent 
bootstrap procedure. As shown, the study by [19], 
developed a high-order likelihood asymptotic-based 
for the parameters. Research by [20], focused on 
determining CIs for fundamental reliability 
measures through generalized interval estimation. 
Results from [21], extended the discourse by 
considering Bayesian inference for the parameters 
of the BirSau distribution. They based their 
methodology on inverse-gamma priors and 
computed Bayesian estimates. In recent research, 
the parameters of the BirSau distributions have been 
estimated using environmental data. As per the 
study by [22], [23], contributed by presenting CIs 
for variance, the difference of variances, and the 
coefficients of variation of PM 2.5 concentration 
data when the data have BirSau distributions. 
Lastly, [24], proposed a multivariate generalization 
of BirSau distribution based on the multivariate 
skew-normal distribution, presenting distributional 
properties and an EM algorithm for parameter 
estimation. 

This paper focuses on the mean of a random 
variable or expected value in statistical inference. It 
represents the long-term average value of random 
variables obtained by integrating the product of the 
variable with its probability distribution. Since the 
mean is the most widely used statistical measure, 
our interest lies in constructing CIs to estimate the 
population mean and the difference of means 
between two populations. CIs for the mean and the 
difference between the two means have applications 
in various fields. For instance, in medicine [25], 

compared outpatient costs before and after a 
Medicaid policy change in Indiana, United States. In 
environmental science [26], analyzed monthly 
rainfall totals in Bloemfontein and Kimberley in 
South Africa. Several studies have delved into CIs 
for means, offering valuable insights into statistical 
analysis. The study by [27], suggested CIs for both 
the mean and coefficient of variation (CV) in a two-
parameter exponential distribution. Furthermore, 
[28], introduced the concept of generalized 
inference and the method of variance estimates 
recovery to constructing the CIs, applicable to the 
common mean of several gamma distributions.  
Research by [29], proposed the robust CI estimation 
for the mean of Poisson distribution. The 
investigation into parameter estimation for the 
BirSau distribution and interval estimation for the 
parameter mean showed that prior studies have not 
delved into creating CIs for both the mean and the 
difference between the means of BirSau 
distributions. Consequently, we propose the 
introduction of CIs for both the mean and the 
difference between the two means of BirSau 
distributions. Therefore, this study aims to compare 
the efficiency of methods for estimating the CIs of 
the mean and the difference between the means 
when the population follows a BirSau distribution. 
The methods utilized include the bootstrap 
confidence interval (BCI), percentile bootstrap 
confidence interval (PBCI), generalized confidence 
interval (GCI), Bayesian credible interval (BayCrI), 
and the highest posterior density interval (HPD). To 
demonstrate the effectiveness of these proposed 
methodologies, we have also applied them to wind 
speed data from Ayutthaya and Ratchaburi 
provinces in Thailand, collected between February 
and April 2022. 
 
 
2 The CI for the Mean of a BirSau 

Distribution 
A random variable X  is said to follow the two-
parameter BirSau distribution with parameters   
and  , where 0x  , 0  , and 0  . This 
distribution is represented as ~ ( , )X BirSau   . The 
probability density function is given by: 
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The expected value and variance of X  are 

expressed as 21( ) (1 )
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respectively. Therefore, in this study, the focus is on 
the parameter mean, denoted as  , and is defined 
as: 

  211 .
2

  
 

  
 

                               (2) 

 
2.1 BCI 
The bootstrap method, introduced by [30], utilizes 
resampling techniques to mitigate bias in MLE. In 
the context of the BirSau distribution, this method 
facilitates the estimation of parameters   and   
through a procedure developed by [31]. This 
procedure explicitly addresses correcting biases in 
the MLE of distribution parameters by leveraging 
bootstrap techniques. 

Let 1 2( , ,..., )Tnx x xx  represent a random sample 
of size n  from ( , )BirSau   . The MLEs for   and   
are ˆ ( )r  x  and ˆ ( )s  x , respectively. Next, let B  
represent a bootstrap sample that is created 
independently from the initial sample x , with 

*1 *2 *( , ,..., )B
x x x . The respective bootstrap replications 

of ̂  and ̂  are indicated as *1 *2 *ˆ ˆ ˆ( , ,..., )B    and 
*1 *2ˆ ˆ( , ,...,   *ˆ )B , where * *ˆ ( )b ys  x  and * *ˆ ( )y yr  x , 

for 1,2,...,y B . The approximate bootstrap estimator 
are calculated by the mean *(.) *

1
ˆ ˆ1/

B

y
y

B 


   and 

*(.) *

1

ˆ ˆ1/
B

y
y

B 


  .  

The estimates of bootstrap bias based on B  
replications of ̂  and ̂  are  

 *( )ˆ ˆ ˆ( , ) ( )B s     x and *( )ˆ ˆˆ( , ) ( ).B r     x      (3) 
 

The correct estimates for *̂  and *̂  using the 
idea of constant-bias-correction (CBC) estimates 
proposed by [32], can be obtained as follows: 

* ˆˆ ˆ2 ( , )y y B     and *ˆ ˆˆ2 ( , ).y y B              (4) 
 

The percentile bootstrap estimates for *̂  and 
*̂  are: 

* ˆ2y y    and * ˆ2 .y y                   (5) 
 

Consequently, it can construct the bootstrap 
estimator of the mean as: 

   
2

ˆ (1 ).
2
y

y y


                            (6) 

 
and the percentile bootstrap estimator of the mean 
can be found as: 

* 2
* *

(1 ).
2
y

y y


                          (7) 

Hence, the approximated  100 1 %  CI for   based 
on BCI and PBCI, it becomes: 

 ˆ ˆ[ ( / 2), (1 / 2)].BCICI                       (8) 
 

    * *ˆ ˆ[ ( / 2), (1 / 2)].PBCICI                      (9) 
 

where ˆ( / 2)   and *ˆ ( / 2)   denote the 100( / 2) -th 
percentile of bootstrap and percentile bootstrap 
distribution of ̂  and *̂ , respectively. 
 
