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1 Introduction

In 1830, the Irish mathematician Sir William
Rowan Hamilton began an exploration of com-
plex numbers with the intention of generaliza-
tion. After years of contemplation and extensive
research, he finally introduced real quaternions in
1843 as a solution to this long-standing problem,
[1], [2].
Then the researchers L. E. Dickson and L. W.
Griffiths wrote two seminal articles on the subject
of generalized quaternions, [3], [4]. Recently, the
most general form of the quaternion algebra de-
pending on 3-parameters (3PGQ) was introduced
by [5], which prompted us to look for some prop-
erties associated with this algebra, which is called
kλ1,λ2,λ3

in this article. For more information on
the properties of this algebra (see, [6], [7]).
Nowadays, quaternions hold significant impor-
tance in various domains including computer sci-
ence, quantum physics, and signal and color im-
age processing, as evidenced by [8]. Furthermore,
numerous researchers have explored various types
of quaternion sequences such as Pseudo-Lucas
Quaternions, Balancing Split Quaternions, and
Pell-Lucas numbers, as documented in studies
referenced by [9], [10]. The authors in [11], stud-
ied the quaternions whose coefficients were from
the generalized Fibonacci and Lucas sequences.
The authors in [12], studied the quaternions
whose coefficients are Pell and PellLucas num-
bers. Liano and Wolch worked on Pell and Jacob-
sthal quaternions, [13]. Moreover, Catarino stud-
ied the Fibonacci quaternion polynomials and the
modified Pell quaternions, [14], and obtained the
norm values, generating functions, Binet formulas
and identities (similar to Cassini) of these poly-

nomials.
The Fibonacci, Lucas, Pell, and Pell-Lucas se-
quences are among the most popular and widely
used sequences in the mathematical community
because of their fascination and possible applica-
tions in other fields. Pell and Pell-Lucas num-
bers weave a common thread that spans analysis,
geometry, trigonometry, and various areas of dis-
crete mathematics, including disciplines such as
number theory and linear algebra.
The study, [15], was able to introduce and gener-
alize the Pell numbers and some interesting spe-
cial results related to them. The study, [16], in-
troduced split Pell and split Pell-Lucas quater-
nions and also considered some properties of these
sequences, including the Catalan identity, the
Cassini identity, and the Ducani identity. In this
work, our main goal is to generate new quater-
nion sequences from two important families: Pell
numbers and Pell-Lucas numbers, and to present
some of their properties, and we have also en-
riched the repertoire of kλ1,λ2,λ3

quaternion alge-
bras with new properties.
The following is the organization of this paper:
Section 2 contains preliminary results for the al-
gebra of quaternions, the Pell numbers, and the
Pell-Lucas numbers. In Section 3, we detail the
results obtained for the properties of the Pell-Pell-
Lucas quaternion sequence generalized in the al-
gebra kλ1,λ2,λ3

, and we strengthen these results
by giving an order and a center of the algebra of
quaternions Finally, Section 4 presents a conclu-
sion and perspectives of research of this work in
the practical area.
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2 Definitions and Notations
In this section we state the definitions and
the main results concerning the quaternions
algebra has been introduce depending on 3-
parameters (3PGQs), Generalized Quaternions
(2-Parameter), the Pell and Pell-Lucas Numbers.

2.1 3-Parameter Generalized
Quaternions

In the following, we’ll go over some key concepts
and notations that will help us understand and
expand on this topic. From [5], we define the
set of generalized quaternions with 3-parameters
(3PGQ) as follows:

Definition 2.1 The set kλ1,λ2,λ3
defined by:

{a+ be1 + ce2 + de3 | a, b, c, d, λ1, λ2, λ3 ∈ R, }

where e21 = −λ1λ2, e22 = −λ1λ3, e23 = −λ2λ3,
e1e2e3 = −λ1λ2λ3 is called the set of generalized
quaternions with 3-parameters (3PGQ).

