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Abstract: - In recent years, in optimization theory, there has been a growing use of optimization models of real 
decision-making processes related to the activities of modern humans, in which the hypotheses are not 
verifiable in a way typical of classical optimization. This increases the demand for tools that will enable the 
effective solving of such more real optimization models. Fuzzy optimization problems were developed to 
model real-world extremum problems with uncertainty, which means that they are not usually well-defined. In 
this work, we investigate one of such tools, i.e. the absolute value exact fuzzy penalty function method which is 
applied to solve invex nonsmooth minimization problems with fuzzy objective functions and inequality (crisp) 
constraints. Namely, we analyze the exactness of the penalization which is the most important property of any 
such method from a practical point of view. Further, the algorithm of the absolute value exact penalty function 
method is presented in the context of finding weakly nondominated solutions of the analyzed nonsmooth fuzzy 
optimization problem and, moreover, its convergence is proven in the considered fuzzy case. Finally, we also 
simulate the choice of the penalty parameter in the aforesaid algorithm. 
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1  Introduction  
Many real-world O.R. systems and processes cannot 
be modeled easily in deterministic terms since they 
involve imprecision of data. In fact, the data are 
often uncertain in nondeterministic models of real-
world systems and processes due to, for example, 
prediction and/or estimation errors, or lack of 
information (e.g., some extremum problems that 
arise in economics, industry, engineering 
applications, commerce, sciences might involve 
financial returns, differing costs, design parameters 
of such systems in designing phase are usually under 
uncertainties, future actions might be unknown at the 
time of the decision). Hence, most of the real 
research problems are subject to some form of 
uncertainty. The reason for this is the fact that some 
coefficients of the objective and/or the constraint 
functions in such optimization problems cannot be 
exactly assessed, due to the fact that they are 
imprecise, unreliable vague, etc. 

Fuzzy optimization is one of the useful and 
efficient approaches for treating just such real-world 
decision-making problems under uncertainty. The 

basic concept of fuzzy decision-making was first 
proposed by in the paper, [1]. Since then, many 
authors studied extensively fuzzy mathematical 
programming problems. Namely, the definition of a 
convex fuzzy mapping was firstly introduced in the 
paper, [2]. After that, the convexity notion for fuzzy 
mapping has been widely used in fuzzy optimization 
by several authors (see, for example, [3], [4], [5], [6], 
[7], [8], [9], [10], [11], [12], and others). However, 
the convexity notion is too restrictive in fuzzy 
optimization, due to the fact that not all optimization 
problems modeling real-world O.R. processes with 
uncertain data are convex. Therefore, several authors 
have defined and applied generalized convex fuzzy 
mappings to fuzzy optimization (see, for example, 
[13], [14], [15], [16], [17], [18], [19], [20], [21], 
[22], [23], [24], and many others). 

One of the well-known approaches in 
optimization theory for looking for optimal solutions 
in constrained mathematical programming problems 
is exact penalty function methods. In the last few 
decades, many researchers have been focused to find 
optimal solutions in various types of extremum 
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problems by using exact penalty function methods. 
The idea behind the aforesaid methods is that, by 
using chosen exact penalty function, the original 
problem of a constrained extremum problem can be 
reduced to an unconstrained optimization problem. 
Thus, it is possible to avoid the difficulties, that take 
place in other approaches, at least related to finding 
feasible points and/or directions. Moreover, in this 
way, to find optimal solutions of constrained 
extremum problems the algorithms developed in 
unconstrained optimization can be applied. The exact 
penalty function that has been most frequently used 
by many researchers to solve their constrained 
optimization problems and, is, therefore, the most 
popular exact penalty function, is the absolute value 
exact penalty function, also called the l₁ exact 
penalty function (see, for example, [25], [26], [27], 
[28], [29], [30], [31], [32], [33], [34], [35], [36], 
[37], [38], [39], [40], and others). In [25] and [26] 
the most important property of the  exact penalty 
function method, that is, exactness of the 
penalization, was analyzed for new classes of 
nonconvex optimization problems. Whereas the 
aforementioned property was investigated in the 
paper [40], for the vector  exact penalty function 
method which they used to solve nondifferentiable 
invex vector optimization problems. Recently, the 
classical exact  penalty function method was 
applied in the paper [27] to solve a nonsmooth 
constrained interval-valued optimization problem 
with both equality and inequality constraints and the 
property of exactness of the penalization was 
analyzed when this method is applied to solve a 
nondifferentiable interval-valued mathematical 
programming problem.  