2.2  GCI  
In 1993, [33], introduced a method to construct the 
GCI by applying the Generalized Pivotal Quantity 
(GPQ) concept. Following, [22], the GPQ for   
was established by [34], as follows: 

1 2
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where 1  and 2  are the two solutions of the 
following equation: 

2 2 0,U V W                            (11) 
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The GPQ for   was subsequently developed by 

[20], then the GPQ for   becomes 

 1/2
2
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1
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s
x

  and 2~ nt  . By substituting  

J  and J  into Equation (5), the GPQ of the mean 
as:  

2
(1 ).

2
J

J J 
                              (13) 

Hence, the approximated  100 1 %  CI for    
based on GCI, it becomes 
 

    [ ( / 2), (1 / 2)],GCICI J J                   (14) 
 

where ( / 2)J   denotes the 100( / 2) -th percentile of 
J . 
 
2.3  BayCrI 
The study conducted by [21], use specific priors 
with known values to ensure the accuracy of the 
resulting posteriors. They assume an inverse gamma 
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(IG) distribution for  , marked as 1 1( | , )IG d e , and 
do the same for 2  as  2 2

2( | , )IG d e .  
The posterior distribution of   given the data 

and the posterior distribution of   given   and the 
data are outlined as follows: 

1
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The sample from Equations (15) and (16) are 

obtained using Markov Chain Monte Carlo 
techniques.  Research by [21], produced posterior   
samples using the extended ratio-of-uniforms 
technique will be discussed in more detail in the 
next section. Alternatively, obtaining the posterior 
samples of 2  is straightforward using the 
LearnBayes package in the R software suite. 
Consequently,   equals the square root of 2 . 
 
2.3.1 The Generalized Ratio-of-uniforms Method 

According to the study by [35], an effective 
sampling approach for posterior simulation from 
Equation (15) using the generalized ratio-of-
uniforms method was created. A summary of the 
algorithm is presented as follows: Supposed a pair 
of random variables ( , )r s  follows a uniform 
distribution over the specified region. 

    
1/( 1)
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where t  is constant and ( | )x   is given by using 
Equation (15). Therefore, the density of / ts r   is 

( | ) / ( | )d    x x . 

To generate random samples uniformly 
distributed within the region ( )K t , random variables 
( , )r s  are generated with a uniform distribution 
across the one-dimensional rectangle 
[0, ( )] [ ( ), ( )]a t b t b t  , where:  

1/( 1)

0
( ) sup{[ ( | )] }ta t


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and 
/( 1)

0
( ) sup{ [ ( | )] }t tb t


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

 x                 (20) 

According to research by [21], both ( )a t  and 
( )b t  assume finite values with ( )b t  equating to 

zero. Consequently, the potential variate / ts r   is 
deemed acceptable if 1/( 1)[ ( | )] tr    x ; should this 
not be the case, the process is reiterated. By 
executing these steps, the BayCrI for the mean of 
the BirSau distribution can be derived 
(1) Indicate the values of 1 1 2 2, , ,e d ed  and t  then   
      calculate ( )a t  and ( )b t . 
(2) i  th iteration: 
           a. Generate r and s   from (0, ( ))Unif a t and   
                       (0, ( ))Unif b t , respectively, then compute       
                        / ts r  .  
           b. Set ( )i   if 1/( 1)[ ( | )] tr    x  if the value 
of  
                is acceptable; if not, repeat the previous  
              step. 
           c.   Create 2

i  using ( )
2 2

( )1

1( , ( 2) )
2 2

n
ii

i jj

n x
IG d e

x





     

                then set ( )
2
ii  . 

(3) Compute the Bayesian estimator of the mean by    

        
2
( )*

( ) ( )(1 )
2
i

i i


  .                        (21)                        

(4) Go through steps (2) and (3) M  times. 
(5) Compute the approximated 100(1 )%  BayCrI 
for  
      the   as 
                          * *[ ( / 2), (1 / 2)],BayCrICI                   (22)              

where *( / 2)   denotes the 100( / 2) -th  
percentile of * . 

 
To create the HPD interval for the mean, we 

utilized the hdi function provided by the HDInterval 
package in the R software suite. This step was 
performed after obtaining the Bayesian mean 
estimate in step 4. 
 

 

3 The CIs for the Difference between 

 the Means of BirSau Distributions 
The concepts of GCI, BCI, PBCI, BayCrI, and HPD 
presented in the previous section are expanded upon 
in this section, focusing on new CI to determine the 
difference between the two means. In a statistical 
model, the difference between the means results 
from subtracting or comparing two means. Usually, 
this is done to compare two quantitative datasets 
when it is necessary to fit the BirSau distribution 
closely. Let  1 2, ,..., nX X X X  and  1 2, ,..., mZ Z Z Z  
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be independent random samples from the BirSau 
distribution, with sample sizes of n  and m , 
respectively (referred to as  , BirSau   , 

 , z zBirSau   ). Consequently, the mean of Z  
becomes 

    211 .
2z z z  

 
  

 
                            (23) 

 
Given the independence of X  and Z , the 

difference between the means (represented by  ) 
can be expressed as 

2 21 11 1 .
2 2z z z      

   
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   
         (24) 

 
3.1  BCI 

Let  1 2, ,..., T
mz z zz  be a random sample of size m  

from generated by  , z zBirSau   . The MLEs of z  
and z , denoted as ˆ ( )z s  z  and ˆ ( )z r  z , 
respectively. Given that  *1 *2 *, ,..., B

z z z  represents 
bootstrap samples generated independently from the 
original sample z . The corresponding bootstrap 
replications for   are represented as *1 *2 *ˆ ˆ ˆ, , , B

z z z   , 
and for  , they are denoted as *1 *2 *ˆ ˆ ˆ, , , .B

z z z    
where * *ˆ ( )y y

z s  z  and * *ˆ ( )y y
z r  z , 1,2,...,y B . The 

approximate bootstrap estimators are calculated by 
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1
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B
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B 


   and  * . *

1
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B
y

z z
y

B 
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The bootstrap bias estimate based on B  replications 
of ˆ z  and ˆ

z  are obtained as:  
   * .ˆ ˆ ˆ, ( )z z zB r    z and     * .ˆ ˆˆ , ( ).z z zB s    z (25) 

 
Therefore, the corrected estimate for *ˆ z  and *ˆ

z  
can be written as: 
 *

, , , ,
ˆˆ ˆ2 ( , )z y z y z y z yB     and *

, , , ,
ˆ ˆ ˆˆ2 ( , ).z y z y z y z yB      

(26) 
 

