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Abstract: - The expansion of the application of computational methods for solving many mathematical 

problems from various fields of natural knowledge does not raise any doubts. One of the promising directions 

in contemporary sciences is considered to be in areas that are at the intersection of different sciences. Solving 

such problems is more difficult because different laws from different areas are used. It should be noted that at 

the intersection of these sciences, there are problems, which can come down to solving ordinary differential 

equations. Therefore, studies of differential equations have always been considered promising. Based on this, 

the application of some methods for solving initial problems for first-order ODEs is investigated. For this 

purpose, scientists studied a numerical solution to the initial problem of the ODE. Here, we have reviewed the 

study of linear Multistep Methods with constant coefficients. With its help, the order of accuracy of the 

calculated values is determined. In addition, determines how much accuracy values increase when using 

Richardson extrapolation  methods and also when using linear combinations of various methods. To construct 

an innovative method is proposed here using advanced methods. It is shown that using these methods it is 

possible that A-stable methods can be taken as innovative. 
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1  Introduction 
We were seriously engaged in the study of Ordinary 

Differential Equations after familiarizing ourselves 

with the work: Constantin Carotheodory, “Calculus 

of variations and partial differential equations of the 

first order”.  

Let us note that many well-known scientists 

were engaged in the search for a solution to the 

initial problem of the ODE. They constructed some 

classes of methods having different properties. Thus 

creating the opportunity for a wide selection of 

numerical methods. For this purpose, scientists 

defined some conceptions for their comparisons. For 

this purpose, scientists have found some conception 

by which one can define the boundaries for all the 

errors received in using methods with constant 

coefficients (see for example, [1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], [11]). For the compassion of 

the known methods let us consider investigating the 

following problem: 

,,)()),(,( 000 Tttztztztz         (1)                      

 
which usually is called the initial-value problem for 

ODEs of the first order. For the construction 

numerical methods with the new properties, let us 

impose some restrictions on the solution of problem 

(1) and also on the function ),( zt . Let the 

solution to the problem (1) be a continuous function 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.45 M. N. Imanova, V. R. Ibrahimov

E-ISSN: 2224-2880 430 Volume 23, 2024



defined on the segment ],[ 0 Tt . We mean that a 

continuous function ),( zt  is defined in a certain 

limited domain and, inclusive, has partial 

derivatives up to p . To find a numerical solution to 

the problem (1), we divide the segment ],[ 0 Tt  into 

N  parts using grid points 

,..)2,1,0(1  ihtt ii . And also, here indicate 

exact values of the solution of the problem (1) by 

)( itz , but by the iz -the corresponding approximate 

values of the
 
function )(tz at the point it .  

Note that one of the popular classes of 

numerical methods is the class of multi-step 

methods, which can be depicted as follows:  

 
 

 
m

j

m

j

injjnj mNnbhza
0 0

,,..,1,0,
      (2)               

here
 

).,...,1,0(),( Njzt jjj 
 

 

Such methods have been studied in the works of 

many authors,(see for example [3], [4], [5],  [12], 

[13], [14], [15], [16], [17], [18], [19], [20], [21], 

[22], [23], [24]). But fundamentally has been 

investigated by Dahlquist. 

From the outside, [4] has proven that if (2) is a 

stable method and has a degree
 

p ,
 

then 

2]2/[2  mp  
Conception stability and degree, 

which have been used  can be presented as follows: 

Definition 1. An integer value is called a power for 

method (2) if the identity is satisfied:  

.0,)())()((
0

1 


 hhOihxhihxz
m

i

p

i     (3)                              

 

Definition 2. Note that (2) is called a stable 

method if the roots of the characteristic polynomial

01

1

1 ...)(   



k

k

k

k  
are located 

in the unit circle, which does not have multiple roots 

on the boundary. This conception is given in [3] and 

called the “dispersion”. But, [7], have used the 

concept of “stability”. By using  results receiving in 

[4] one can be noted that if method (2) is stable, 

then 2max  kp . The scientists for the calculation 

of the values of the solution problems (1), have 

suggested some ways. One of these ways is the 

known Richardson extrapolation, which in the 

application to method (2) can be constructed by 

using the local truncation error.  

 

 

 

§1. Some ways to increase of the exactness of the 

receiving results by using the known methods. 

