Composition Operators between $\mathbb{B} \mathbb{C}$-rearrangement Invariant $\mathbb{B} \mathbb{C}$ Module Spaces

İLKER ERYILMAZ
Department of Mathematics,
Ondokuz Mayıs University, Faculty of Sciences, Kurupelit campus, 55139 Atakum-Samsun, TURKEY

Abstract

This paper investigates the behavior and structural properties of composition operators within the framework of $\mathbb{B C}$-rearrangement $\mathbb{B C}$-module spaces. Building upon the foundational concepts of $\mathbb{B C}$-modules and rearrangement-invariant spaces, we explore the intricate interplay between these spaces under the action of composition operators. Our study delves into the algebraic and topological aspects of composition operators, elucidating their impact on the underlying space structures. After establishing the necessary background on $\mathbb{B C}$ -modules and $\mathbb{B C}$-rearrangement-invariant spaces and laying the groundwork for our subsequent analysis, a rigorous examination of composition operators, we uncover fundamental properties such as \mathbb{D}-continuity, \mathbb{D} boundedness, and \mathbb{D}-compactness, shedding light on the intrinsic characteristics of these operators within $\mathbb{B C}$ module spaces.

Key-Words: - Bicomplex numbers, $\mathbb{B C}$-valued function, Hyperbolic norm, $\mathbb{B} \mathbb{C}$-Distribution Function, $\mathbb{B} \mathbb{C}$ Rearrangement, $\mathbb{B C}$-Banach function space, multiplication operator, Composition operator.

Received: September 15, 2023. Revised: April 16, 2024. Accepted: June 16, 2024. Published: July 19, 2024.

1 Introduction and Preliminaries on $\mathbb{B C}$

Numerous mathematical disciplines, such as probability theory, mathematical and functional analysis, naturally use bicomplex $(\mathbb{B C})$-valued functions. While traditional functional analysis operates within vector spaces over real or complex numbers, considering modules with bicomplex scalars extends the framework, leading to exploration of new mathematical structures and properties. Important contributions included in the book [1], presenting pioneer opinions into modules with bicomplex scalars. Besides, several articles are written about studying topological bicomplex modules and fundamental theorems related to them. These papers cover fundamental topics such as Hahn-Banach theorem, bounded linear operators, topological properties and functional analysis. Moreover, a comprehensive review of bicomplex analysis and geometry is presented in [2]. The other references such as [3], [4], [5], [6], [7], [8], [9], [10] and [11] guide to the understanding of bicomplex modules, functional analysis, and related areas, giving insights, theorems, and applications for researchers in these fields.

The set bicomplex numbers $\mathbb{B C}$ which is a fourdimensional extension of the real numbers is defined as

$$
\mathbb{B C}:=\left\{W=w_{1}+j w_{2} \mid w_{1}, w_{2} \in \mathbb{C}(i)\right\}
$$

where i and j are imaginary units satisfying $i j=j i$ and $i^{2}=j^{2}=-1$. The set of bicomplex numbers forms a commutative ring under the usual addition and usual multiplication operations. The production of the imaginary units i and j find out a new hyperbolic unit k, where $k^{2}=1$. According to this k is a square root of 1 and is distinct from i and j. The product operation of all units i, j, and k in the bicomplex numbers is commutative and satisfies

$$
i j=k, j k=-i \text { and } i k=-j
$$

Furthermore, $\mathbb{B C}$ is a normed space with the norm $\|W\|=\sqrt{\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}}$ for any $W=w_{1}+j w_{2}$ in $\mathbb{B C}$. In light of this,

$$
\left\|W_{1} W_{2}\right\| \leq \sqrt{2}\left\|W_{1}\right\|\left\|W_{2}\right\|
$$

for every $W_{1}, W_{2} \in \mathbb{B C}$, and finally $\mathbb{B C}$ is a modified Banach algebra, [12]. Hyperbolic numbers \mathbb{D} are two-dimensional extension of the real numbers that form a number system known as the hyperbolic plane or hyperbolic plane algebra. They can be represented in the form $\beta=\beta_{1}+k \beta_{2}$, where
β_{1} and β_{2} are real numbers, and k is the hyperbolic unit. If the hyperbolic numbers e_{1} and e_{2} are defined as:

$$
e_{1}=\frac{1+k}{2} \quad \text { and } \quad e_{2}=\frac{1-k}{2}
$$

then it is easy to see that

$$
e_{1}^{2}=e_{1}, \quad e_{2}^{2}=e_{2}, \quad e_{1}+e_{2}=1, \quad e_{1} \cdot e_{2}=0
$$

and $\left\|e_{1}\right\|=\left\|e_{2}\right\|=\frac{\sqrt{2}}{2}$. By using this linearly independent set $\left\{e_{1}, e_{2}\right\}$, any $W=w_{1}+j w_{2} \in \mathbb{B C}$ can be written as a linear combination of e_{1} and e_{2} uniquely. That is,

$$
\begin{equation*}
W=w_{1}+j w_{2}=e_{1} z_{1}+e_{2} z_{2} \tag{1}
\end{equation*}
$$

where $z_{1}=w_{1}-i w_{2}$ and $z_{2}=w_{1}+i w_{2}$ [1]. The formula in (1) is called the idempotent representation of the bicomplex number W. Besides the Euclidean-type norm $\|\cdot\|$, another norm named with (\mathbb{D}-valued) hyperbolic-valued norm $|W|_{k}$ of any bicomplex number $W=e_{1} z_{1}+e_{2} z_{2}$ is defined as

$$
|W|_{k}=e_{1}\left|z_{1}\right|+e_{2}\left|z_{2}\right| .
$$

For any hyperbolic number $\alpha=\beta_{1}+k \beta_{2} \in \mathbb{D}$, the idempotent representation can also be written as

$$
\alpha=e_{1} \alpha_{1}+e_{2} \alpha_{2}
$$

where $\alpha_{1}=\beta_{1}+\beta_{2}$ and $\alpha_{2}=\beta_{1}-\beta_{2}$ are real numbers. If $\alpha_{1}>0$ and $\alpha_{2}>0$ for any $\alpha=\beta_{1}+$ $k \beta_{2}=e_{1} \alpha_{1}+e_{2} \alpha_{2} \in \mathbb{D}$, then we say that α is a positive hyperbolic number and denote by $\alpha \in \mathbb{D}^{+}$. Now, let α and γ be any two elements of \mathbb{D}. In [1] and [2], a relation \leq is defined on \mathbb{D} by

$$
\alpha \leq \gamma \Leftrightarrow \gamma-\alpha \in \mathbb{D}^{+} \cup\{0\}
$$