The percentile bootstrap estimators for *ˆ z  and *ˆ
z  

are: 
   *

, ,ˆ2z y z y     and *
, , .ˆ2z y z y             (27) 

 
Therefore, the bootstrap estimator of the difference 
of means can be obtained as:  

2 2
, ,

1 1ˆ 1 1 .
2 2y y y z y z y    

   
      
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             (28) 

 
and the percentile bootstrap estimator of the 
difference of means can be obtained as: 

* * *2 * *2
,,

1 1ˆ 1 1 .
2 2y y y z yz y

    
   

      
   

            (29) 

 
Thus, the approximated  100 1 %  CI for   based 
on BCI and PBCI, it becomes: 

ˆ ˆ[ ( / 2), (1 / 2)].
BCI

dCI                         (30) 
 

                            * *ˆ ˆ[ ( / 2), (1 / 2)].
PBCI

dCI                              (31) 
 

where ˆ( / 2)   and *ˆ ( / 2)   denote the 100( / 2) -th 
percentile of bootstrap and percentile bootstrap 
distribution of ̂  and *̂ , respectively. 
 
3.2  GCI 
The GPQ of z  can be defined by utilizing the 
random variable Z  as follows: 

 
 

 
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 0
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 

 
  




Z               (32) 

 
where  ~ 1zJ t m , and ,1z  and ,2z  are the two 
solutions for: 

2 2 0,z z z z zU V W                         (33) 
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For z , the GPQ is provided by 
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where ,1

1

m

z i
i

s z


 , ,2
1

1m

z
i i

s
z

  and  2~zt m . 

Therefore, the GPQ for the difference of means can 
be obtained as:  

2 21 1  (1 ) (1 ).
2 2z z

J J J J J
                  (35) 

 
Therefore, the approximated  100 1 %  CI for    
based on GCI, it becomes: 

   / 2 , 1 / 2 ,d
GCICI J J                  (36)          

 
where ( / 2)J    denotes the 100( / 2) -th percentile of 
J . 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.54 Natchaya Ratasukharom, Sa-Aat Niwitpong, Suparat Niwitpong

E-ISSN: 2224-2880 519 Volume 23, 2024



3.3  BayCrI 
In the Bayesian method, for ~ ( , )z zZ BirSau    the IG 
priors of z  and 2

z , are denoted as  1 1| ,zIG f g  

and  2
2 2| ,zIG f g , respectively. Thus, the marginal 

distribution of z  becomes: 
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                (37) 

 
The posterior conditional distribution of 2

z  given 
z  becomes: 

 2
2 2

1

1| ,      , 2 .
2 2

m

i z
z z

i z i

zm
z IG f g

z


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 
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 

  (38) 

 
The procedure for utilizing BayCrI to estimate 

the difference between the means can be condensed 
into the following steps: Initially, determine the 
values of 1 1 2 2, , ,f g f g  and zt , with the condition that, 
as a constant. Subsequently, calculate  za t  and 

 zb t , where  za t  and  zb t  are defined as 
follows: 

   
  1/ 1
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Second, generate zr  and zs  from ~ (0, ( ))z zr Unif a t  

and ~ (0, ( )),z zs Unif b t  then compute / zt
z z zs r  .                       

If  
 1/ 1 | zt

z zr z 


   , set ,z i z  ; otherwise, 
generate zr  and zs  again. Next, generate  
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  and we can find the

2
, ,z i z i  . Hence, the Bayesian estimator of the 

difference between the means is denoted as * , is 
given by 

* 2 2
, ,

1 1 1 1 , 1,2, , ,
2 2i i i z i z i i M    

   
        

   
   (41) 

 
where M  is the number of iterations, and the last 
calculates the  100 1 %  CI for    by applying: 

   * */ 2 , 1 / 2 ,d
BayCrICI      

 
            (42) 

 

when *( / 2)   denotes the 100( / 2) -th percentile of 
* . The confidence of   was determined using the 

R package HDInterval for the HPD interval 
calculation. 
 
 
4  Simulation Studies 
Five approaches were examined in a Monte Carlo 
simulation using the R statistical software: GCI, 
BCI, PBCI, BayCrI, and HPD. The purpose of the 
simulation was to create new CIs for the mean and 
the difference between the means of two BirSau 
distributions. The coverage probabilities (CPs) and 
average lengths (ALs) of the five suggested 
approaches were compared to evaluate them. Two 
crucial factors were considered when selecting a 
preferred method: the CPs should be at least or close 
to the nominal confidence level of 0.95, and the 
shortest AL. The simulation settings consist of the 
number of replications of 5,000, with 5,000 pivotal 
quantities for GCI, B = 500 for BCI and PBCI, and 
M = 1,000 for BayCrI and HPD interval. For a 
single mean of BirSau, the sample size was set n = 
10, 20, 30, 50 or 100 with shape parameters   = 
0.10, 0.25, 0.50, 0.75 or 1.00. The sample sizes for 
the difference between the means of the two BirSau 
distributions, however, were set as ( , )n m = (10,10), 
(20,20), (30,30), (50,50), (100,100), (10,20), 
(20,30), (30,50) or (50,100) with shape parameter
 2,  = (0.25,0.25), (0.25,0.50), (0.25,0.75), 
(0.25,1.00), (0.50,0.50), (0.50,0.75), (0.50,1.00), 
(0.75,0.75), (0.75,1.00) or ( 1.00,1.00 ). The values 
for the scale parameters   and 2  were fixed at 1 
for all cases. In the case of BayCrI and HPD, we 
examined the parameter t = zt = 2 and the suggested 
hyperparameter 1 2 1 2 1 2, , , , , ,d d e e f f