Each element p = x0 + x1e1 + x2e2 + x3e3 of the
set kλ1,λ2,λ3

is called a 3-parameter generalized
quaternion (3PGQ). The numbers x0, x1, x2, x3
are called components of p. The basis vectors
e0, e1, e2, e3 of the kλ1,λ2,λ3

satisfy the following
multiplication table:

Table 1. Multiplication Table

. e0 e1 e2 e3
e0 1 e1 e2 e3
e1 e1 −λ1λ2 λ1e3 −λ2e2
e2 e2 −λ1e3 −λ1λ3 λ3e1
e3 e3 λ2e2 −λ3e1 −λ2λ3

Special cases:

(i) If λ1 = 1, λ2 = α, λ3 = β, then we get the
algebra of 2PGQs.

(ii) If λ1 = 1, λ2 = 1, λ3 = 1, then we get the
algebra of Hamilton quaternions.

(iii) If λ1 = 1, λ2 = 1, λ3 = −1, then gives us
the algebra of split quaternions.

(iv) If λ1 = 1, λ2 = −1, λ3 = 0, then we get the
algebra of split semiquaternions.

Any 3PGQ p = x0 + x1e1 + x2e2 + x3e3 consists
of two parts, the vector part and the scalar part:
p = S(p) + V (p) such as:

S(p) = x0 and V (p) = x1e1 + x2e2 + x3e3

The rules of addition, scalar multiplication and
multiplication are defined on k as follows:
Let p = x0+x1e1+x2e2+x3e3 and q = y0+y1e1+
y2e2 + y3e3 be 3PGQs and α be a real number.

• Addition:

p+ q = (S(p) + S(q)) + (V (p) + V (q))

= (x0 + y0) + (x1 + y1)e1 +

(x2 + y2)e2 + (x3 + y3)e3.

• Multiplication by scalar:

αp = αx0 + αx1e1 + αx2e2 + αx3e3
for all α ∈ R.

• Multiplication: from the multiplication table,

Table 1, we have

pq = (x0y0 − λ1λ2x1y1 − λ1λ3x2y2 −
λ2λ3x3y3) + e1(x0y1 + y0x1 + λ3x2y3
−λ3x3y2) + e2(x0y2 + y0x2 + λ2x3y1
−λ2x1y3) + e3(x0y3 + y0x3 + λ1x1y2
−λ1x2y1)

• The norm of a quaternion p is:

N(p) = x20 + λ1λ2x
2
1 + λ1λ3x

2
2 + λ2λ3x

2
3

Definition 2.2 A subring O ⊆ kλ1,λ2,λ3
is an

order in kλ1,λ2,λ3
if O is a Z-lattice of kλ1,λ2,λ3

.
That is, O is a finitely generated Z-submodule of
kλ1,λ2,λ3

(which is also a subring of kλ1,λ2,λ3
by

[17]).

2.2 2-Parameter Generalized
Quaternions

Let H(α, β) be the generalized real quaternion
algebra, the elements of H(α, β) are written in
the form p = x0+x1e1+x2e2+x3e3, where xi ∈ R,
e21 = α, e22 = β, e3 = e1e2 = −e2e1. The following
expressions represent the norm and the trace of
a generalized quaternion p :

N(p) = x20 − αx21 − βx22 + αβx23 and t(a) = 2x0.

As is well known, we have

p2 − t(p)p+N(p) = 0 for all p ∈ H(α, β).

Definition 2.3 The quaternion algebra A is said
to be a division algebra if for all p ∈ A∗, N(p) 6=
0, otherwise A is called a split algebra.

Definition 2.4 For a ∈ HQ(α, β). The central-
izer of the element a is

C(a) = {x ∈ HQ(α, β) | ax = xa}.
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2.3 Properties of the Pell and
Pell-Lucas Numbers

• Let (Pn)n≥0 be a sequence of Pell numbers:

Pn = 2Pn−1 + Pn−2 where n ≥ 2 (1)

with P0 = 0, P1 = 1.

• Let (Qn)n≥0 be a sequence of Pell-Lucas
numbers:

Qn = 2Qn−1 +Qn−2 where n ≥ 2 (2)

with Q0 = 2, Q1 = 2.

• The Binets formulas of the nth Pell and Pell-
Lucas numbers are:

Pn =
γn − δn

γ − δ
for all n ∈ N,

Qn = γn + δn for all n ∈ N
with γ = 1 +

√
2, δ = 1−

√
2. (3)

The following properties of Pell and Pell-Lucas
numbers are known from [18], [19], [20].