It is shown in [1] that this relation " \leq " defines a partial order on \mathbb{D}. If idempotent representations of the hyperbolic numbers α and γ are written as $\alpha=$ $e_{1} \alpha_{1}+e_{2} \alpha_{2}$ and $\gamma=e_{1} \gamma_{1}+e_{2} \gamma_{2}$, then $\alpha \leq \gamma \Leftrightarrow$ $\alpha_{1} \leq \gamma_{1}$ and $\alpha_{2} \leq \gamma_{2}$. By $\alpha<\gamma$, we mean $\alpha_{1}<\gamma_{1}$ and $\alpha_{2}<\gamma_{2}$.
Any function f defined on \mathbb{D} is called \mathbb{D}-increasing if $f(\alpha) \prec f(\gamma), \mathbb{D}$-decreasing if $f(\alpha) \succ f(\gamma), \mathbb{D}$ nonincreasing if $f(\alpha) \succeq f(\gamma)$ and \mathbb{D}-nondecreasing if $f(\alpha) \leq f(\gamma)$ whenever $\alpha \prec \gamma$. For more details on hyperbolic numbers \mathbb{D} and partial order " \leq ", one can refer to [1] and [2].

Definition 1 Let A be a subset of \mathbb{D}. A is called a \mathbb{D} bounded above set if there is a hyperbolic number δ such that $\delta \geq \alpha$ for all $\alpha \in A$. If $A \subset \mathbb{D}$ is \mathbb{D} bounded from above, then the \mathbb{D}-supremum of A is
defined as the smallest member of the set of all upper bounds of A [1], [7].
Remark 2 [1] Let A be a \mathbb{D}-bounded above subset of $\mathbb{D}, \quad A_{1}:=\left\{\lambda_{1}: e_{1} \lambda_{1}+e_{2} \lambda_{2} \in A\right\}$ and $A_{2}:=$ $\left\{\lambda_{2}: e_{1} \lambda_{1}+e_{2} \lambda_{2} \in A\right\}$. Then the sup ${ }_{\mathbb{D}} A$ is given by

$$
\sup _{\mathbb{D}} A:=e_{1} \sup _{1}+e_{2} \sup _{2}
$$

Similarly, for any \mathbb{D}-bounded below set A, \mathbb{D} infimum of A is defined as

$$
\inf f_{\mathbb{D}} A=e_{1} \inf A_{1}+e_{2} \inf A_{2}
$$

Remark 3 A $\mathbb{B} \mathbb{C}$-module space or \mathbb{D}-module space Y can be decomposed as

$$
\begin{equation*}
Y=e_{1} Y_{1}+e_{2} Y_{2} \tag{2}
\end{equation*}
$$

where $Y_{1}=e_{1} Y$ and $Y_{2}=e_{2} Y$ are \mathbb{R}-vector or $\mathbb{C}(i)$-vector spaces. The spelling in (2) is called the idempotent decomposition of the space Y [2], [7].

Definition 4 Let \mathfrak{M} be a σ-algebra on a set Ω. A bicomplex-valued function $\mu=\mu_{1} e_{1}+\mu_{2} e_{2}$ defined on Ω is called
(i) $\mathbb{B C}$-measure on \mathfrak{M} if μ_{1}, μ_{2} are complex measures on \mathfrak{M},
(ii) \mathbb{D}-measure on \mathfrak{M} if μ_{1}, μ_{2} are positive measures on \mathfrak{M},
(iii) \mathbb{D}^{+}-measure on \mathfrak{M} if μ_{1}, μ_{2} are real measures on \mathfrak{M},[13], [14].

Assume that $\Omega=(\Omega, \mathfrak{M}, \mu)$ is a σ-finite complete measure space and f_{1}, f_{2} are complexvalued (real-valued) measurable functions on Ω. The function having idempotent decomposition $f=$ $f_{1} e_{1}+f_{2} e_{2}$ is called a $\mathbb{B C}$-measurable function and $|f|_{k}=\left|f_{1}\right| e_{1}+\left|f_{2}\right| e_{2} \quad$ is called a $\quad \mathbb{D}$-valued measurable function on Ω, [13], [14].

For any $\mathbb{B C}$-valued measurable function $f=$ $f_{1} e_{1}+f_{2} e_{2}$, it is easy to see that $|f|_{k}=\left|f_{1}\right| e_{1}+$ $\left|f_{2}\right| e_{2}$ is \mathbb{D}-valued measurable. Also for any two $\mathbb{B C}$-valued measurable functions f and g, it can be easily seen that their sum and multiplication functions are also $\mathbb{B C}$-measurable functions [13], [14].

More results on \mathbb{D}-topology such as \mathbb{D}-limit, \mathbb{D} continuity, \mathbb{D}-Cauchy and \mathbb{D}-convergence etc. can be found in [2], [3], [4], [5], [7], [13], [14] and the references therein.

Definition 5 Let $\mu=\mu_{1} e_{1}+\mu_{2} e_{2}$ be a \mathbb{D}-measure and $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2}$ be a $\mathbb{B C}$-measure on \mathfrak{M}. Then λ is said to be absolutely $\mathbb{B C}$-continuous with respect to μ, and denoted by $\lambda \ll_{\mathbb{B} \mathbb{C}} \mu$, if λ_{i} is absolutely continuous with respect to μ_{i} for $i=1,2$ [14].

If for any $A \in \mathfrak{M}, \lambda_{i}$ is concentrated on A for $i=1,2$, then λ is said to be $\mathbb{B} \mathbb{C}$-concentrated on A.

Any two $\mathbb{B C}$-measures $\lambda^{\prime}=\lambda_{1}^{\prime} e_{1}+\lambda_{2}^{\prime} e_{2}, \lambda^{\prime \prime}=$ $\lambda_{1}^{\prime \prime} e_{1}+\lambda_{2}^{\prime \prime} e_{2}$ on \mathfrak{M} are called mutually $\mathbb{B} \mathbb{C}$-singular, and denoted by $\lambda^{\prime} \perp_{\mathbb{B} C} \lambda^{\prime \prime}$ if λ_{i}^{\prime} and $\lambda_{i}^{\prime \prime}$ are mutually singular for $i=1,2$ [14].