4
1 2, 10g g   as 

proposed by [21]. 
For the single mean of a BirSau distribution, 

according to the simulation results shown in Table 1 
(Appendix), when dealing with small sample sizes (
n =10), the GCI method performs the best in CP and 
AL. However, for another medium ( n =30,50) and 
large sample sizes ( n =100), we observed that GCI, 
BayCrI, and HPD gave CPs greater than or close to 
the nominal confidence level of 0.95. Among these, 
HPD provided the shortest AL. In contrast, although 
PBCI had the shortest ALs, its CPs were the lowest 
and under the nominal confidence level of 0.95, but 
it improved as n  increased. When considering the 
ALs of the other methods, they exhibited similar 
trends. Additionally, the ALs of all five methods 
tended to decrease as the sample size increased, as 
shown in Figure 1.  
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When considering differences between the 
means of BirSau distributions, we generated data 
from two independent BirSau distributions. The CPs 
and ALs of the 95% CI for the difference between 
the means, with equal and unequal sample sizes, are 
listed in Table 2 and Table 3 in Appendix, 
respectively. For equal sample sizes, we consistently 
observed that the CPs of the GCI, BayCrI, and HPD 
methods were greater than or close to the nominal 
confidence level of 0.95. Notably, the HPD method 
produced the shortest AL, except for one instance 
with a large sample size where PBCI outperformed 
in terms of both CP and AL. In the case of unequal 
sample sizes, the results indicated that the GCI, 
BayCrI, HPD, and PBCI methods all provided CPs 
greater than or very close to the nominal confidence 
level of 0.95. Regarding AL, HPD resulted in the 
shortest AL for small sample sizes, while PBCI was 
associated with the shortest AL for other cases. 
Moreover, the performances of all five methods in 
terms of AL improved as sample sizes ( , )n m  
increased, as shown in Figure 2.  

 

 
Fig. 1: Comparison of the CPs and ALs for 
estimating the 95% CI for the mean of BirSau 
distribution at 0.5   
 

 
Fig. 2: Comparison of the CPs and ALs for 
estimating the 95% CI for the difference between 
the means of BirSau distributions with equal sample 
sizes at  2, (0.5,0.5)    
 
 
5   An Empirical Application 
Wind energy is an eco-friendly and sustainable 
power source, untainted by carbon emissions or 
pollution, [11]. According to [36], the BirSau 
distribution is the optimal method for estimating 
wind speed distribution. We employed datasets 
containing daily wind speed records from Ayutthaya 

and Ratchaburi provinces, Thailand, [37], to 
demonstrate the efficiency of CIs for the mean and 
difference of the means of BirSau distributions 
obtained through methods such as GCI, BCI, PBCI, 
BayCrI, and HPD. These data sets were gathered 
from February to April 2022 as detailed in Table 4 
(Appendix).  

As the data comprises positive values, it is 
feasible to fit it into various distributions such as 
Cauchy, logistic, exponential, Weibull, normal, or 
BirSau distributions. Therefore, we tested the 
distributions of positive wind speed datasets using 
the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC). The data 
presented in Table 5 (Appendix) indicates that the 
wind speed datasets from Ayutthaya and Ratchaburi 
province conform to a BirSau distribution, as 
supported by the smallest values of AIC and BIC. 

Table 6 (Appendix) presents the basic statistics 
computed for the daily wind speed data. The mean 
and difference of the means are accompanied by 
two-sided CIs derived from the GCI, BCI, PBCI, 
BayCrI, and HPD, as outlined in Table 7 
(Appendix), respectively. In terms of the mean, as 
per the simulation results, PBCI consistently yielded 
the shortest ALs. It is worth mentioning, however, 
that, similar to the simulation results, the CP of 
PBCI was lower and fell below 0.95, while both 
GCI and HPD exhibited CPs greater than or close to 
the nominal confidence level of 0.95. Overall, HPD 
stands out as the most suitable method for 
constructing a CI for the mean of the BirSau 
distribution. 

Regarding the two-sided CIs for the difference of 
means, the results align with the simulation results. 
For large sample sizes, GCI, BayCrI, HPD, and 
PBCI consistently achieved CPs greater than or 
close to the nominal confidence level of 0.95, with 
PBCI offering the shortest AL. Therefore, we 
recommend using the PBCI method for constructing 
CIs for the difference of means in wind speed data 
collected between February and April 2022 in 
Ayutthaya and Ratchaburi, Thailand. 

 
 

6   Discussion 
Wind energy is a reusable, environmentally friendly 
resource. Transforming the speed of wind into 
kinetic energy can generate electricity. 
Nevertheless, wind speed can vary beyond typical 
fluctuations, leading to unpredictability. The 
research work conducted by [38], highly 
recommended how these factors are essential in the 
business strategy and how to manage this 
sustainable resource. For this reason, estimating CI 
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values for the mean and differences between 
average wind speeds in different areas is essential. 
Suppose we know the average wind speed estimate 
and whether there is a consistent wind speed in each 
area. It will help in deciding on the area to have a 
wind farm. This is because the wind speed used to 
produce electricity is consistent and is required to 
produce electricity efficiently. 
     The study by [22], utilized the Highest Posterior 
Density (HPD) method for both the variance and the 
difference in variances of the BirSau distribution to 
enhance the CIs. In some cases, the mean might be 
considered a better method than the variance. In this 
study, we were focusing on estimating the CIs of the 
mean and mean difference for the BirSau 
distributions. The results suggest that for the mean, 
HPD was the most consistent with the best CP and 
AL. It provides the same findings as the CIs for the 
variance, and the difference between two variances, 
[22] and CV [23], of BirSau distributions. For the 
difference between the means, the results suggest 
that the PBCI is the best approach for constructing 
CIs, which is consistent with the estimated 
simultaneous CIs for pairwise comparisons of the 
means of delta-lognormal distributions, [39]. 
 

 

7   Conclusions 
In this study, the CIs for the parameters mean and 
difference between two means of the BirSau 
distributions are proposed. The results suggest that 
the HPD method effectively estimates the CI of the 
mean of the BirSau distribution. The GCI approach 
is more effective than other methods with small 
sample sizes. Regarding the difference of means in 
BirSau distributions, the data shows that the PBCI is 
a preferred method for constructing CIs.  Once 
again, the exception is noticeable for smaller data 
sets. Having CPs above or close to 0.95 with the 
shortest ALs proves the HPD method is more 
effective. The methods illustrated using real wind 
speed datasets. It was found that the results 
corresponded with the simulation results.  This 
research investigates how to estimate CIs, for the 
parameters in the BirSau distribution, which works 
well for positive data. However, if the dataset 
includes both zeros and positive values it might be 
better to look into the delta BirSau distribution. In 
future work, we would like to extend our work to 
estimating the CIs for parameters in either the 
BirSau distribution covering zeros well or the delta-
BirSau distribution. 
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APPENDIX 

 
Table 1. The CPs and ALs of the 95% CIs for the mean of a BirSau distribution 

n    
CP (AL) 