According to the literature, only a few studies 
have explored the methods for solving nonconvex 
nondifferentiable fuzzy optimization problems so 
far, and the present study is one of the first reports to 
address this problem. In this article, therefore, we 
use the absolute value exact penalty function method 
to solve a nonsmooth optimization problem with 
fuzzy objective function and inequality (crisp) 
constraints. Then, for the considered fuzzy 
minimization problem, we construct its associated 
fuzzy penalized optimization problem with the  
exact fuzzy penalty function. Further, in the fuzzy 
context, we generalize the main property of all exact 
penalty function methods, i.e. exactness of the 
penalization. We analyze it, moreover, under 
appropriate invexity hypotheses in the case when we 
use the absolute value exact fuzzy penalty function 
method for solving such nonsmooth fuzzy extremum 
problems. Namely, we prove that a (weak) Karush-
Kuhn-Tucker point of the investigated 

nondifferentiable fuzzy optimization problem is a 
(weakly) nondominated solution of its associated 
penalized fuzzy optimization problem with the fuzzy 

 exact penalty function for all penalty parameters 
exceeding the given threshold. We also establish the 
equivalence between a (weakly) nondominated 
solution of the considered fuzzy optimization 
problem and a (weakly) nondominated solution of its 
associated fuzzy penalized optimization problem 
with the  exact fuzzy penalty function for 
sufficiently large penalty parameters. Further, we 
present an algorithm of the absolute value exact 
penalty function method which is applied for finding 
weakly nondominated solutions in the considered 
nonsmooth optimization problem with fuzzy 
objective function and inequality constraints. Its 
convergence is also established in the considered 
fuzzy case. After that, we analyze the strategy for 
choosing the penalty parameter in the applied 
absolute value exact fuzzy penalty function method 
and we illustrate it by the appropriate examples of 
constrained fuzzy minimization problems. 

 
 

2  Notations and Preliminaries 
We first present some preliminary notations and 
present such definitions and results, which will be 
used in this work. Throughout this paper, R is the set 
of all real numbers, that is, endowed with the usual 
topology. A fuzzy subset of R is a function 

. We usually named this mapping a 
membership function of a fuzzy number . We now 
define the -level set for any fuzzy set  (denoted by 

) as follows 


where  is the closure of the support of , that is, 

. 
Definition 1. [7], [24] A fuzzy number  in R is a 
fuzzy set on R with the following properties: 1)  is 
normal, i.e. there exists  such that , 
2)  is quasi-concave, i.e. 

 for all  
and any , 3)  is upper semicontinuous, i.e. 

 is a closed subset of R for 
each , 4) the 0-level set, i.e. , is a 
compact subset of R. 

Hence, if a fuzzy set  is such that  is a 
singleton, then  is called a fuzzy number, [5], [7]. 

Let us denote by  the family of all fuzzy 
numbers in R. Thus, for every ,  is a 
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nonempty convex and compact subset of R for each 
. Hence, the -levels of a fuzzy interval can 

be described by , for all 
. In particular, the fuzzy number  is 

given as follows  if , and , 
otherwise. Also any  can be regarded as a fuzzy 
number  defined by  
Note that a fuzzy number  is often defined in the 
literature by the end points of the interval  
[5], [6], [16], [24], [41] and many others. 
Remark 1. The notation  was introduced in the 
paper [41], to represent the crisp number with the 
value a. It is easy to see that  

for all  

Given two fuzzy numbers  which are 
represented by their -level sets as , 

 for any , respectively, and 
 Then, we define the fuzzy addition  and 

the scalar multiplication  as follows, [6], [7], [10], 
[20]: 