Proposition 2.5 Let (Pn)n≥0 be a sequence of
Pell numbers and (Qn)n≥0 be the Pell-Lucas se-
quence. Then the following properties hold:

1)- P 2
n + P 2

n+1 = P2n+1 ∀ n ∈ N,

2)- Q2
n +Q2

n+1 = 8P2n+1 ∀ n ∈ N,

3)- P 2
n+1 − P 2

n =
Q2n+1 + 2(−1)n

4
∀ n ∈ N,

4)- Q2
n+1 −Q2

n = 8P2n+1 − 4(−1)n ∀ n ∈ N,

5)- P 2
n =

Q2n + 2(−1)n+1

8
∀ n ∈ N,

6)- Q2
n = Q2n + 2(−1)n ∀ n ∈ N,

7)- Pn+1Pn =
Q2n+1 − 2(−1)n

8
∀ n ∈ N,

8)- QnQn+1 −Q2n+1 = 2(−1)n ∀ n ∈ N,

9)- P2n+1 = PnQn+1 + (−1)n ∀ n ∈ N,

10)- PnQm = Pn+m + (−1)mPn−m ∀ n,m ∈ Z,

11)- PnPn+k =
1

8
(Q2n+k + (−1)n+1Qk) ∀ n, k ∈

N,

12)- Qn+2 +Qn−2 = 6Qn ∀ n ≥ 2,

13)- Pn+1 + Pn−1 = Qn ∀ n ∈ N∗.

We will introduce some other properties of Pell
and Pell-Lucas numbers. These properties will
be useful later.

Proposition 2.6 Let (Pn)n≥0 be the Pell se-
quence and (Qn)n≥0 be the Pell-Lucas sequence,
then we have

QnQn+k = Q2n+k + (−1)nQk ∀ n, k ∈ N. (4)

Proof. If we denote γ = 1 +
√

2 and δ = 1−
√

2,
by Binets formula, we have

Pn =
γn − δn

γ − δ
for all n ∈ N and

Qn =γn + δn for all n ∈ N

i) Let m, p ∈ R, p 6 m, thus

QmQp − 8PmPp = (γm + δm)(γp + δp)

−(γm − δm)(γp − δp)
= 2γpδp(γm−p + δm−p)

= 2(−1)pQm−p.

It results QmQp − 8PmPp = 2(−1)pQm−p. So,
QmQp = 8PmPp + 2(−1)pQm−p. We use the
Proposition 2.5 (11), we obtain

QmQp = Qm+p + (−1)pQm−p ∀ n ∈ N, p 6 m.

From this it follows that

QnQn+k = Q2n+k + (−1)nQk for all n, k ∈ N.

3 Generalized Pell-Pell Lucas
numbers and generalized
Pell-Pell Lucas Quaternions

Let r, t be two arbitrary integers, and let n be
an arbitrary positive integer. The numbers in a
sequence (gn)n>1, where

gn+1 = rPn + tQn+1 where n > 0

are called generalized Pell-Pell-Lucas numbers.
To emphasize the presence of the integers r and
t, we will use gr,tn instead of the notation gn. Let
kQλ1,λ2,λ3

be the generalized quaternion algebra

over the rational field. We define the nth general-
ized Pell-Pell-Lucas quaternion to be an element
of the form

Gr,tn = gr,tn e0 + gr,tn+1e1 + gr,tn+2e2 + gr,tn+3e3

In the following proposition, we compute the
norm for the nth generalized Pell-Pell-Lucas
quaternions.
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Proposition 3.1 Let n, r be two positive inte-
gers and t be an arbitrary integer. Let Gr,tn be
the nth generalized Pell-Pell-Lucas quaternion.
Then the norm of Gr,tn in the quaternion algebra

kQλ1,λ2,λ3
is given by:

N(Gr,tn ) =g
(2rt,

6+λ1λ2

8 r2+t2)

2n

+g
(2rλ1λ2t,

−1
8 r2+

λ1λ3

8 +λ1λ2t2)

2n+2

+g
(2rλ1λ3t,λ1λ3t2+

λ2λ3

8 r2)