GCI BCI PBCI BayCrI HPD 

10 0.1 0.9498 0.9010 0.8988 0.9362 0.9318 

  
(0.1409) (0.1139) (0.1136) (0.1314) (0.1297) 

 
0.25 0.9478 0.8994 0.8960 0.9360 0.9350 

  
(0.3841) (0.3000) (0.2960) (0.3582) (0.3476) 

 
0.5 0.9460 0.8998 0.8748 0.9326 0.9386 

  
(0.9601) (0.6782) (0.6534) (0.8885) (0.8203) 

 
0.75 0.9482 0.8964 0.8644 0.9364 0.9366 

  
(1.9315) (1.2010) (1.1361) (1.7485) (1.5230) 

 
1 0.9486 0.8988 0.8536 0.9366 0.9444 

    (3.5720) (1.8871) (1.7530) (3.0451) (2.5058) 
20 0.1 0.9440 0.9196 0.9226 0.9348 0.9340 

  
(0.0933) (0.0842) (0.0840) (0.0903) (0.0894) 

 
0.25 0.9484 0.9222 0.9210 0.9404 0.9372 

  
(0.2452) (0.2185) (0.2170) (0.2373) (0.2335) 

 
0.5 0.9518 0.9302 0.9158 0.9448 0.9466 

  
(0.5741) (0.4917) (0.4823) (0.5553) (0.5348) 

 
0.75 0.9470 0.9260 0.9058 0.9434 0.9414 

  
(1.0477) (0.8503) (0.8296) (1.0031) (0.9402) 

 
1 0.9442 0.9272 0.8998 0.9406 0.9456 

    (1.7447) (1.3235) (1.2947) (1.6330) (1.4923) 
30 0.1 0.9510 0.9312 0.9336 0.9452 0.9426 

  
(0.0748) (0.0698) (0.0698) (0.0733) (0.0726) 

 
0.25 0.9482 0.9276 0.9262 0.9416 0.9362 

  
(0.1957) (0.1809) (0.1801) (0.1915) (0.1889) 

 
0.5 0.9482 0.9324 0.9224 0.9448 0.9448 

  
(0.4454) (0.4016) (0.3972) (0.4351) (0.4237) 

 
0.75 0.9438 0.9258 0.9150 0.9394 0.9398 

  
(0.7929) (0.6901) (0.6796) (0.7687) (0.7360) 

 
1 0.9476 0.9354 0.9166 0.9456 0.9480 

    (1.2953) (1.0804) (1.0649) (1.2363) (1.1632) 
50 0.1 0.9498 0.9370 0.9358 0.9436 0.9404 

  
(0.0569) (0.0545) (0.0545) (0.0562) (0.0557) 

 
0.25 0.9544 0.9432 0.9414 0.9500 0.9500 

  
(0.1477) (0.1407) (0.1403) (0.1455) (0.1439) 

 
0.5 0.9456 0.9342 0.9314 0.9420 0.9404 

  
(0.3331) (0.3125) (0.3104) (0.3281) (0.3220) 

 
0.75 0.9506 0.9344 0.9284 0.9474 0.9470 

  
(0.5884) (0.5395) (0.5347) (0.5759) (0.5595) 

 
1 0.9426 0.9328 0.9216 0.9418 0.9424 

    (0.9373) (0.8327) (0.8258) (0.9039) (0.8688) 
100 0.1 0.9474 0.9414 0.9398 0.9444 0.9414 

  
(0.0398) (0.0388) (0.0388) (0.0394) (0.0391) 

 
0.25 0.9506 0.9464 0.9442 0.9500 0.9462 

  
(0.1031) (0.1002) (0.1001) (0.1022) (0.1013) 

 
0.5 0.9510 0.9434 0.9378 0.9470 0.9450 

  
(0.2299) (0.2216) (0.2208) (0.2273) (0.2244) 

 
0.75 0.9504 0.9446 0.9394 0.9464 0.9474 

  
(0.3998) (0.3801) (0.3782) (0.3934) (0.3862) 

 
1 0.9454 0.9328 0.9300 0.9430 0.9404 

    (0.6262) (0.5841) (0.5812) (0.6085) (0.5943) 
Notes: Bold represents values that satisfy criteria and the best-performing method     

 
 

Table 2. The CPs and ALs of the 95% CIs for the difference between the means of BirSau distributions with 
equal sample sizes  2 .n n  

 2,n n   2,   CP (AL) 

GCI BCI PBCI BayCrI HPD 

(10,10) (0.25,0.25) 0.9590 0.9170 0.9244 0.9464 0.9522 

  
(0.5548) (0.4304) (0.4240) (0.5158) (0.5086) 

 
(0.25,0.50) 0.9556 0.9148 0.9068 0.9460 0.9528 

  
(1.0491) (0.7468) (0.7216) (0.9716) (0.9217) 

 
(0.25,0.75) 0.9500 0.9006 0.8796 0.9356 0.9448 

  
(2.0096) (1.2534) (1.1876) (1.8220) (1.6156)  

 
(0.25,1.00) 0.9490 0.8966 0.8640 0.9396 0.9482 

  
(3.6056) (1.9102) (1.7739) (3.0600) (2.5581) 

 
(0.50,0.50) 0.9626 0.9320 0.9460 0.9530 0.9674 

  
(1.4558) (0.9956) (0.9510) (1.3422) (1.3062) 

 
(0.50,0.75) 0.9620 0.9258 0.9326 0.9500 0.9690 
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 2,n n   2,   CP (AL) 

GCI BCI PBCI BayCrI HPD 

  
(2.3069) (1.4255) (1.3424) (2.0865) (1.9603) 

 
(0.50,1.00) 0.9598 0.9186 0.9236 0.9482 0.9650 

  
(2.3086) (1.4261) (1.3423) (2.0850) (1.9601) 

 
(0.75,0.75) 0.9604 0.9360 0.9578 0.9512 0.9728 

  
(3.0699) (1.7875) (1.6613) (2.7530) (2.6378) 

 
(0.75,1.00) 0.9548 0.9264 0.9416 0.9450 0.9704 

  
(4.4769) (2.3392) (2.1378) (3.8568) (3.6018) 