 

   

These operations on fuzzy numbers can be defined in 
the equivalent way (see, [6], [7]). Namely, for every 

, 







Definition 2. A special type of a fuzzy number is a 
triangular number  which is described by three real 
numbers  as  and its 
definition is as follows: 

  

 
The -level set of a triangular fuzzy number is 

defined by 




 

Definition 3. [41], Let  and  be two fuzzy 
intervals. If there exists a unique  such that 

 (note that the fuzzy addition is 
commutative), then we call  the Hukuhara 
difference (H-difference, for short) of  and  and 
we denote it by . 
Proposition 1. [41] Let  and  be two fuzzy 
intervals. If the Hukuhara difference  
exists, then  and  for each 

 
Throughout this paper, the following convention 

for inequalities between two intervals  
and  in R are used :  if and only if 

 and , and  if and only if  
and . The following two order relations on the 
space  are considered and used in this paper. 
Let   be given two fuzzy intervals 
described by their -level sets  and 

 for each , respectively. 
Definition 4. [24] We write  if and only if 

 for each , which is equivalent to 

or  or  for all .

Definition 5. [24] We write that  if and only if 
 for all , which is equivalent to 

 for all  or  for all 

  

or  for all . 

 


3 Nondifferentiable Invex Crisp and 

Fuzzy Functions 
Now, we introduce some notations and recall some 
basic definitions for nondifferentiable crisp 
functions. It is well-known that a crisp mapping 

 is a locally Lipschitz function at a point 
 if there exist scalars  and  such 

that the inequality  holds 
for all , where B is the open unit ball in 

, so that  is the open ball of radius  about x. 
We say that the mapping h is a locally Lipschitz 
function (on ) if it is locally Lipschitz at any point 
of . 
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Definition 6. [42], Let  be a locally 
Lipschitz function at  The Clarke generalized 
directional derivative of h at  in the direction 

, which is denoted by , is defined by 

. 

Definition 7. [42], The Clarke generalized 
subgradient of the locally Lipschitz crisp function 

 at , denoted by , is defined 
by . 

From the aforesaid definitions, it follows that, for 
any , , [42]. 

We recall that the notion of a locally Lipschitz 
invex function was introduced in [43]. 
Definition 8. Let  be a locally Lipschitz 
crisp function and  be a given point. If there 
exists a vector-valued function  such 
that the inequality 

 

 
is fulfilled for all , then f is an invex 
function (a strictly invex function) at  on . If the 
above inequality is satisfied at any point , then h is 
an invex function (a strictly invex function) on . If 
(5) is satisfied on a nonempty subset , then h 
is a (strictly) invex function on S. 
Proposition 2. [42], Let  be a locally 
Lipschitz function on a nonempty set ,  be 
any scalar and  be an arbitrary point of S. Then 

. 
Proposition 3. [42], Let  be 
locally Lipschitz crisp functions on a nonempty open 
set  and  be an arbitrary point of . For 
any scalars , one has 

. 
The following result is useful in proving one of 

the main results in this paper. 
Proposition 4. [40], Let  be a locally 
Lipschitz crisp function on S and . Further, let 

 be defined by . If  
is an invex function at  on S with respect to the 
function , then  is also a locally 

Lipschitz invex function at  on S with respect 
to . 

Now, we re-call the definition of a fuzzy mapping 
given, for example, in the paper, [6]. 
Definition 9. [6], Let S be a nonempty subset of . 
Then  is said to be a fuzzy mapping. For 
each , we associate with  the family of 
interval-valued functions  given by 

. The -cut of  at , which is a 
bounded and closed interval for each , we 
denote by 

  
 
where  and . 
Thus, can be represented by two functions  and 

, which are functions from  to the set R, 
 is a bounded increasing function of ,  is a 

bounded decreasing function of  and, moreover, 
 for all  and each . Here, 

the endpoint functions  are called 
left- and right-hand functions of , respectively. 