Theorem 6 (Lebesgue-Radon-Nikodym Theorem) Let \mathfrak{M} be a σ-algebra on Ω. Let μ be a σ-finite \mathbb{D} measure on \mathfrak{M}, and let λ be $\mathbb{B C}$-measure on \mathfrak{M}.
(a) There is a unique pair of $\mathbb{B} \mathbb{C}$-measures $\lambda^{\prime}, \lambda^{\prime \prime}$ on \mathfrak{M} such that

$$
\lambda=\lambda^{\prime}+\lambda^{\prime \prime}
$$

where $\lambda^{\prime} \ll_{\mathbb{B} C} \mu$ and $\lambda^{\prime \prime} \perp_{\mathbb{B} C} \mu$. If λ is \mathbb{D}-finite measure on \mathfrak{M} then $\lambda^{\prime}, \lambda^{\prime \prime}$ are also so.
(b) There exists a unique $h \in L_{\mathbb{B} \mathbb{C}}^{1}(\mu)$ such that

$$
\lambda^{\prime}(E)=\int_{E} h d \mu
$$

for all $E \in \mathfrak{M}$ [14].

2 Main Results

Let $(\Omega, \mathfrak{M}, \vartheta)$ be a σ-finite complete $\mathbb{B} \mathbb{C}$-measure space with $\vartheta=\vartheta_{1} e_{1}+\vartheta_{2} e_{2}$ and $\mathfrak{F}(\Omega, \mathfrak{M})$ indicate the set of all \mathfrak{M}-measurable, $\mathbb{B C}$-valued functions on Ω.
Definition 7 [8] Let $u \in \mathfrak{F}(\Omega, \mathfrak{M})$ and $E_{M}=$ $\left\{x \in \Omega:|u(x)|_{k}>M\right\}$ for any $M \geq 0$. If the set A is defined as

$$
\begin{aligned}
A & =\left\{M \succ 0: \vartheta\left(E_{M}\right)=0\right\} \\
& =\left\{M \in \mathbb{D}^{+}:|u(x)|_{k} \preceq M \vartheta-a . e .\right\}
\end{aligned}
$$

then essential \mathbb{D}-supremum of u, denoted by $\operatorname{essup}_{\mathbb{D}} u$ or $\|u\|_{\mathbb{D}}^{\mathbb{D}}$ is defined by

$$
\|u\|_{\infty}^{\mathbb{D}}=\operatorname{essup}_{\mathbb{D}} u=\inf f_{\mathbb{D}}(A)
$$

Definition 8 Let $u=u_{1} e_{1}+u_{2} e_{2}$ be an element of $\mathfrak{F}(\Omega, \mathfrak{M})$. Then $D_{u}^{\mathbb{B C}}: \mathbb{D}^{+} \cup\{0\} \rightarrow \mathbb{D}^{+} \cup\{0\}, \mathbb{B} \mathbb{C}-$ distribution function of u, is given by

$$
\begin{align*}
D_{u}^{\mathbb{B C}}(\lambda)= & D_{u_{1}}\left(\lambda_{1}\right) e_{1}+D_{u_{2}}\left(\lambda_{2}\right) e_{2} \\
= & \vartheta_{1}\left\{x \in \Omega:\left|u_{1}(x)\right|>\lambda_{1}\right\} e_{1} \\
& +\vartheta_{2}\left\{x \in \Omega:\left|u_{2}(x)\right|>\lambda_{2}\right\} e_{2} \tag{3}
\end{align*}
$$

for all $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2} \geq 0$.
Definition 9 Let $\lambda \in \mathbb{D}^{+} \cup\{0\}$ and $u \in \mathfrak{F}(\Omega, \mathfrak{M})$. Then $\mathbb{B C}$-rearrangement of u, is the function $u_{\mathbb{B} \mathbb{C}}^{*}: \mathbb{D}^{+} \cup\{0\} \rightarrow \mathbb{D}^{+} \cup\{0\}$ defined by

$$
\begin{align*}
& u_{\mathbb{B} \mathbb{C}}^{*}(t)=\inf _{\mathbb{D}}\left\{\alpha \geq 0: D_{u}^{\mathbb{B C}}(\alpha) \leq t\right\} \\
& =\sum_{i=1}^{2} \inf \left\{\alpha_{i} \geq 0: D_{u_{i}}\left(\alpha_{i}\right) \leq t_{i}\right\} e_{i} \\
& =u_{1}^{*}\left(t_{1}\right) e_{1}+u_{2}^{*}\left(t_{2}\right) e_{2} \tag{4}
\end{align*}
$$

where $\inf _{\mathbb{D}} \varnothing=\infty_{\mathbb{D}}$.
According to [13], since
$\|u\|_{\infty}^{\mathbb{D}}=\inf _{\mathbb{D}}\left\{\alpha \geq 0: \vartheta\left\{x \in \Omega:|u(x)|_{k}>\alpha\right\}=0\right\}$,
and $\left\|u_{1}\right\|_{\infty},\left\|u_{2}\right\|_{\infty} \leq\|u\|_{\infty}^{\mathbb{D}}$, one can write $\|u\|_{\infty}^{\mathbb{D}}=$ $\left\|u_{1}\right\|_{\infty} e_{1}+\left\|u_{2}\right\|_{\infty} e_{2}$ and so $u_{\mathbb{B} \mathbb{C}}^{*}(0)=\inf _{\mathbb{D}}\left\{\alpha \geq 0: D_{u}^{\mathbb{B} \mathbb{C}}(\alpha)=0\right\}$

$$
=\inf _{\mathbb{D}}\left\{\alpha \geq 0: \vartheta_{j}\left\{x \in \Omega:\left|u_{j}(x)\right|>\alpha_{j}\right\}=0\right.
$$

$j=1,2\}$

$$
\begin{equation*}
=\|u\|_{\infty}^{\mathbb{D}} \tag{5}
\end{equation*}
$$

$2.1 \mathbb{B C}$-rearrangement Invariant $\mathbb{B C}$-module Spaces

The $\mathbb{B C}$-Banach function space X is defined as $X=\left\{f \in \mathfrak{F}(\Omega, \mathfrak{M}):\|f\|_{X} \prec \infty_{\mathbb{D}}\right\}$,
where the norm $\|\cdot\|_{X}$ on X has the following properties:

1. $\|f\|_{X}=0$ if and only if $f(x)=0 \mu$-a.e. on Ω;
2. $\|f\|_{X}=\left\||f|_{k}\right\|_{X}$ for all $f \in \mathfrak{F}(\Omega, \mathfrak{M})$;
3. for every $Q \subset \Omega$ with $\mu(Q)<\infty_{\mathbb{D}}$, we have $\left\|\chi_{Q}\right\|_{X}<\infty_{\mathbb{D}}$;
4. if $f_{n} \in \mathfrak{F}(\Omega, \mathfrak{M})$ is a \mathbb{D}-increasing convergent sequence and $f_{n} \xrightarrow{\mathbb{D}} f(\mu$-a.e. $)$ on Ω, then $\left\|f_{n}\right\|_{X} \xrightarrow{\mathbb{D}}\|f\|_{X} ;$
5. if $f, g \in \mathfrak{F}(\Omega, \mathfrak{M})$ and $0 \leq f(x) \leq g(x)(\mu-$ a.e. $)$ on Ω, then $\|f\|_{X} \leq\|g\|_{X}$;
6. for every $Q \subset \Omega$ with $\mu(Q)<\infty_{\mathbb{D}}$, there is a constant $c_{Q} \in \mathbb{D}$ such that $\int_{Q}|f(x)|_{k} d \mu \leq c_{Q}\|f\|_{X}$ for all $f \in \mathfrak{F}(\Omega, \mathfrak{M})$.

Let $\left(\Omega_{1}, \mathfrak{M}_{1}, \mu\right),\left(\Omega_{2}, \mathfrak{M}_{2}, v\right)$ be two σ-finite complete $\mathbb{B C}$-measure spaces and $\mathfrak{F}\left(\Omega_{1}, \mathfrak{M}_{1}\right)$, $\mathfrak{F}\left(\Omega_{2}, \mathfrak{M}_{2}\right)$ denote the linear space of all bicomplex \mathfrak{M}_{1}-measurable functions on Ω_{1} and bicomplex \mathfrak{M}_{2}-measurable functions on Ω_{2}, respectively. Any two functions $f \in \mathscr{F}\left(\Omega_{1}, \mathfrak{M}_{1}\right)$ and $g \in$ $\mathfrak{F}\left(\Omega_{2}, \mathfrak{M}_{2}\right)$ are said to be $\mathbb{B C}$-equimeasurable if they have the same distribution function, that is, if

$$
D_{f, \mu}^{\mathbb{B} \mathbb{C}}(\lambda)=D_{g, v}^{\mathbb{B} \mathbb{C}}(\lambda) \text { for all } \lambda \geq 0
$$

A function f in a $\mathbb{B C}$-Banach function space X is said to have an absolutely continuous norm if $\left\|f \chi_{E_{n}}\right\|_{X} \xrightarrow{\mathbb{D}} 0 \quad$ for \quad each \quad sequence $\quad\left\{E_{n}\right\}_{n \in \mathbb{N}}$ converging to $\varnothing(\mu-$ a.e $)$. We say that X is a $\mathbb{B} \mathbb{C}$ Banach function space with absolutely continuous norm if each function in X has absolutely continuous norm. A $\mathbb{B C}$-rearrangement invariant space is a $\mathbb{B C}$-Banach function space X such that whenever $f \in X$ and g is a $\mathbb{B C}$-equimeasurable function with f, then $g \in X$ and $\|g\|_{X}=\|f\|_{X}$.

For details on Banach function spaces, an interested reader can, [15].

Proposition 10 Let $\left(X,\|\cdot\|_{X}\right)$ be a $\mathbb{B} \mathbb{C}$ rearrangement invariant $\mathbb{B C}$-Banach function space
on a resonant measure space $(\Omega, \mathfrak{M}, \mu)$. Then the associate space X^{\prime} is also a $\mathbb{B C}$-rearrangement invariant $\mathbb{B C}$-module space (under the norm $\|\cdot\|_{X^{\prime}}$) and these norms are given by

$$
\begin{aligned}
&\|g\|_{X^{\prime}}=\sup _{\mathbb{D}}\left\{\int_{\mathbb{D}^{+}} f_{\mathbb{B} C}^{*}(s) g_{\mathbb{B} C}^{*}(s) d s:\|f\|_{X}\right. \\
&\leq 1\}, \quad g \in \mathfrak{F}(\Omega, \mathfrak{M}) \\
&=\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|f\|_{X} \leq 1\right\} e_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\|f\|_{X}=\sum_{i=1}^{2} \sup & \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}}\right. \\
& \leq 1\} e_{i}, \quad f \in \mathfrak{F}(\Omega, \mathfrak{M})
\end{aligned}
$$

where $s=e_{1} s_{1}+e_{2} s_{2}$.
One can see [15] and [16] for detailed study on rearrangement invariant spaces.

$2.2 \mathbb{D}$-Boundedness

Let $T: \Omega_{2} \rightarrow \Omega_{1}$ be a $\mathbb{B} \mathbb{C}$-measurable transformation, that is, $\quad T^{-1}(E) \in \mathfrak{M}_{2} \quad$ for any $\quad E \in \mathfrak{M}_{1}$. If $v\left(T^{-1}(E)\right)=0$ for all $E \in \mathfrak{M}_{1}$ with $\mu(E)=0$, then T is said to be nonsingular. This situation says that the measure $v \circ T^{-1}$, defined by $v \circ T^{-1}(E)=$ $v\left(T^{-1}(E)\right)$ for $E \in \mathfrak{M}_{1}$ is absolutely $\mathbb{B} \mathbb{C}$-continuous with respect to $\mu\left(v \circ T^{-1}<_{\mathbb{B} C} \mu\right)$. Then Theorem 6 ensures the existence of a function $f_{T}=f_{T}^{1} e_{1}+$ $f_{T}^{2} e_{2} \in L_{\mathbb{B} \mathbb{C}}^{1}(\mu)$ on Ω_{1} such that $v \circ T^{-1}(E)=v_{1}\left(T^{-1}(E)\right) e_{1}+v_{2}\left(T^{-1}(E)\right) e_{2}$

$$
\begin{aligned}
& =\int_{E}\left(f_{T}^{1} e_{1}+f_{T}^{2} e_{2}\right)\left(d \mu_{1} e_{1}+d \mu_{2} e_{2}\right) \\
& =\sum_{i=1}^{2} e_{i} \int_{E} f_{T}^{i} d \mu_{i}
\end{aligned}
$$

for all $E \in \Omega_{1}$. Therefore any measurable nonsingular transformation T induces a linear operator (which is called composition operator) C_{T} from $\mathfrak{F}\left(\Omega_{1}, \mathfrak{M}_{1}\right)$ into $\mathfrak{F}\left(\Omega_{2}, \mathfrak{M}_{2}\right)$ defined by:

$$
C_{T}(f)(\cdot)=f(T(\cdot)), \quad x \in \Omega_{2}
$$

The non-singularity of T guarantees that the operator C_{T} is well defined as a map from $\mathfrak{F}\left(\Omega_{1}, \mathfrak{M}_{1}\right)$ into $\mathfrak{F}\left(\Omega_{2}, \mathfrak{M}_{2}\right)$ since $f=g$ (μ-a.e. $)$ implies $C_{T}(f)=C_{T}(g)(v-a . e)$. The study of these operators on Lebesgue spaces has been made in
[17], [18], [19], [20], [21], [22] and references therein. Composition operators on the Lorentz spaces, weighted Lorentz spaces, Lorentz-Karamata spaces were studied in [23], [24] and [25].