 
(1.00,1.00) 0.9564 0.9390 0.9648 0.9438 0.9764 

  
(5.8327) (2.8448) (2.5647) (4.8971) (4.6398) 

(20,20) (0.25,0.25) 0.9556 0.9358 0.9400 0.9510 0.9490 

  
(0.3506) (0.3125) (0.3098) (0.3395) (0.3362) 

 
(0.25,0.50) 0.9516 0.9302 0.9290 0.9422 0.9474 

  
(0.6296) (0.5410) (0.5317) (0.6091) (0.5938) 

 
(0.25,0.75) 0.9500 0.9300 0.9160 0.9442 0.9478 

  
(1.0847) (0.8827) (0.8617) (1.0408) (0.9854) 

 
(0.25,1.00) 0.9510 0.9276 0.9008 0.9442 0.9480 

  
(1.7581) (1.3371) (1.3080) (1.6437) (1.5124) 

 
(0.50,0.50) 0.9510 0.9342 0.9442 0.9448 0.9526 

  
(0.8364) (0.7079) (0.6918) (0.8082) (0.7971) 

 
(0.50,0.75) 0.9534 0.9344 0.9366 0.9468 0.9574 

  
(1.2329) (0.9978) (0.9721) (1.1811) (1.1469) 

 
(0.50,1.00) 0.9506 0.9330 0.9224 0.9442 0.9548 

  
(1.8769) (1.4270) (1.3858) (1.7577) (1.6560) 

 
(0.75,0.75) 0.9518 0.9380 0.9532 0.9444 0.9606 

  
(1.5709) (1.2401) (1.2000) (1.5014) (1.4734) 

 
(0.75,1.00) 0.9484 0.9342 0.9438 0.9404 0.9572 

  
(2.1472) (1.6205) (1.5646) (2.0200) (1.9559) 

 
(1.00,1.00) 0.9508 0.9428 0.9620 0.9460 0.9654 

  
(2.6561) (1.9363) (1.8649) (2.4707) (2.4134) 

(30,30) (0.25,0.25) 0.9522 0.9378 0.9406 0.9476 0.9446 

  
(0.2767) (0.2563) (0.2551) (0.2707) (0.2682) 

 
(0.25,0.50) 0.9476 0.9324 0.9306 0.9412 0.9454 

  
(0.4892) (0.4429) (0.4375) (0.4781) (0.4692) 

 
(0.25,0.75) 0.9398 0.9294 0.9210 0.9370 0.9384 

  
(0.8262) (0.7203) (0.7096) (0.8024) (0.7726) 

 
(0.25,1.00) 0.9492 0.9378 0.9280 0.9452 0.9520 

  
(1.3142) (1.0980) (1.0831) (1.2579) (1.1882) 

 
(0.50,0.50) 0.9554 0.9468 0.9540 0.9538 0.9564 

  
(0.5397) (0.4966) (0.4920) (0.5299) (0.5248) 

 
(0.50,0.75) 0.9532 0.9432 0.9438 0.9492 0.9524 

  
(0.7805) (0.7028) (0.6930) (0.7624) (0.7491) 

 
(0.50,1.00) 0.9490 0.9326 0.9272 0.9434 0.9468 

  
(1.1407) (0.9938) (0.9805) (1.1004) (1.0648) 

 
(0.75,0.75) 0.9516 0.9444 0.9530 0.9472 0.9580 

  
(0.9700) (0.8626) (0.8479) (0.9442) (0.9333) 

 
(0.75,1.00) 0.9532 0.9436 0.9468 0.9478 0.9574 

  
(1.2964) (1.1226) (1.1046) (1.2485) (1.2257) 

 
(1.00,1.00) 0.9524 0.9466 0.9594 0.9516 0.9618 

  
(1.5691) (1.3373) (1.3118) (1.5059) (1.4860) 

(50,50) (0.25,0.25) 0.9484 0.9406 0.9370 0.9460 0.9454 

  
(0.2096) (0.1995) (0.1992) (0.2066) (0.2048) 

 
(0.25,0.50) 0.9538 0.9462 0.9454 0.9528 0.9520 

  
(0.3662) (0.3442) (0.3417) (0.3606) (0.3556) 

 
(0.25,0.75) 0.9526 0.9438 0.9352 0.9488 0.9510 

  
(0.6082) (0.5592) (0.5531) (0.5952) (0.5805) 

 
(0.25,1.00) 0.9492 0.9396 0.9316 0.9456 0.9466 

  
(0.9483) (0.8445) (0.8365) (0.9151) (0.8821) 

 
(0.50,0.50) 0.9542 0.9448 0.9500 0.9508 0.9526 

  
(0.4754) (0.4452) (0.4405) (0.4681) (0.4637) 

 
(0.50,0.75) 0.9510 0.9412 0.9394 0.9476 0.9494 

  
(0.6820) (0.6257) (0.6191) (0.6678) (0.6577) 

 
(0.50,1.00) 0.9548 0.9430 0.9366 0.9484 0.9488 

  
(0.9984) (0.8917) (0.8830) (0.9670) (0.9405) 

 (0.75,0.75) 0.9554 0.9490 0.9542 0.9532 0.9574 
  (0.8456) (0.7684) (0.7582) (0.8266) (0.8181) 
 (0.75,1.00) 0.9486 0.9414 0.9458 0.9466 0.9552 
  (1.1273) (1.0015) (0.9882) (1.0899) (1.0725) 
 (1.00,1.00) 0.9512 0.9510 0.9526 0.9472 0.9602 
  (1.3599) (1.1904) (1.1732) (1.3075) (1.2923) 

(100,100) (0.25,0.25) 0.9516 0.9444 0.9468 0.9506 0.9488 

  
(0.1458) (0.1419) (0.1416) (0.1445) (0.1433) 

 
(0.25,0.50) 0.9452 0.9384 0.9396 0.9434 0.9410 

  
(0.2522) (0.2436) (0.2427) (0.2496) (0.2469) 

 
(0.25,0.75) 0.9512 0.9452 0.9382 0.9480 0.9486 

  
(0.4134) (0.3936) (0.3915) (0.4068) (0.4003) 

 
(0.25,1.00) 0.9542 0.9452 0.9386 0.9506 0.9508 

  
(0.6339) (0.5914) (0.5885) (0.6158) (0.6024) 