Now, in a natural way, we generalize the 
definition of a locally Lipschitz function to the case 
of a fuzzy mapping. 
Definition 10. A fuzzy mapping  is said 
to be locally Lipschitz at a given point  if, for 
each , its left- and right functions  and 

 are locally Lipschitz at x. 
We now give the definition of the Clarke 

generalized derivative at  of a locally Lipschitz 
fuzzy function  introduced in [44] as a pair of 
Clarke generalized derivatives at  of its left- 
and right-hand functions  and  defined for 
the fixed -cut . 
Definition 11. The Clarke generalized directional -
derivative of a locally Lipschitz fuzzy function 

 (given by (6) at x for some -cut  in 
the direction d is defined as the Clarke generalized 
directional -derivatives of its left- and right 
functions  and  at x in the direction d as 
follows: 
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. 

 
As it follows from the aforesaid definition, the 

Clarke generalized derivative at  of a locally 
Lipschitz fuzzy function f does not represent an 
interval. 
 

Definition 12. It is said that a locally Lipschitz fuzzy 
function  is directionally differentiable 
in the sense of Clarke at x if  exists for each 
direction d and for all -cuts. 

Now, we give the definition of the Clarke 
generalized gradient of a locally Lipschitz fuzzy 
function introduced which was firstly introduced in 
[44]. 
 

Definition 13. The Clarke generalized gradient of a 
locally Lipschitz fuzzy function  on the 
-cut is defined as a pair of Clarke generalized 
gradients of the left- and right-hand functions on this 
-cut, that is, the pair , 
where 

 
and 

. 
 

Remark 2. It follows by Definition 13 that, for each 
-cut and any , we have 

 
 

 
The the notion of invexity for a differentiable 

fuzzy function was firstly introduced in [22]. This 
definition was extended to the case of a locally 
Lipschitz fuzzy function in [44]. Namely, the 
concept of invexity for a locally Lipschitz fuzzy 
function  was defined via invexity of its left-hand 
and right-hand functions  and  by using the 
-cuts of  given in [24], [41]. 
 

Definition 14. [44], Let  be a locally 
Lipschitz function and  be a given point. If 
there exists a vector-valued function  
such that the following inequalities 

 

 
 

are satisfied for any , then  is an 
invex fuzzy function (a strictly invex fuzzy function) 
at u on . If (7) and (8) are satisfied at any point u, 
then  is an invex fuzzy function (a strictly invex 
fuzzy function) on . If (7) and (8) are satisfied on a 
nonempty subset S of , then  is an invex fuzzy 
function (a strictly invex fuzzy function) on S. 

We now illustrate the concept of invexity for 
locally Lipschitz fuzzy mappings and, therefore, we 
present an example of a locally Lipschitz invex 
fuzzy function. 
Example 1. Let the fuzzy function  be 
defined by , where  and  are 
continuous triangular fuzzy numbers which are 
defined as triples  and  (see 
Definition 2). Then, by (4), the -level sets of both 
triangular fuzzy numbers are given by 

 and  
respectively. Moreover, by (4) and (6), the -level 
cut of the fuzzy function  is given as follows 

 
for each . Therefore, the left-hand side and 
right-hand side functions  and  are given 
by: 

 

 
 
for each . Note that  and  are not 
convex functions and so the fuzzy function  is not 
convex. Moreover, we note that  and  are 
not differentiable at  and, therefore,  is not 
a level-wise differentiable fuzzy function at x (see 
Definition 4.2 [40]). The graphs of the left- and 
right-hand functions of , ,  are given on 
Figure 1. 

It can be shown by definition that  is a locally 
Lipschitz strictly invex fuzzy function on  with 
respect to  defined by 

  
Since  and  are locally Lipschitz functions 
for every , by Definition 10,  is a locally 
Lipschitz fuzzy ampping on . Further, note that, 
for each , (7) and (8) are fulfilled for all 
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 with respect to  defined above as strict 
inequalities for the functions  and . 

 
Fig. 1: Graphs of the left- and right-hand functions of 

, , . 
 