2n+4 + g
(2rλ2λ3t,λ2λ3t2)
2n+6

+g
((1−λ1λ2+λ1λ3−λ2λ3)(

r2

4 +2t2+2rt)(−1)n,0)
2

Proof. We have

N(Gr,tn ) = g2n + λ1λ2g
2
n+1 + λ1λ3g

2
n+2 + λ2λ3g

2
n+2

= (rPn−1 + tQn)2 + λ1λ2(rPn + tQn+1)
2

+ λ1λ3(rPn+1 + tQn+2)
2 + λ2λ3(rPn+2

+ tQn+3)
2

= r2P 2
n−1 + t2Q2

n + 2rtPn−1Qn+

λ1λ2(r
2P 2

n + t2Q2
n+1 + 2rtPnQn+1)

+ λ1λ3(r
2P 2

n+1 + t2Q2
n+2 + 2rtPn+1Qn+2)

+ λ2λ3(r
2P 2

n+2 + t2Q2
n+3 + 2rtPn+2Qn+3)

= r2P 2
n−1 + λ1λ2r

2P 2
n + λ2λ3r

2P 2
n+2

+ λ1λ3r
2P 2

n+1 + t2Q2
n + λ1λ2t

2Q2
n+1

+ λ1λ3t
2Q2

n+2 + λ2λ3t
2Q2

n+3 + 2rtPn−1Qn
+ 2rtλ1λ2PnQn+1 + 2rtλ1λ3Pn+1Qn+2

+ 2rtλ2λ3Pn+2Qn+3

Using Proposition 2.5(5-6-10-12), we obtain

N(Gr,tn ) = r2

8 (6Q2n −Q2n+2 + 2(−1)n)

+ λ1λ2
r2

8 (Q2n + 2(−1)n+1)

+ λ1λ3
r2

8 (Q2n+2 + 2(−1)n+2)

+ λ2λ3
r2

8 (Q2n+4 + 2(−1)n+3)

+ t2(Q2n + 2(−1)n)

+ λ1λ3t
2(Q2n+4 + 2(−1)n+2)

+ λ2λ3t
2(Q2n+6 + 2(−1)n+3)

+ 2rt(P2n−1 + (−1)n)+

+ λ1λ22rt(P2n+1 + (−1)n+1)

+ λ1λ32rt(P2n+3 + (−1)n+2)

+ λ2λ32rt(P2n+5 + (−1)n+3)

= 2rtP2n−1 + λ1λ22rtP2n+1

+ λ1λ32rtP2n+3 + λ2λ32rtP2n+5

+ (6r
2

8 + λ1λ2r2

8 + t2)Q2n

+ (−r
2

8 + λ1λ3

8 + λ1λ2t
2)Q2n+2

+ (λ2λ3r2

8 + λ1λ3t
2)Q2n+4

+ λ2λ3t
2Q2n+6

+ r2

4 (−1)n + λ1λ2r2

4 (−1)n+1

+ λ1λ3r2

4 (−1)n+2 + λ2λ3r2

4 (−1)n+3

+ 2t2(−1)n + 2t2λ1λ2(−1)n+1

+ 2t2λ1λ3(−1)n+2 + 2t2λ2λ3(−1)n+3

+ 2rt(−1)n + 2rtλ1λ2(−1)n+1

+ 2rtλ1λ3(−1)n+2 + 2rtλ2λ3(−1)n+3

= g
(2rλ1λ2t,

−1
8 r2+

λ1λ3

8 +λ1λ2t2)

2n+2

+ g
(2rλ1λ3t,λ1λ3t2+

λ2λ3

8 r2)

2n+4 + g
(2rλ2λ3t,λ2λ3t2)
2n+6

+ r2

4 (−1)n + λ1λ2r2

4 (−1)n+1 + 2t2(−1)n

+ λ1λ3r2

4 (−1)n + λ2λ3r2

4 (−1)n+1

+ 2t2λ1λ2(−1)n+1 + 2t2λ1λ3(−1)n

+ 2t2λ2λ3(−1)n+1 + 2rt(−1)n

+ 2rtλ1λ2(−1)n+1 + 2rtλ1λ3(−1)n

+ 2rtλ2λ3(−1)n+1

= g
(2rt,

6
8 r

2+
λ1λ2

8 r2+t2)