Based on method (2), we assume that in order to 

construct ways to improve the accuracy of 

calculated values, that method (2) has a degree p . 

It is known that the local truncation error for method 

(2) can be represented as follows:  

).0(),( 2)1(1   shOzch spp

n

p

              
(4) 

 

And now suppose that step-size h  to change by the

kh . Then formula (4) can be written as: 

).0(),( 2111   shOzhck spp

kn

pp

               
(5) 

 

To illustration of Richardson’s extrapolation, let us 

multiply  local truncation error (4) by  , but local 

truncation error (5) by 1 . Then after summing 

(4) and (5) receive: 

).())1(( 2)1(11   spp

n

pp hOZkch 
     (6)                                            

 

 

In usually the values for the k  has been taken as the 

22/1  kork . But here the known cases are 

generalized by the constant of k . 

As is known some authors noted that by using 

Richardson extrapolation one can be construct more 

exact methods. Let’s show that this is not so. To 

increase the accuracy of the method it is enough that 

  satisfies the following equation: 

.0)1( 1  pk                     (7)                                                               

 

For this case s=1, here is some constant 

participated in asymptotic relation (5). 

It is obvious that the solution of this equation 

will be a real number. Thus, after using the value of 

 , one can construct a method with constant 

coefficients. Therefore, as a result, the resulting 

method must obey the laws from the [4]. Note that 

the method does not change its structure. In this way 

receive that, one gets that the function to which the 

multistep method is applied is changed. Because of 

this, the calculated values for solving our problem 

by Richardson extrapolation are more accurate:  

.,..,2,1,0

,)1( )()(

mNn

zzz kh

knn

h

mnmn



  
     (8)

                                      
 

 

For the 2/1 required values can be presented 

as: 

.2/)( )2/(

2

)( h

mn

h

mnmn zzz    
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If method (2) is stable and has the degree of p , 

then receive that 2]2/[2  ksp  is holds. Now 

let’s look at finding the values of the solution to 

problem (1) using a linear combination of some 

methods. Let's use the following Euler methods to 

illustrate the advantages of this path  

).,();,(ˆ
1111   nnnnnnnn zthzzzthzz 

    (9)                               
 

 

It is not difficult to prove that the Local 

Truncation Error for these methods can be presented 

as follows: 

.0

),(2/),(2/ˆ 3232





h

hOzhRhOzhR nnnn

   (10)                            

 

As follows from this, the half-sum of these local 

truncation errors will be smaller than the errors have 

defiant by the asymptotic equality (10). Indeed this 

is so, for this let's consider the half-sum above the 

given methods (9), and then we get the following 

method: 

,2/)),(

),((2/)ˆ(

11

11









nn

nnnnn

zt

zthzzz





    (11)                              
 

 

which is the known Trapezoidal role. This method 

has the degree 2p , but methods (9) have, the 

degree 1p . Consequently, the Trapezoidal rule is 

more exact.  

 

It is easy to define that calculation 1nz  is more 

difficult, than the calculation of the value 1
ˆ

nz . For 

the correction of this disadvantage, let us to define 

the value 1nZ  by the following method: 

)),,(,( 11 nnnnnn zthzthzz             (12)                                       
 

 

which is explicit and does not arise any difficulty in 

the calculation of the value 1nz  by this formula. 

It is easy to show that, method of (12) can presented 

as the follows: 

).,( 111   nnnn zthzz 
        (13)                                                

 

Thus, by the described above-mentioned 

method, receive some predictor-corrector method. 

The predictor and  corrector methods have one and 

the same degree, which is equal to 1 (one). As was 

shown above, by using half sum of the values of 

problem (1) calculated within using predictor and 

corrector methods, receive the new method, which 

is more exact than the predictor and corrector 

methods. In our case, the one-step method of (9) has 

constructed the one-step method, but in using 

Richardson extrapolation method remains the same. 

Thus, in using Richardson extrapolation receives the 

new function to calculate which applied the using 

method. We get that when using the Richardson 

extrapolation each time one can increase the 

exactness of calculated values at the mesh points. 

However, in using linear combinations of some 

multistep methods the degree of exactness must 

obey the laws from [5]. In this case, if one can 

receive the results with a higher degree by using a 

linear combination of some multistep methods, then 

receive that or the method used has a low order of 

accuracy or the number of terms in the resulting 

method increases. And now let us consider the 

following methods: 

 
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 (14)                

 

 
with the local truncation errors  
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here ),min( 21 sss  . 