Theorem 11 Let X and Y be two $\mathbb{B C}$-rearrangement invariant $\mathbb{B C}$-module spaces on the resonant measure spaces $\left(\Omega_{1}, \mathfrak{M}_{1}, \mu\right)$ and $\left(\Omega_{2}, \mathfrak{M}_{2}, v\right)$ with the fundamental functions ψ_{X} and ψ_{Y}, respectively. Also, let $T: \Omega_{2} \rightarrow \Omega_{1}$ be a non-singular measurable transformation. Then C_{T} is a \mathbb{D}-bounded composition operator from X into Y if and only if

$$
\begin{equation*}
\left(v \circ T^{-1}\right)(E) \leq b \mu(E) \tag{6}
\end{equation*}
$$

for all $E \in \mathfrak{M}_{1}$, for some $b=b_{1} e_{1}+b_{2} e_{2}>0$.
Proof. Suppose that the condition (6) holds. Then

$$
\begin{aligned}
D_{C_{T} f}^{\mathbb{B C} C}(\lambda) & =D_{f_{1}(T)}\left(\lambda_{1}\right) e_{1}+D_{f_{2}(T)}\left(\lambda_{2}\right) e_{2} \\
& =\sum_{i=1}^{2} v_{i}\left\{x \in \Omega_{2}:\left|f_{i}(T(x))\right|>\lambda_{i}\right\} e_{i} \\
& =\sum_{i=1}^{2} v_{i} T^{-1}\left\{y \in \Omega_{1}:\left|f_{i}(y)\right|>\lambda_{i}\right\} e_{i} \\
& \leq \sum_{i=1}^{2} b_{i} \mu_{i}\left\{y \in \Omega_{1}:\left|f_{i}(y)\right|>\lambda_{i}\right\} e_{i} \\
& =\left(e_{1} b_{1}+e_{2} b_{2}\right)\left(D_{f_{1}}\left(\lambda_{1}\right) e_{1}+D_{f_{2}}\left(\lambda_{2}\right) e_{2}\right) \\
& =b D_{f}^{\mathbb{B C}}(\lambda) .
\end{aligned}
$$

Therefore, we get

$$
\left\{\lambda>0: D_{f}^{\mathbb{B C} C}(\lambda) \leq t\right\} \subset\left\{\lambda>0: D_{C_{T} f}^{\mathbb{B C}}(\lambda) \leq b t\right\}
$$

and consequently

$$
\left(C_{T} f\right)_{\mathbb{B} \mathbb{C}}^{*, v}(b t) \leq f_{\mathbb{B} \mathbb{C}}^{*, \mu}(t) \text { for all } t \geq 0
$$

For $b \geq 1$ and $g \in X^{\prime}$, by using the \mathbb{D}-decreasing property of g^{*}, we see that

$$
\begin{aligned}
& \left\|C_{T} f\right\|_{X}= \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} C_{T} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i} \\
& \leq \sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(\frac{s_{i}}{b_{i}}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i} \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(b_{i} s_{i}\right) b_{i} d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i} \\
& \leq \sum_{i=1}^{2} b_{i} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i} \\
& =b\|f\|_{X} .
\end{aligned}
$$

Similarly, we have:

$$
\begin{aligned}
& \left\|C_{T} g\right\|_{X^{\prime}}= \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) C_{T} g_{i}^{*}\left(s_{i}\right) d s_{i}:\|f\|_{X} \leq 1\right\} e_{i} \\
& \leq \sum_{i=1}^{2} b_{i} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|f\|_{X} \leq 1\right\} e_{i} \\
& =b\|g\|_{X^{\prime}}
\end{aligned}
$$

for all $g \in X^{\prime}$. Thus C_{T} is a \mathbb{D}-bounded composition operator on X and X^{\prime}.

Conversely, let $E \in \mathfrak{M}_{1}$ with $0<\mu(E)<$ $\infty_{\mathbb{D}}$. Then by definition of $\mathbb{B} \mathbb{C}$-Banach function space, we have $\chi_{E} \in X$ and $\chi_{E} \in X^{\prime}$. Besides

$$
\left\|C_{T} \chi_{E}\right\|_{X} \leq k\left\|\chi_{E}\right\|_{X}
$$

for some $k>0$, and this implies that

$$
\begin{equation*}
\psi_{Y}\left(v\left(T^{-1}(E)\right)\right) \leq k \psi_{X}(\mu(E)) \tag{7}
\end{equation*}
$$

for some $k>0$. Similarly, we have

$$
\begin{equation*}
\psi_{Y^{\prime}}\left(v\left(T^{-1}(E)\right)\right) \leq k^{\prime} \psi_{X^{\prime}}(\mu(E)) \tag{8}
\end{equation*}
$$

for some $k^{\prime}>0$. If we multiply the inequalities (7) and (8), we get

$$
v T^{-1}(E) \leq k k^{\prime} \mu(E)
$$

by [15]. Therefore, $v\left(T^{-1}(E)\right) \leq b \mu(E)$, for some $b=k k^{\prime} \succ 0$.