2n

+ g
(2rλ1λ2t,

−1
8 r2+

λ1λ3

8 +λ1λ2t2)

2n+2

+ g
(2rλ1λ3t,λ1λ3t2+

λ2λ3

8 r2)

2n+4

+ g
(2rλ2λ3t,λ2λ3t2)
2n+6

+ r2

4 (−1)n(1− λ1λ2 + λ1λ3 − λ2λ3)
+ 2t2(−1)n(1− λ1λ2 + λ1λ3 − λ2λ3)
+ 2rt(−1)n(1− λ1λ2 + λ1λ3 − λ2λ3)

= g
(2rt,

6+λ1λ2

8 r2+t2)

2n + g
(2rλ1λ2t,

−1
8 r2+

λ1λ3

8 +λ1λ2t2)

2n+2

+ g
(2rλ1λ3t,λ1λ3t2+

λ2λ3

8 r2)

2n+4 + g
(2rλ2λ3t,λ2λ3t2)
2n+6

+ (1− λ1λ2 + λ1λ3 − λ2λ3)(−1)n( r
2

4 + 2t2 + 2rt)

so,

N(Gr,tn ) = g
(2rt,

6+λ1λ2

8 r2+t2)

2n

+ g
(2rλ1λ2t,

−1
8 r2+

λ1λ3

8 +λ1λ2t2)

2n+2

+ g
(2rλ1λ3t,λ1λ3t2+

λ2λ3

8 r2)

2n+4
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+ g
(2rλ2λ3t,λ2λ3t2)
2n+6

+ g
((1−λ1λ2+λ1λ3−λ2λ3)(

r2

4 +2t2+2rt)(−1)n,0)
2

Using the generalized Pell-Pell-Lucas quater-
nions, we can construct an order of quaternion al-
gebras, and we show that Pell-Pell-Lucas quater-
nions can also have an algebraic structure over Q.
The following remarks will help us.

Remark 3.1 Let r, t be two arbitrary integers
and n be an arbitrary positive integer. Let
(gr,tn )n≥1 be the generalized Pell-Pell-Lucas num-

bers. Then rPn+1 + tQn = gr,tn + g2r,0n+1 for all
n ∈ N∗.

Proof.

rPn+1 + tQn = r(2Pn + Pn−1 + tQn)

= rPn−1 + tQn + 2rPn

= gr,tn + g2r,0n+1.

Remark 3.2 Let r, t be two arbitrary inte-
gers and n be an arbitrary positive integer.
Let (Gr,tn )n>1 be the generalized Pell-Pell Lucas

quaternion elements. Then Gr,tn = 0 if and only
r = t = 0.

Proof. ⇐). It is trivial.

⇒). If Gr,tn = 0, since {e0, e1, e2, e3, } is a basis in
kλ1,λ2,λ3

, we obtain that

gr,tn = gr,tn+1 = gr,tn+2 = gr,tn+3 = 0

It results

gr,tn−1 = gr,tn+1 − g
r,t
n = 0, . . . , gr,t2 = 0, gr,t1 = 0,

therefore, t = 0. From gr,t2 = 0, we obtain r = 0.

Theorem 3.2 Let M be the set{
n∑
i=1

8Gri,tini | n ∈ N∗, ri, ti ∈ Z ∀i = 1 . . . n

}
∪{1}.

Then

(i) The set M with addition and multiplication
of quaternions has a ring structure.

(ii) The set M is an order of the quaternion al-
gebra kλ1,λ2,λ3

.

(iii)

{
n∑
i=1

8G
r
′
i ,t

′
i

ni | n ∈ N∗, r′

i, t
′

i ∈ Q ∀i = 1 . . . n

}
∪

{1} is a Q-algebra.

Proof. (i) Obviously it is.
(ii) Using Remark 3.2, we first note that 0 ∈
M. We now show that M is a Z-submodule of
kλ1,λ2,λ3

.