 

To get the best results it is enough to use the 

solution of the following equation: 

,0)1( 21  cc   

in the following expression 

.)1( )2()1(

knknkn zzz   
      (15)                                                

 

 

Note that based on formula (15), the resulting 

value of the solution to problem (1) will be more 

accurate than the values of 
)1(

knz   and 
)2(

knz   
It is easy 

to understand that the values 
)1(

knz  and 
)2(

knZ  are 

calculated with the order of accuracy of p , then 

value calculated by the formula (15) will be has the 

order of accuracy of 
1p

.
 Considering that in this 

process has used the values, which have been 

calculated by using a stable method, we get that this 

scheme gives a positive result. By the above 

described, one can construct a very simple way to 

increase the accuracy of the approximate values as 

the solution of the problem (1). For this aim let us 

consider the following section. 
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§2. On some ways for the increasing of exactness 

of the numerical method (2). 

Noted that by the equality of (15) receive that, for 

more accurate results, here have used linear 

interpolation. Currently, to improve the accuracy of 

the solution values to the problem (1), it is proposed 

to use methods with second derivatives, which are 

represented as follows:  

  
  

 
k

i

k

i

k

i

iniiniini nZhZhZ
0 0 0

2 ,...).2,1,0(
  (16)                              

 

 

It easy to understand that  
zttz )( .  

In the finding, the values of the computational work 

are increased, which depends on the calculation of 

the values ),(),( ztandzt zt   at the mesh points 

)0( Nmtm  . With this in mind, it is proposed 

here to use an extended (or jumping) method, which 

in some simple form can be represented as follows:  

 


 

 
mk

i

k

i

ininiini nmzthz
0 0

,..).2,1,0;0(),(
                                  

(17) 

 

Similar to the described above, studied by many 

authors, [25], [26], [27], [28], [29], [30], [31], [32], 

[33], [34], [35], [36],[37]. 

Method (17) was fundamentally studied by in 

the work [19], [20].who came to the conclusion that 

if method (17) is stable, then in class (17) there are 

methods with degree 1 mkp  for mk 3 . 

Obviously, based on Dahlquist's law, we can 

conclude that if method (2) is stable, then in the 

class of method (2) there are stable methods with 

degree 2]2/[2  kp (here mk  ). By a usual 

comparison, we find that stable methods like (17) 

are more accurate than (2). As an example, in class 

(2) there are stable methods of degree 

2]2/[2  kp  for all k . Therefore, for 3k  

there is a stable method with degree 

)1(4 maxmax  kpp . But in (17) there is a 

stable method with degree 5p  for 3k , 

represented as:  

,57/)245710(

19/)811(

321

12









nnnn

nnn

h

zzz

    (18)             
 

 

Obviously, this method is stable and also has a local 

truncation error of degree 5p , written as  

).(
3420

11 7)6(

)(

6 hOzhR
nxn   

 

It is noted that the main disadvantage of these 

methods is finding the values of the solution to 

problem (1) in neighboring grid nodes. To solve this 

problem, we use a predictor-corrector similar to the 

methods. Let's look at a method like:  

12/)51623( 1223 nnnnn hzz    .    (19)                                   

By using method (19) in the formula (18), receive 

the following method:  

.57/)12/)51623(

,(24

5710(19/)811(

12

232

112

nnn

nnn

nnnnn

h

zth

hzzz



















(20) 

And now let us change  3nz participation in (18) by 

the following:  

 3/)27( 1213 nnnnn hzz    .    (21) 

 

In this case, receive the next methods: 

57/)3/)27(

,(57/)24

5710(19/)811(

12

132

112

nnn

nnn

nnnnn

h

zth

hzzz



















  (22) 

 

Obviously, this method is stable and also 

implicit. Method (20) is A-stable, but the method 

(22) is stable. To ensure the accuracy of the results, 

consider the following section.  