Consider the vector space $\mathcal{F}(\Omega)$ comprising all $\mathbb{B C}$-valued functions on a nonempty set Ω. Let $u: \Omega \rightarrow \mathbb{B C}$ be a $\mathbb{B C}$-measurable function on Ω such that $u \cdot f \in \mathcal{F}(\Omega)$ whenever $f \in \mathcal{F}(\Omega)$, where $u=$ $u_{1} e_{1}+u_{2} e_{2}$ and $f=f_{1} e_{1}+f_{2} e_{2}$. This gives rise to a linear transformation $M_{u}: \mathcal{F}(\Omega) \rightarrow \mathcal{F}(\Omega)$ defined as

$$
M_{u}(f)=u \cdot f=u_{1} f_{1} e_{1}+u_{2} f_{2} e_{2}
$$

where the product of functions is pointwise. If $\mathcal{F}(\Omega)$ is a topological $\mathbb{B C}$-vector space and M_{u} is $\mathbb{B C}$ continuous, then it is referred to as a multiplication operator induced by u. Multiplication operators have been scrutinized on various function spaces by [22], [24] and [26]. In line with their arguments, we investigate multiplication operators on the $\mathbb{B C}$ rearrangement invariant $\mathbb{B C}$-module space.

Proposition 12 For any $\mathbb{B C}$-measurable function $u: \Omega \rightarrow \mathbb{B C}, M_{u}$ is a $\mathbb{B C}$-linear operator on $\mathcal{F}(\Omega)$.

Theorem 13 The linear transformation

$$
M_{u}: f \rightarrow u \cdot f
$$

on the $\mathbb{B C}$-rearrangement invariant $\mathbb{B C}$-module space X is bounded if and only if u is essentially \mathbb{D} bounded. Moreover,

$$
\left\|M_{u}\right\|=\|u\|_{\infty}^{\mathbb{D}}
$$

Proof. Firstly, assume that u is essentially \mathbb{D} bounded and $\|u\|_{\infty}^{\mathbb{D}}<\infty_{\mathbb{D}}$. Since $u \cdot f=u_{1} f_{1} e_{1}+$ $u_{2} f_{2} e_{2}$ for any $f \in X$, we have:

$$
\begin{aligned}
D_{u \cdot f}^{\mathbb{B C}}(\lambda)= & D_{u_{1} f_{1}}\left(\lambda_{1}\right) e_{1}+D_{u_{2} f_{2}}\left(\lambda_{2}\right) e_{2} \\
& =\sum_{i=1}^{2} \mu_{i}\left\{x \in \Omega:\left|u_{i}(x) f_{i}(x)\right|>\lambda_{i}\right\} e_{i} \\
& \leq \sum_{i=1}^{2}\left\|u_{i}\right\|_{\infty} \mu_{i}\left\{x \in \Omega:\left|f_{i}(x)\right|>\lambda_{i}\right\} e_{i} \\
= & \left(\left\|u_{1}\right\|_{\infty} e_{1}+\left\|u_{2}\right\|_{\infty} e_{2}\right)\left(D_{f_{1}}\left(\lambda_{1}\right) e_{1}\right. \\
& \left.\quad \quad+D_{f_{2}}\left(\lambda_{2}\right) e_{2}\right) \\
= & \|u\|_{\infty}^{\mathbb{D}} D_{f}^{\mathbb{B C}}(\lambda)
\end{aligned}
$$

for any $\lambda=\lambda_{1} e_{1}+\lambda_{2} e_{2} \geq 0$. Then $D_{u \cdot f}^{\mathbb{B C}}(\lambda) \leq$ $\|u\|_{\infty}^{\mathbb{D}} D_{f}^{\mathbb{B C}}(\lambda)$ implies

$$
\begin{aligned}
(u \cdot f)_{\mathbb{B C}}^{*}(t) & =\inf _{\mathbb{D}}\left\{\lambda \geq 0: D_{u \cdot f}^{\mathbb{B C}}(\lambda) \leq t\right\} \\
& \leq\|u\|_{\infty}^{\mathbb{D}} \inf _{\mathbb{f}}^{\mathbb{D}}\left\{\lambda \geq 0: D_{f}^{\mathbb{B C}}(\lambda) \leq t\right\} \\
& =\|u\|_{\infty}^{\mathbb{D}} f_{\mathbb{B} \mathbb{C}}^{*}(t)
\end{aligned}
$$

and $\quad\left(u_{1} f_{1}\right)^{*}\left(t_{1}\right) \leq\left\|u_{1}\right\|_{\infty} f_{1}^{*}\left(t_{1}\right), \quad\left(u_{2} f_{2}\right)^{*}\left(t_{2}\right) \leq$ $\left\|u_{2}\right\|_{\infty} f_{2}^{*}\left(t_{2}\right) \quad$ for \quad any $\quad t=t_{1} e_{1}+t_{2} e_{2} \geq 0$. Therefore

$$
\left\|M_{u} f\right\|_{X}=
$$

$$
=\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} M_{u_{i}} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i}
$$

$$
\leq \sum_{i=1}^{2}\left\|u_{i}\right\|_{\infty} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}}\right.
$$

$$
\leq 1\} e_{i}
$$

$$
=\left(\sum_{i=1}^{2}\left\|u_{i}\right\|_{\infty} e_{i}\right) \sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} f_{i}^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}}\right.
$$

$$
\leq 1\} e_{i}
$$

$$
\begin{equation*}
=\|u\|_{\infty}^{\mathbb{D}}\|f\|_{X} \tag{9}
\end{equation*}
$$

can be written. This means M_{u} is \mathbb{D}-bounded.
Conversely, suppose that M_{u} is \mathbb{D}-bounded on the $\mathbb{B C}$-rearrangement invariant $\mathbb{B C}$-module space. If u is not essentially \mathbb{D}-bounded, then for each $N \succeq$ 0 , the set

$$
E_{N}=\left\{x \in \Omega:|u(x)|_{k}>N\right\}
$$

has a \mathbb{D}-positive measure. It means there exists N_{1}, $N_{2} \geq 0$ with $N=N_{1} e_{1}+N_{2} e_{2}$ such that $\left|u_{1}(x)\right|>$ N_{1} and $\left|u_{2}(x)\right|>N_{2}$ for all $x \in E_{N}$ with $\mu\left(E_{N}\right)>$ 0 . Since the decreasing \mathbb{D}-rearrangement of $\chi_{E_{N}}=$ $\chi_{E_{N}} e_{1}+\chi_{E_{N}} e_{2}$ is

$$
\begin{aligned}
\left(\chi_{E_{N}}\right)_{\mathbb{B C}}^{*}(t)= & \chi_{\left(0, \vartheta_{1}\left(E_{N}\right)\right)}\left(t_{1}\right) e_{1} \\
& +\chi_{\left(0, \vartheta_{2}\left(E_{N}\right)\right)}\left(t_{2}\right) e_{2}
\end{aligned}
$$