Let n,m ∈ N∗, a, b, r, t, r′
, t

′ ∈ Z. It is easy to
prove that

agr,tn + bgr
′
,t

′

m = gar,atn + gbr
′
,bt

′

m

This implies that aGr,tn +bGr
′
,t

′

m = Gar,atn +Gbr
′
,bt

′

m .
It is clear that M is a Z-submodule of the quater-
nion algebra kλ1,λ2,λ3

. Since this submodule basis
is {e0, e1, e2, e3}, M is a free Z-module of rank 4.
Now we prove that M is a subring of kλ1,λ2,λ3

. It

is sufficient to show that 8Gr,tn .8 G
r′,t′
m ∈ M . For

this, if m < n, we compute

8gr,tn .8g
r
′
,t

′

m = 8(rPn−1 + tQn).8(r
′
Pm−1 + t

′
Qm)

= 64rr′Pn−1Pm−1 + 64rt′Pn−1Qm
+ 64tr′PnQm−1 + 64tt′QnQm (5)

Using Proposition 2.5 (10, 11), Proposition 2.6,
Remark 3.1 and the equality (5), we obtain:

8gr,tn .8g
r′,t′

m = 8rr′(Qn+m−2 + (−1)mQn−m)

+ 64rt′(Pm+n−1 + (−1)mPn−m−1)

+ 64tr′(Pm+n−1 + (−1)mPn−m+1)

+ 64tt′(Qn+m + (−1)mQn−m)

= 8(rr′Qn+m−2 + 8r′tPn+m−1)

+ 8(8r′t(−1)mPn−m+1 + rr′(−1)mQn−m)

+ 64(rt′)Pn+m−1 + tt′Qn+m)

+ 64rt′(−1)mPn−m−1 + tt′(−1)mQn−m

= 8g8r
′t,rr′

m+n−2 + 8g16r
′t,0

m+n−1

+ g
8r′t(−1)m,rr′(−1)m
n−m + 8g

8r′t(−1)m,0
n−m+1

+ 8g8rt
′,8tt′

n+m + 8g
8rt′(−1)m,8tt′(−1)m
n−m

Therefore, 8Gr,tn .8G
r′,t′
m ∈M. Consequently, M is

an order of the quaternion algebra kλ1,λ2,λ3
.

(iii) is obvious.
It is known that if r is an odd prime positive
integer, the algebra HQ(−1, r) is a split algebra if
and only if r ≡ 1(mod4) (see, [21], [22]). In the
following, we will show that this algebra contains
an infinite number of invertible generalized Pell-
Pell-Lucas quaternion elements. In this part we
replace (λ1, λ2, λ3) by (1, 1,−r), i.e. we focus on

kQ1,1,−r = HQ(−1, r).

Proposition 3.3 Let t be any integer and n, r
be two positive integers. Let Gr,tn be the nth gen-
eralized Pell-Pell Lucas quaternion. The norm of
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Gr,tn in the quaternion algebra kQ1,1,−r has the form

(i)N(Gr,tn ) = (r2+2rt+r3+14r2t+48rt2)P2n−1

+ (8t2 − 6r3 + 2rt− 72r2t− 240rt2)P2n+1. (6)

or

(ii)N(Gr,tn ) = gu,v2n , where

u = r2 + 7r3 + 86r2t+ 288rt2

v = 8t2 − 6r3 + 2rt− 72r2t− 240rt2. (7)

Proof. (i)

N(Gr,tn ) =g2n + g2n+1 − rg2n+2 − rg2n+2

=(rPn−1 + tQn)2 + (rPn + tQn+1)
2−

r(rPn+1 + tQn+2)
2 − r(rPn+2 + tQn+3)

2

=r2P 2
n−1 + t2Q2

n + 2rtPn−1Qn

+(r2P 2
n + t2Q2

n+1 + 2rtPnQn+1)

−r(r2P 2
n+1 + t2Q2

n+2 + 2rtPn+1Qn+2)

−r(r2P 2
n+2 + t2Q2

n+3 + 2rtPn+2Qn+3)

=r2P 2
n−1 + r2P 2

n − r3P 2
n+1 − r3P 2

n+2

+t2Q2
n + t2Q2

n+1 − rt2Q2
n+2 − rt2Q2

n+3

+2rtPn−1Qn + 2rtPnQn+1

−2r2tPn+1Qn+2 − 2r2tPn+2Qn+3

=r2(P 2
n−1 + P 2

n)− r3(P 2
n+1 + P 2

n+2)