Then, by Definition 14,  is a strictly invex 

fuzzy function on  with respect to  defined 
above. 
Remark 3. Note that there is, in general, more than 
one vector-valued function  with respect to which a 
fuzzy function is invex. Indeed, if we consider again 
the fuzzy function  which is 
defined in Example 1, then it can be shown that it is, 
in fact, invex on  also with other functions 

. Let us define the vector-valued 
function  as follows 

  

 
Thus, the functions  and  are strictly 

invex on  also with respect to the defined above 
function . Hence, by Definition 14, the fuzzy 
function  is also strictly invex on R² with respect to 
 defined above. 

In the work, we assume that only such fuzzy 
mappings  are considered for which 
their left-hand side and right-hand side functions 

 and  are locally Lipschitz at a given point 
x of interest for all . 

 
 

4 Nondifferentiable Invex Fuzzy 

Optimization Problem and its 

Optimality 
In this work, we investigate the following 
constrained optimization problem with a fuzzy-
valued objective function defined as follows: 

 
where  is a fuzzy function and 

, are real-valued functions defined on 
. Let  be the set of 

all feasible solutions of the problem (FO). Now, we 
denote the set of active inequality constraints at a 
point  by . Throughout 
the article, we shall assume that all functions 
involved in the fuzzy optimization problem (FO) 
given above, that is, its fuzzy objective function  
and its constraint functions , are locally 
Lipschitz on . 

In this paper, we use the -cuts to describe the 
objective fuzzy function, as it was done in the papers 
[24] and [41]. Therefore, we shall assume that its 
left- and right-hand side values of  are given by the 
functions  and  
for each , respectively. 

Now, for the formulated above fuzzy 
optimization problem (FO), we define its optimal 
solutions as weakly nondominated and 
nondominated solutions which have been introduced 
in the paper [24]. 
Definition 15. [24], We say that  is a weakly 
nondominated solution in the considered fuzzy 
optimization problem (FO) if there exists no other 

 such that . In other words, if  
is a weakly nondominated solution in (FO), then, by 
Definition 5, there exists no other  such that 

  or  

  

 or  . (9)
 

Definition 16. [24] We say that  is a 
nondominated solution in the considered fuzzy 
optimization problem (FO) if there exists no other 
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 such that . This means that, if 
 is a nondominated solution in (FO), by 

Definition 4, there exists no other  such that 

or   

 or  .

 (10)
 

Remark 4. If we denote by  and  the sets of 
weakly nondominated and nondominated solutions 
in (FO), respectively, then . 

In [44], under invexity hypotheses, optimality 
conditions of Karush-Kuhn-Tucker type were 
established for a nonsmooth optimization problem 
(FO) with fuzzy objective function. We now give the 
aforesaid Karush-Kuhn-Tucker like optimality 
conditions for  to be a (weakly) nondominated 
solution in the investigated nonsmooth fuzzy 
optimization problem (FO). 
Theorem 1. [44], Let  be a feasible solution in the 
investigated fuzzy optimization problem (FO). 
Moreover, assume that there exist , 

 and  for each  such that 
the following Karush-Kuhn-Tucker like optimality 
conditions   



  

  

  

 

hold. Further, assume that the objective function  is 
an invex fuzzy mapping at  on  with respect to  
and, moreover, each constraint , , is an 

invex function at  on  with respect to the same 
function , then  is a nondominated solution in 
(FO). 
Theorem 2. [44], Let  be a feasible solution in the 
investigated fuzzy optimization problem (FO) and 
there exist ,  such that 
the weak Karush-Kuhn-Tucker like optimality 
conditions  hold.   

 
 

 
 

  

 
Further, assume that  and  are invex at  on 

 with respect to  and, moreover, the functions , 

, are invex at  on  with respect to the 
same function . Then  is a weakly nondominated 
solution of the fuzzy optimization problem (FO). 