 
(0.50,0.50) 0.9510 0.9434 0.9464 0.9480 0.9494 

  
(0.3271) (0.3151) (0.3134) (0.3234) (0.3207) 

 
(0.50,0.75) 0.9530 0.9472 0.9476 0.9504 0.9504 

  
(0.4633) (0.4407) (0.4389) (0.4563) (0.4512) 

 
(0.50,1.00) 0.9578 0.9482 0.9486 0.9528 0.9542 

  
(0.6696) (0.6266) (0.6231) (0.6530) (0.6416) 

 
(0.75,0.75) 0.9458 0.9428 0.9448 0.9438 0.9480 
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 2,n n   2,   CP (AL) 

GCI BCI PBCI BayCrI HPD 

  
(0.5727) (0.5421) (0.5385) (0.5636) (0.5586) 

 
(0.75,1.00) 0.9502 0.9462 0.9498 0.9480 0.9510 

  
(0.7526) (0.7021) (0.6978) (0.7337) (0.7251) 

 
(1.00,1.00) 0.9522 0.9498 0.9536 0.9516 0.9554 

  
(0.9008) (0.8328) (0.8260) (0.8747) (0.8667) 

Notes: Bold represents values that satisfy criteria and the best-performing method 

 

 

Table 3. The CPs and ALs of the 95% CIs for the difference between the means of BirSau distributions with 
unequal sample sizes  2 .n n  

 2,n n   2,   CP (AL) 

GCI BCI PBCI BayCrI HPD 

(10,20) (0.25,0.25) 0.9622 0.9262 0.9304 0.9512 0.9540 

  
(0.4582) (0.3732) (0.3689) (0.4318) (0.4246) 

 
(0.25,0.50) 0.9592 0.9314 0.9320 0.9490 0.9540 

  
(0.7037) (0.5811) (0.5706) (0.6720) (0.6604) 

 
(0.25,0.75) 0.9504 0.9224 0.9162 0.9446 0.9510 

  
(1.1405) (0.9138) (0.8911) (1.0870) (1.0413) 

 
(0.25,1.00) 0.9476 0.9320 0.9126 0.9426 0.9484 

  
(1.8044) (1.3666) (1.3327) (1.6900) (1.5707) 

 
(0.50,0.50) 0.9572 0.9242 0.9298 0.9452 0.9588 

  
(1.1619) (0.8565) (0.8259) (1.0868) (1.0473) 

 
(0.50,0.75) 0.9660 0.9420 0.9560 0.9564 0.9702 

  
(1.5135) (1.1224) (1.0808) (1.4236) (1.3907) 

 
(0.50,1.00) 0.9572 0.9334 0.9350 0.9522 0.9644 

  
(2.1095) (1.5225) (1.4714) (1.9592) (1.8899) 

 
(0.75,0.75) 0.9526 0.9266 0.9412 0.9406 0.9606 

  
(2.3624) (1.5271) (1.4422) (2.1522) (2.0269) 

 
(0.75,1.00) 0.9584 0.9424 0.9608 0.9492 0.9698 

  
(2.8777) (1.8691) (1.7684) (2.6158) (2.5222) 

 
(1.00,1.00) 0.9564 0.9330 0.9482 0.9458 0.9706 

  
(4.3828) (2.4446) (2.2580) (3.8109) (3.5095) 

(20,30) (0.25,0.25) 0.9566 0.9392 0.9418 0.9498 0.9498 

  
(0.3157) (0.2857) (0.2839) (0.3069) (0.3038) 

 
(0.25,0.50) 0.9572 0.9390 0.9382 0.9532 0.9522 

  
(0.5130) (0.4610) (0.4548) (0.5005) (0.4926) 

 
(0.25,0.75) 0.9484 0.9328 0.9250 0.9446 0.9486 

  
(0.8379) (0.7282) (0.7177) (0.8122) (0.7850) 

 
(0.25,1.00) 0.9464 0.9298 0.9150 0.9412 0.9418 

  
(1.3119) (1.0921) (1.0776) (1.2510) (1.1844) 

 
(0.50,0.50) 0.9532 0.9390 0.9490 0.9486 0.9558 

  
(0.7392) (0.6411) (0.6286) (0.7174) (0.7069) 

 
(0.50,0.75) 0.9566 0.9436 0.9504 0.9506 0.9602 

  
(1.0113) (0.8640) (0.8457) (0.9785) (0.9628) 

 
(0.50,1.00) 0.9512 0.9342 0.9344 0.9422 0.9532 

  
(1.4436) (1.1953) (1.1729) (1.3796) (1.3351) 

 
(0.75,0.75) 0.9534 0.9420 0.9548 0.9482 0.9630 

  
(1.3756) (1.1252) (1.0918) (1.3219) (1.2947) 

 
(0.75,1.00) 0.9460 0.9366 0.9508 0.9426 0.9576 

  
(1.7480) (1.4022) (1.3660) (1.6633) (1.6329) 

 
(1.00,1.00) 0.9562 0.9438 0.9542 0.9470 0.9632 

  
(2.2937) (1.7479) (1.6926) (2.1532) (2.0993) 

(30,50) (0.25,0.25) 0.9536 0.9386 0.9404 0.9490 0.9472 

  
(0.2456) (0.2301) (0.2292) (0.2410) (0.2387) 

 
(0.25,0.50) 0.9462 0.9336 0.9374 0.9428 0.9426 

  
(0.3894) (0.3637) (0.3610) (0.3826) (0.3780) 

 
(0.25,0.75) 0.9542 0.9456 0.9382 0.9514 0.9508 

  
(0.6229) (0.5706) (0.5660) (0.6091) (0.5954) 

 
(0.25,1.00) 0.9426 0.9324 0.9236 0.9440 0.9428 

  
(0.9534) (0.8497) (0.8418) (0.9202) (0.8886) 

 
(0.50,0.50) 0.9516 0.9392 0.9462 0.9480 0.9526 

  
(0.5635) (0.5139) (0.5068) (0.5518) (0.5452) 

 
(0.50,0.75) 0.9510 0.9460 0.9494 0.9468 0.9542 

  
(0.7507) (0.6787) (0.6697) (0.7333) (0.7246) 

 
(0.50,1.00) 0.9486 0.9382 0.9398 0.9440 0.9504 

  
(1.0473) (0.9284) (0.9166) (1.0126) (0.9907) 