+t2(Q2
n +Q2

n+1) + 2rt(Pn−1Qn + PnQn+1)

−2r2t(Pn+1Qn+2 + Pn+2Qn+3)

−rt2(Q2
n+2 +Q2

n+3)

Using Proposition 2.5, we obtain:

N(Gr,tn ) = r2P2n−1 + 8t2P2n+1

+ 2rt(P2n−1 + (−1)n + P2n+1 + (−1)n+1)

− r3P2n+3 − 8rt2P2n+5

− 2r2t(P2n+3 + (−1)n+2 + P2n+5 + (−1)n+3)

= (r2 + 2rt)P2n−1 + (8t2 + 2rt)P2n+1

+ (−r3 − 2r2t)P2n+3 + (−8rt2 − 2r2t)P2n+5

Using Pell recurrence, we obtain:

P2n+3 =6P2n+1 − P2n−1 and

P2n+5 =30P2n+1 − 6P2n−1

Thus, we conclude that

N(Gr,tn ) =(r2 + 2rt+ r3 + 14r2t+ 48rt2)P2n−1

+(8t2 − 6r3 + 2rt− 72r2t− 240rt2)P2n+1.

(ii) according to i) we have:

N(Gr,tn ) =(r2 + 2rt+ r3 + 14r2t+ 48rt2)P2n−1

+(8t2 − 6r3 + 2rt− 72r2t− 240rt2)P2n+1.

Using Proposition 2.5 (13), we obtain :

N(Gr,tn ) =(r2 + 7r3 + 86r2t+ 288rt2)P2n−1

+(8t2 − 6r3 + 2rt− 72r2t− 240rt2)Q2n

=uP2n−1 + vQ2n

=gu,v2n ,

where

u =r2 + 7r3 + 86r2t+ 288rt2 and

v =8t2 − 6r3 + 2rt− 72r2t− 240rt2.

Proposition 3.4 Let n be an arbitrary positive
integer. Let (Pn)n≥0 be the Pell sequence and
(Qn)n≥0 be the Pell Lucas sequence. Let r be
an odd prime positive integer, r ≡ 1(mod4), t

be an arbitrary integer. Let Gr,tn be the nth gen-
eralized Pell-Pell Lucas quaternion and k1,1,−r be
the quaternion algebra. Then,

N(Gr,tn ) 6= 0 for all (n, t) ∈ N∗ × N.

Proof. From Proposition 3.3, we know that

N(Gr,tn ) =(r2 + 2rt+ r3 + 14r2t+ 48rt2)P2n−1

+(8t2 − 6r3 + 2rt− 72r2t− 240rt2)P2n+1.

Since r ∈ N∗, it follows that
r2 + 2rt+ r3 + 14r2t+ 48rt2 <

−8t2 + 6r3 − 2rt+ 72r2t+ 240rt2.
Using the inequality P2n−1 < P2n+1, we ob-

tain that N(Gr,tn ) < 0 so N(Gr,tn ) 6= 0. From [23,
Proposition 2.13], We are aware that the equation

ax = bx, a, b ∈ HK(α, β), (8)

where K is an arbitrary field of char(K) 6= 0,
a, b /∈ K, a 6= b̄, has the solutions of the form

x = λ[a−a0+b−b0]+µ[N(a−a0)−(a−a0)(b−b0)],
(9)

where, λ, µ ∈ K.
If HK(α, β) is a division quaternion algebra or
if HK(α, β)) is a split quaternion algebra and
N(a) 6= 0, N(b) 6= 0.

Proposition 3.5 Let n be a positive integer. Let
(Pn)n≥0 be the Pell sequence and (Qn)n≥0 be the
Pell-Lucas sequence. Let r be an odd prime pos-
itive integer, r ≡ 1(mod4), t be an arbitrary in-
teger. Therefore, the centralizer of the element
Gr,tn ∈ HK(−1, r) is the set

C(Gr,tn ) = {Gε,σn + χ, χ ∈ Q},
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where

ε =2λr,

σ =2λt

χ =g−2λr,−2λtn + g
2µ(u−r2−2rt),2µ(v+ r

2

8 −t
2)

2n + 2µϕ,

with λ, µ ∈ Q and ϕ = 2(−1)n+1( r
2

8 + t2 + rt).