Now, we give the necessary optimality conditions 
of Karush-Kuhn-Tucker type for the considered 
invex fuzzy optimization problem (FO). 
Theorem 3. [44], Let  be a weakly 
nondominated solution in the fuzzy optimization 
problem (FO). Moreover, assume that the objective 
function  is an invex fuzzy function at  on  with 
respect to  each constraint , , is invex 

at  on  with respect to the same function  and the 
Slater constraint qualification is satisfied for (FO). 
Then, there exist  ,  and 

 such that the Karush-Kuhn-
Tucker like optimality conditions hold at  for (FO). 

  

 

 

  

  

 

Corollary 1. [44] Let  be a weakly 
nondominated solution in the fuzzy optimization 
problem (FO) and hypotheses of Theorem 3 be 
fulfilled. Then, there exist  , 

 and  satisfying (17)-
(18) such that 



 

 
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Throughout this work, it is assumed that the 
Slater constraint qualification, [28], is fulfilled at any 
weakly nondominated solution in the investigated 
fuzzy optimization problem (FO). 
Definition 17. The point  is said to be Karush-
Kuhn-Tucker point (a KKT point, for short) if, for 
each , there are Lagrange multipliers 

,  and  such that the 
Karush-Kuhn-Tucker like optimality conditions 
(11)-(13) are fulfilled at . 
 

Definition 18. The point  is said to be a weak 
Karush-Kuhn-Tucker point (a weak KKT point, for 
short) if, for some , there are Lagrange 
multiplier  such that the weak Karush-
Kuhn-Tucker like optimality conditions (14)-(16) are 
fulfilled at . 
 
 
5 Exactness Property of the Absolute 

Value Exact Penalty Fuzzy function 

Method for Fuzzy Optimization 

Problem with Invex Functions 
It is known in optimization theory that exact penalty 
methods are one of approaches which can be applied 
for finding optimal solutions in constrained 
extremum problems. Their construction is based on 
the so-called penalty function whose unconstrained 
minimizing points are, at the same time, optimal 
solutions of the constrained optimization problem for 
all sufficiently large values of the penalty parameter. 
Hence, an original constrained extremum problem is 
transformed into a single unconstrained optimization 
problem in each methods of such a type. 

Therefore, if we use any exact penalty function 
method to solve the given nonlinear constrained 
optimization problem with a fuzzy objective 
function, we have to construct in this approach its 
corresponding unconstrained penalized fuzzy 
optimization problem as follows  

 
where  is an fuzzy function, p is a 
suitable penalty function,  is a penalty parameter 
and  is a crisp number with value  (see 
Remark 1). The aforesaid penalized fuzzy 
optimization problem (FP()) is constructed in such 
a way that its fuzzy objective function is the sum of a 
certain fuzzy "merit" function (which is the 
counterpart of the fuzzy objective function in the 
original fuzzy extremum problem) and the penalty 
term, which is the counterpart of the constraints 

define its feasible set. The fuzzy merit function is 
defined as the fuzzy original objective function of 
the given constrained extremum problem and the 
penalty term is formulated by multiplying a function 
designed by the constraints of the aforesaid 
optimization problem, by a positive parameter . We 
call the aforesaid parameter  the penalty parameter. 

Note that the objective function of the 
unconstrained fuzzy penalized optimization problem 
is a fuzzy mapping. Note that, by (6), for any 
arbitrary fixed , we associate with  the 
family of interval-valued functions 

 given by 
 for any , where 

 are real-valued functions. 
Therefore, for every fixed , the -cut of the 
unconstrained fuzzy penalized optimization problem 
(FP()) is defined by: 

  
      F  

 
It is known from the optimization literature, that 

the property of exactness of the penalization is the 
most important property from a practical point of 
view for each exact penalty function method. Now, 
we extend and generalize in a natural way the 
definition of this property given in the literature for 
classical exact penalty function methods to the fuzzy 
case. 
Definition 19. If a threshold value  exists such 
that, for every , 

arg (weakly) nondominated  
arg (weakly) nondominated , 

then  is called a exact penalty fuzzy function 
and, therefore, we call (FP()) the penalized fuzzy 
optimization problem with exact penalty fuzzy 
function. 