 
(0.75,0.75) 0.9506 0.9408 0.9474 0.9460 0.9552 

  
(1.0207) (0.8944) (0.8785) (0.9929) (0.9771) 

 
(0.75,1.00) 0.9518 0.9412 0.9508 0.9480 0.9572 

  
(1.2632) (1.0950) (1.0773) (1.2201) (1.2046) 

 
(1.00,1.00) 0.9476 0.9400 0.9488 0.9408 0.9550 

  
(1.6514) (1.3822) (1.3539) (1.5796) (1.5489) 

(50, 100) (0.25,0.25) 0.9498 0.9398 0.9410 0.9484 0.9466 
  (0.1809) (0.1736) (0.1733) (0.1787) (0.1770) 
 (0.25,0.50) 0.9528 0.9490 0.9454 0.9488 0.9490 
  (0.2745) (0.2636) (0.2625) (0.2712) (0.2686) 
 (0.25,0.75) 0.9564 0.9484 0.9448 0.9526 0.9522 
  (0.4278) (0.4067) (0.4043) (0.4211) (0.4146) 

(50,100) (0.25,1.00) 0.9500 0.9452 0.9448 0.9496 0.9496 

  
(0.6457) (0.6021) (0.5996) (0.6280) (0.6150) 

 
(0.50,0.50) 0.9452 0.9406 0.9436 0.9434 0.9462 
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 2,n n   2,   CP (AL) 

GCI BCI PBCI BayCrI HPD 

  
(0.4081) (0.3855) (0.3833) (0.4022) (0.3980) 

 
(0.50,0.75) 0.9450 0.9400 0.9428 0.9444 0.9466 

  
(0.5264) (0.4963) (0.4924) (0.5178) (0.5130) 

 
(0.50,1.00) 0.9492 0.9428 0.9436 0.9472 0.9492 

  
(0.7145) (0.6640) (0.6596) (0.6958) (0.6866) 

 
(0.75,0.75) 0.9480 0.9386 0.9428 0.9438 0.9458 

  
(0.7182) (0.6622) (0.6555) (0.7036) (0.6943) 

 
(0.75,1.00) 0.9488 0.9450 0.9492 0.9474 0.9538 

  
(0.8728) (0.8004) (0.7917) (0.8505) (0.8421) 

 
(1.00,1.00) 0.9464 0.9432 0.9462 0.9424 0.9502 

  
(1.1483) (1.0289) (1.0154) (1.1102) (1.0927) 

Notes: Bold represents values that satisfy criteria and the best-performing method. 
 
 

Table 4. The daily wind speed data is from the Ayutthaya and Ratchaburi provinces in Thailand. 
Provinces Wind Speed (knots) 

Ayutthaya 6.6 4.7 4.2 9 9 4.4 2.8 2.8 4.4 
 3.9 3.5 3.2 5.3 4.2 6.4 3.6 2.9 5.4 
 8.7 10.2 14.4 9.6 16.3 16.5 14 9.7 7.1 
 3.3 3.9 4.7 3.3 5.9 7.5 7.2 9.1 6.7 
 3.5 4.8 4.4 3.9 5.7 7.8 6.8 7.3 5.9 
 8.1 4.7 6.3 6.9 6.1 4.7 6 7.2 6.6 
 6.5 6.2 6.3 4.1 5.1 14.6 22 18.8 13.2 
 8.6 9.7 9.7 7.5 3.9 5.1 7.9 7.9 7.4 
 6.4 7.5 7.4 6.2 7.4 4.5 3.8 6.4 7.2 
 6.8 7.6 7.4 9 5 9.1 5.2 5.2  
Ratchaburi 5.2 5.2 2.6 5.2 6.6 3.9 5.0 4.9 5.5 
 4.6 5.1 3.9 5.1 4.8 4.7 3.1 3.9 4.7 
 5.6 5.6 5.8 6.4 7.7 10.4 9.9 7.7 2.6 
 2.4 3.3 3.9 4.2 3.0 3.3 7.0 6.2 3.8 
 2.1 3.7 4.0 4.1 4.2 6.8 6.5 6.5 7.1 
 6.3 5.3 6.6 7.8 7.3 4.9 4.5 6.0 5.5 
 5.1 6.7 5.1 4.5 6.3 8.0 16.8 12.9 7.8 
 5.1 3.7 6.5 4.5 2.3 3.4 2.5 4.4 5.3 
 5.6 4.7 6.0 5.1 7.5 4.4 5.1 6.1 5.5 
 5.9 6.0 5.7 4.8 5.1 10.7 5.8 4.2  

 

 

Table 5. AIC and BIC values of Ayutthaya and Ratchaburi provinces are used to fit seven asymmetric 
distributions 

Provinces Crite- 

ria 

  Distributions    

 BirSau Cauchy Logistic Exponential Weibull Normal 

Ayutthaya AIC 439.34 466.13 463.15 527.88 462.85 480.17 
 BIC 446.81 471.11 468.12 530.37 467.83 485.15 

Ratchaburi AIC 369.28 379.92 375.47 484.03 391.33 396.34 
 BIC 376.76 384.89 380.44 486.52 396.30 401.32 

 

 

Table 6. Descriptive statistics for the wind speed data. 
Province n Min Median Mean Max Variance 

Ayutthaya 89 2.8 6.4 7.0579 22 12.4740 
Ratchaburi 89 2.1 5.1 5.5179 16.8 4.8635 

 
 

Table 7. The 95% CIs for the mean and difference of two means of wind speed for the Ayutthaya and 
Ratchaburi datasets 

Methods 
Ayutthaya Ratchaburi Ayutthaya-Ratchaburi 

Interval Length Interval Length Interval Length 

GCI 6.4217-7.716 1.3499 5.1138-5.9871 0.8733 0.7408-2.3596 1.6188 
BCI 6.3935-7.8827 1.4892 5.0861-6.0388 0.9526 0.7311-2.3936 1.6625 

PBCI 6.4494-7.7233 1.2739 5.1258-5.9420 0.8162 0.7622-2.3227 1.5605 

BayCrI 6.5072-7.8466 1.3394 5.1583-5.9922 0.8338 0.7847-2.4473 1.6626 
HPD 6.4378-7.7552 1.3174 5.1585-5.9926 0.8342 0.7232-2.3612 1.6308 
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