Proof. Since

C(Gr,tn ) = {x ∈ HQ(−1, r) | xGr,tn = Gr,tn x},

using relations (8) and (9) for a = b, we obtain

that the equation xGr,tn = Gr,tn x has the solutions
of the form

x = 2λ[a− a0] + 2µ[N(a− a0)], λ, µ ∈ Q

So

x = 2λ[Gr,tn − gr,tn ] + 2µ[N(Gr,tn − gr,tn )]. (10)

For Gr,tn = gr,tn e0 + gr,tn+1e1 + gr,tn+2e2 + gr,tn+3e3, we

have N(Gr,tn ) = gu,v2n with u and v as in Proposi-
tion 3.3. From here, we have that

N(Gr,tn − gr,tn )) = gu,v2n − (gr,tn )2

= gu,v2n − (rPn−1 + tQn)2.

Using Proposition 2.5, relations 6), 5) and 10), it
results

N(Gr,tn − gr,tn ) = gu,v2n − (rPn−1 + tQn)2

= gu,v2n − r
2P 2

n−1 − t2Q2
n

−2rtPn−1Qn.

We have

Q2
n =Q2n + 2(−1)n,

P 2
n−1 =1

8Q2n−2 + 2(−1)n),

Pn−1Qn =P2n−1 + (−1)n,

so

N(Gr,tn − gr,tn )) =gu,v2n − r
2(18(Q2n−2 + 2(−1)n))

−t2(Q2n + 2(−1)n)

−2rt(P2n−1 + (−1)n)

=gu,v2n − r2

8 Q2n−2 − t2Q2n

−2rtP2n−1 − 2r2

8 (−1)n

−2t2(−1)n − 2rt(−1)n,

we have Pn = 1
8(Qn+1 + Qn−1) so Q2n−2 =

8P2n−1 −Q2n, we obtain:

N(Gr,tn − gr,tn ) =gu,v2n − r2

8 (8P2n−1 −Q2n)− t2Q2n

−2rtP2n−1 + 2(−1)n+1( r
2

8 + t2 + rt)

=gu,v2n − r
2P2n−1 + r2

8 Q2n − t2Q2n

−2rtP2n−1 + 2(−1)n+1( r
2

8 + t2 + rt)

=gu,v2n + (−r2 − 2rt)P2n−1 + ( r
2

8 − t
2)Q2n

+2(−1)n+1( r
2

8 + t2 + rt)

=gu,v2n + g
−r2−2rt, r

2

8 −t
2

2n

+2(−1)n+1( r
2

8 + t2 + rt)

=g
u−r2−2rt,v+ r

2

8 −t
2

2n + ϕ,

where ϕ = 2(−1)n+1( r
2

8 + t2 + rt).
Using relation (10), we obtain

x = 2λ[Gr,tn − gr,tn ] + 2µ[g
u−r2−2rt,v+ r

2

8 −t
2

2n + ϕ]

= 2λ[Gr,tn − gr,tn ] + 2µ[g
u−r2−2rt,v+ r

2

8 −t
2

2n + ϕ]

= G2λr,2λt
n + g−2λr,−2λtn

+ g
2µ(u−r2−2rt),2µ(v+ r

2

8 −t
2)

2n + 2µϕ.

4 Conclusions
In this study we introduced a special set of el-
ements, called Pell and Pell-Lucas quaternions,
and showed that this set is an order of the quater-
nion algebra kλ1,λ2,λ3

in the sense of ring theory.
The determination of all properties of this alge-
bra, as well as the circumstances under which
it is a split algebra or a division algebra, will
be highly intriguing, especially in the practical
field. More precisely, the applications of Bell-
Lucas quaternions are not as extensive as the
applications of more familiar mathematical con-
cepts such as complex numbers or quaternions
themselves. Therefore, we will try to focus fu-
ture work on studying the applied aspect of Bell-
Lucas quaternions by addressing the following fu-
ture works:

1)- Cryptographic algorithms,
2)- Image processing.
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