one can get that

$$
\begin{aligned}
& \left\|\chi_{E_{N}}\right\|_{X}= \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty} \chi_{\left(0, \mu_{i}\left(E_{N}\right)\right)}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}}\right. \\
& \leq 1\} e_{i} \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\mu_{i}\left(E_{N}\right)} g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}} \leq 1\right\} e_{i} \\
& =\mu_{1}\left(E_{N}\right) e_{1}+\mu_{2}\left(E_{N}\right) e_{2}=\mu\left(E_{N}\right)
\end{aligned}
$$

by [10]. Now, to calculate the norm of $M_{u}\left(\chi_{E_{N}}\right)$, if we use the following inequality

$$
\begin{aligned}
& \left(M_{u}\left(\chi_{E_{N}}\right)\right)_{\mathbb{B C}}^{*}(t)= \\
& =\left(u \cdot \chi_{E_{N}}\right)_{\mathbb{B C}}^{*}(t)=\sum_{i=1}^{2}\left(u_{i} \cdot \chi_{E_{N}}\right)^{*}\left(t_{i}\right) e_{i} \\
& =\sum_{i=1}^{2} \inf \left\{\alpha_{i} \geq 0: D_{u_{i} \cdot \chi_{E_{N}}}\left(\alpha_{i}\right) \leq t_{i}\right\} e_{i} \\
& =\sum_{i=1}^{2} \inf \left\{\alpha_{i} \geq 0: \mu_{i}\left\{x \in \Omega:\left|u_{i}(x) \chi_{E_{N}}(x)\right|>\alpha_{i}\right\}\right. \\
& \left.\quad \leq t_{i}\right\} e_{i} \\
& \left.\begin{array}{rl}
\geq \sum_{i=1}^{2} \inf \left\{\alpha_{i} \geq 0: \mu_{i}\left\{x \in \Omega:\left|\chi_{E_{N}}(x)\right|>\frac{\alpha_{i}}{N_{i}}\right\}\right.
\end{array} \quad \leq t_{i}\right\} e_{i} \\
& =\sum_{i=1}^{2} \inf \left\{N_{i} \alpha_{i} \geq 0: \mu_{i}\left\{x \in \Omega:\left|\chi_{E_{N}}(x)\right|>\alpha_{i}\right\}\right. \\
& \left.\quad \leq t_{i}\right\} e_{i} \\
& =\left(N_{1} e_{1}+N_{2} e_{2}\right)\left(\chi_{E_{N}}\right)_{\mathbb{B} \mathbb{C}}^{*}(t)=N\left(\chi_{E_{N}}\right)_{\mathbb{B} \mathbb{C}}^{*}(t),
\end{aligned}
$$

then we get

$$
\begin{aligned}
& \left\|M_{u}\left(\chi_{E_{N}}\right)\right\|_{X}= \\
& =\sum_{i=1}^{2} \sup \left\{\int_{0}^{\infty}\left(u_{i} \chi_{E_{N}}\right)^{*}\left(s_{i}\right) g_{i}^{*}\left(s_{i}\right) d s_{i}:\|g\|_{X^{\prime}}\right. \\
& \leq 1\} e_{i}
\end{aligned}
$$

$$
\begin{equation*}
\geq\left(N_{1} e_{1}+N_{2} e_{2}\right)\left\|\chi_{E_{N}}\right\|_{X} . \tag{10}
\end{equation*}
$$

However, (10) contradicts the boundedness of M_{u}. From (9), it can be seen that $\left\|M_{u}\right\| \leq\|u\|_{\infty}^{\mathbb{D}}$. On the other hand, for any $\gamma=e_{1} \gamma_{1}+e_{2} \gamma_{2}>0$, let

$$
G=\left\{x \in \Omega:|u(x)|_{k}>\|u\|_{\infty}^{\mathbb{D}}-\gamma\right\} .
$$

Then

$$
\begin{aligned}
\left\{x \in \Omega:\left(\left\|u_{i}\right\|_{\infty}\right.\right. & \left.\left.-\gamma_{i}\right) \chi_{G}(x)>\lambda_{i}\right\} \\
& \subset\left\{x \in \Omega:\left|u_{i}(x) \chi_{G}(x)\right|>\lambda_{i}\right\}
\end{aligned}
$$

can be written for $i=1,2$. Therefore,

$$
D_{\left(\|u\|_{\infty}-\gamma\right) \chi_{G}}^{\mathbb{B C}}(\lambda) \leq D_{u \cdot \chi_{G}}^{\mathbb{B C}}(\lambda)
$$

for all $\lambda \in \mathbb{D}^{+} \cup\{0\}$ and

$$
\left(M_{u}\left(\chi_{G}\right)\right)_{\mathbb{B C}}^{*}(t) \geq\left(\|u\|_{\infty}^{\mathbb{D}}-\gamma\right)\left(\chi_{G}\right)_{\mathbb{B C}}^{*}(t)
$$

for all $t \in \mathbb{D}^{+} \cup\{0\}$. As a result, $\left\|M_{u}\right\| \leq\|u\|_{\infty}^{\mathbb{D}}-$ γ and $\left\|M_{u}\right\|=\|u\|_{\infty}^{\mathbb{D}}$ with (9).

By this result and [24], a condition sufficient for the \mathbb{D}-compactness of the composition operator C_{T} on X can be inferred using [26].

Theorem 14 Let $T: \Omega_{2} \rightarrow \Omega_{1}$ be a non-singular $\mathbb{B C}$ measurable transformation such that the Lebesgue-Radon-Nikodym derivative $f_{T}=e_{1} f_{T}^{1}+e_{2} f_{T}^{2}=$ $d\left(\vartheta T^{-1}\right) / d \vartheta$ is in $L_{\mathbb{B C}}^{\infty}(\vartheta)$ and $\left\{U_{n}\right\}$ be the set of all atoms of Ω_{1} with $\mu\left(U_{n}\right)=\mu_{1}\left(U_{n}\right) e_{1}+\mu_{2}\left(U_{n}\right) e_{2} \succ$ 0 for each n. Then C_{T} is compact on X if μ_{1}, μ_{2} are purely atomic measures and

$$
\gamma_{j}^{n}=\frac{v_{j} T^{-1}\left(U_{n}\right)}{\mu_{j}\left(U_{n}\right)} \rightarrow 0
$$

for $j=1,2$.