 

 

2  Numerical Results  
To illustrate the results, we provide relevant 

examples:  

.20,1)0(,  tzzz   

 

exact solution for which can be presented as:

)exp()( ttz  . To solve this example let us to us 

the following couple methods 

,2ˆ3ˆ
12 nnnn hzzz            (23)                                                   

,12/)58ˆ( 122 nnnnn hzz        (24)                                          
 

,2/)3(ˆ
112 nnnn hzz            (25)                                               

 

,12/)58ˆ( 122 nnnnn hzz         (26)                                         
 

),46(98ˆ
112 nnnnn hzzz       

  (27)                                         

  
,24/)318ˆ9( 1212 nnnnn hzz    (28)

                                         

.9/)ˆ8( 222   nnn zzz             (29)                                               
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It is known that the local truncation error for 

methods (24) and (26) is represented as:  

).(24/ 53 hOzhR nn   

 

The receiving results for method (24),(26), and 

(27) are tabulated in the following tables: 

 

Table 1. Results for the 05.0h  and .1  

it  Method 

(24) 

Method 

(26) 

Exact value Method 

(29) 

0.

1 

0.

5 

2.

0 

1.1051988

6 

1.9313402

2 

more 

1.1051702

5 

1.6487264

6 

7.7698516

8 

1.10551709

1 

1.64872122 

 

7.76790016 

1.1051712

0 

1.6487827

3 

7.7678623

2 

 

Table 2. Results for the 1.0h  and 1  

it  Method 

(24) 

Method 

(26) 

Exact 

value 

Method 

(29) 

0.

2 

0.

9 

2.

0 

1.2216634 

3.3829898

8 

more 

1.2214040

8 

2.4599552

2 

7.3962984

1 

1.2214126

6 

2.4596023

2 

7.3890552

2 

1.2214126

6 

24560233 

7.3890553 

27679016

2 

 

As follows from the Table 2, receive that the 

results received by the method (29) are 

unacceptable. For the corrected this situation, let’s 

consider the case, when 0 the solution is 

decreasing. 

 

Table 3 . Results for the 05.0h  and .1  

it  Method 

(24) 

Method 

(26) 

Exact 

value 

Method 

(29) 

0.

1 

0.

5 

2.

0 

0.9448141

8 

0.4168961

0 

more 

0.9448374

3 

0.6065349

6 

0.1353487

4 

0.9483745 

0.6065309

8 

0.1353353

0 

0.9463966

0 

0.6065325

1 

0.1353304

4 

 

Table 4. Results for the 1.0h  and 1  

it

 

Method 

(24) 

Method 

(26) 

Exact 

value 

Method 

(29) 

0.

2 

0.

9 

2.

0 

0.818473

40 

0.337485

07 

more 

0.818722

19 

0.367995

56 

0.135498

88 

0.8187307

6 

0.3678795

0 

 

0.1355335

38 

0.8187310

7 

0.3687812

28 

0.1355330

5 

 

By the results of the Table 1, Table 3, Table 4, 

the results received by the method (29) can be 

considered as the better. 

 

 

3  Conclusion 
Here are given some ways which usually are used 

for the increased accuracy of the receiving results by 

using stable Multistep Methods. Shown that by the 

selection of predictor methods in the predictor-

corrector methods one can receive the method, 

which behaves like an unstable method. Note that in 

the predictor-corrector method of (25)-(26), the 

predictor method is stable, but in the predictor-

corrector method of (23) and (24) the predictor 

method is unstable. Obviously, the predictor-

corrector method is convergent if the corrector 

method is stable. Here, the predictor method was 

used as a separate unstable method, so the results 

obtained by method (24) are unacceptable. 

However, the second predictor method is 

convergence (the predictor-corrector method is 

convergence because the predictor-corrector 

methods are robust). It is known that in the linear 

combination constructed using methods (27)-(29), 

unstable methods are involved as predictors, but 

because of this, the results are better. Similar results 

are obtained by using Richardson extrapolation. 

Thus we receive that using linear combinations 

gives the best results. However, the selected 

appropriate methods are very important. The reason 

for the increased accuracy of Richardson 

extrapolation and the linear combination of various 

methods is also explored here. Note that for the 

increased accuracy of the calculated values of 

solution of the investigated problem, one can use the 

bilateral methods, this method can be taken as the 

better, so by using the bilateral methods one can 

define the availability of the receiving results. We 

would like to note that here used references with we 

have also encountered in other popular works. And 

have given some information about our new articles. 

Note that this method is interesting and very simple, 

so we hope that the methods described above will be 

very useful for a circle of readers and researchers.  
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