3 Conclusion

We examined deeply the behavior and structural features of composition operators in the setting of $\mathbb{B C}$-rearrangement $\mathbb{B C}$-module spaces in the present work. We provided information on the algebraic, topological, and functional aspects of the underlying space structures by providing an in-depth understanding of the relationships between composition operators and those.

We have proved basic conclusions about the compactness, boundedness, and continuity of composition operators in $\mathbb{B C}$-module spaces with a careful investigation. These results explain the fundamental qualities of composition operators and how they determine the behavior of functions in rearrangement-invariant spaces.

Furthermore, our study of the structural features produced by synthesis operators shows that they preserve fundamental spatial features such as separability, reflexivity, and completeness. This illustrates how crucial composition operators are to
preserving $\mathbb{B C}$ - rearrangement-invariant BC moduli spaces' stability across a variety of operations.

Finally, our work increases the understanding of operator theory and function spaces broadly, especially about BC-rearrangement BC-module spaces. Having potential applications in a wide range of fields, such as signal processing, image reconstruction, and mathematical physics, the information obtained from this research offers new opportunities for investigation and development in this interesting field of mathematical analysis.

Acknowledgement:

The author would like to thank the referees for their helpful comments and valuable suggestions for improving the manuscript.

References:

[1] D. Alpay, M.E. Luna-Elizarrarás, M. Shapiro and D.C.Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Science \& Business Media, 2014. DOI: 10.1007/978-3-319-05110-9.
[2] M.E.Luna-Elizarrarás, M.Shapiro, D.C.Struppa and A.Vajiac, Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers, Birkhäuser, 2015. DOI: 10.1007/978-3-319-24868-4.
[3] M.E.Luna-Elizarrarás, C.O.Perez-Regalado and M.Shapiro, On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules, Adv.in Appl. Clifford Algebras, 24, 2014, 1105-1129. DOI: 10.1007/s00006-014-0503-z.
[4] R.Kumar and H.Saini, Topological bicomplex modules, Adv. in Appl. Clifford Algebras, 26, 2016, 1249-1270. DOI: 10.1007/s00006-016-0646-1
[5] R. Kumar, R.Kumar and D.Rochon, The fundamental theorems in the framework of bicomplex topological modules, arXiv: 1109.3424v1, 2011 DOI: 10.48550/arXiv.1109.3424.
[6] F.Colombo, I.Sabatini and D.Struppa, Bicomplex holomorphic functional calculus, Math. Nachr., 287, No.10, 2014, 1093-1105. DOI: 10.1002/mana. 201200354.
[7] H.Saini, A.Sharma and R.Kumar, Some fundamental theorems of functional analysis with bicomplex and hyperbolic scalars, Adv. in Appl. Clifford Algebras, 30, No.66, 2020. DOI: 10.1007/s00006-020-01092-6.
[8] İ. Eryılmaz, A Mean Ergodic Theorem in Bicomplex Lebesgue Spaces, WSEAS Transactions on Mathematics, 23, 2024, 5159. DOI:10.37394/23206.2024.23.6.
[9] E. Toksoy and B. Sağır, On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolicvalued norm, Georgian Mathematical Journal, 31, No. 3, 2024, 483-495. DOI: 10.1515/gmj-2023-2093.
[10] N.Değirmen and B. Sağır, On bicomplex BCmodules $l_{p}^{k}(\mathbb{B C})$ and some of their geometric properties, Georgian Mathematical Journal, 30 No.1, 2023, 65-79. DOI: 10.1515/gmj-2022-2194.
[11] B. Sağır, N. Değirmen and C. Duyar, Bicomplex matrix transformations between c_{0} and c in bicomplex setting, U.P.B. Sci. Bull. Series A, 85, No.4, 2023, 115-118.
[12] G.B.Price, An introduction to multicomplex spaces and functions, CRC Press, 2018. DOI: 10.1201/9781315137278.
[13] R. Kumar, K. Sharma, R. Tundup and S. Wazir, Orlicz Spaces with Bicomplex Scalars, arXiv:1401.7112, $2014 . \quad$ DOI: 10.48550/arXiv.1401.7112.
[14] C.Ghosh and S.Mondal, Bicomplex Version of Lebesgue's Dominated Convergence Theorem and Hyperbolic Invariant Measure, Adv. in Appl. Clifford Algebras, 32, No.37, 2022. DOI: 10.1007/s00006-022-01216-0.
[15] C. Bennett and R.C. Sharpley, Interpolation of operators, Academic press, 1988.
[16] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, AMS Translation of Math. Monographs 54, Providence, RI, 1982. ISBN: 978-0-8218-3176-2.
[17] J. T. Chan, A note on compact weighted composition operators on $L^{p}(\mu)$, Acta Sci. Math. (Szeged), 56, No.1-2, 1992, 165-168.
[18] M.R.Jabbarzadeh and E. Pourreza, A note on weighted composition operators on L^{p}-spaces, Bull. Iranian Math. Soc., 29, No.1, 2003, 4754.
[19] M.R. Jabbarzadeh, Weighted composition operators between L_{p}-spaces, Bull. Korean Math. Soc., 42, No.2, 2005, 369-378. DOI: 10.4134/BKMS.2005.42.2.369.
[20] R.K. Singh and J.S. Manhas, Composition operators on function spaces, Mathematics Studies, 179. North-Holland Publishing Co., Amsterdam, 1993. ISBN:0-444-81593-7.
[21] H. Takagi, Fredholm weighted composition operators, Integral Equations Operator Theory, 16, No.2, 1993, 267-276. DOI: 10.1007/BF01358956.
[22] H. Takagi and K. Yokouchi, Multiplication and composition operators between two $L_{p^{-}}$ spaces, Contemp. Math., 232, 1999, 321-338..
[23] İ. Eryılmaz, Weighted composition operators on weighted Lorentz spaces, Colloq. Math., 128, 2012, 143-151.
[24] R. Kumar and R. Kumar, Composition operators on Banach function spaces, Proc. Amer. Math. Soc., 133, No.7, 2005, 21092118. DOI: 10.1090/S0002-9939-05-07798-1.
[25] R. Kumar and R. Kumar, Compact composition operators on Lorentz spaces, Mat. Vesnik, 57 ,No.3-4, 2005, 109-112.
[26] S.C. Arora, G. Datt and S. Verma, Multiplication operators on Lorentz spaces, Indian J. Math., 48, No.3, 2006, 317-329.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)
İLKER ERYILMAZ contributed in the present research, at all stages from the formulation of the problem to the final findings and solutions.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest

The author has no conflicts of interest to declare.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en US