Note that the function  can be interpreted as 
an exact penalty fuzzy function in such a way that a 
constrained (weakly) nondominated solution in the 
original fuzzy optimization problem (FO) can be 
found by looking for unconstrained (weakly) 
nondominated solutions of the aforesaid function 

, for sufficiently large values of the penalty 
parameter . 

The often used nondifferentiable exact penalty 
function method to solve nonlinear extremum 
problems is the absolute value penalty function 
method, also called in optimization theory the  
exact penalty function method. If the aforesaid exact 
penalty function method is applied to solve (FO), 
then its formulation is: 
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 (21) 

 
where  is a crisp number with the 

value . We call (FP()) defined 
above by (21) the fuzzy penalized optimization 
problem with the  exact fuzzy penalty function. 
Hence, for any fixed , we define the -
levels of the  exact fuzzy penalty function for the 
original nonlinear fuzzy optimization problem (FO) 
by 

, 

 

 


where left-hand side and right-hand side values of 

are given 
by and 

, 
respectively. Hence, we can re-write, for any fixed 

, the unconstrained penalized fuzzy 
optimization problem with the  exact penalty fuzzy 
function defined by (22) as follows 

, 
 . (F ())  

(23) 
 

Now, for any inequality constraint function 
, we define the function  

as follows 

 

 



Note that the aforesaid function  possesses the 
suitable penalty features which depend on the single 
inequality constraint function . If we use (24), 
then, for any fixed , we can re-formulate the 
definition of (FP()) as follows 

, 
 

 .    (F ())  
(25) 

 
Now, we establish that a Karush-Kuhn-Tucker 

point of (FO) is a nondominated solution in (FP()) 
for sufficiently large values of penalty parameters  
greater than the threshold equal to the largest 

Lagrange multiplier associated to some inequality 
constraint. 
Theorem 4. Let  be a Karush-Kuhn-Tucker 
point of the considered nonsmooth fuzzy 
optimization problem (FO) and, for each , 
the Karush-Kuhn-Tucker like optimality conditions 
(11)-(13) be fulfilled at  with Lagrange multipliers 

,  and , . 

Furthermore, assume that the objective function  is 
an invex fuzzy mapping at  on  with respect to  
and each inequality constraint , , is an invex 

function at  on  with respect to the same function 
. If the penalty parameter  is assumed to be 
sufficiently large (namely, let us set the penalty 
parameter  to satisfy the condition 

), then  is a nondominated 
solution in the penalized fuzzy optimization problem 
(FP()) with the  exact penalty fuzzy function. 

Proof. Assume that  is a Karush-Kuhn-
Tucker point in (FO) and, moreover, for each 

 the Karush-Kuhn-Tucker optimality 
conditions (11)-(13) are satisfied at  with Lagrange 
multipliers ,  and , 

. By means of contradiction, we suppose that  
is not a nondominated solution of (FP()). Thus, by 
Definition 15, there exists  such that 

 for all . Hence, by 
Definition 5, the above relation implies 

 or  or  

 . 
 
By the definition of ( ()) (see (25)), it follows 
that, for all , 

 or  

 or  

  

 
Multiplying the above inequalities by the 
corresponding Lagrange multipliers , 

 associated to the fuzzy objective function, 
then adding the resulting inequalities and using 

, we get 


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 

 

Since , by (24), it follows that . 
Thus, (26) gives 



 

 
If we use the Karush-Kuhn-Tucker optimality 
condition (12) together with , then we obtain 



 

 
 
Since  is assumed to be an invex fuzzy mapping at 

 on  with respect to the function , therefore, by 
Definition 14, for each , the inequalities 

 

 
 
hold. Further, each inequality constraint function 

, is invex at  on  with respect to the same 
function . Then, by Definition 14, the following 
inequalities 

 


are satisfied. Multiplying each inequality (28) and 
(29) by the corresponding Lagrange multiplier and 
then adding both sides of the resulting inequalities 
and (30), we get that the inequality 



 

 

  
 
holds. Hence, from the Karush-Kuhn-Tucker 
optimality condition (11) and Proposition 3, (31) 
yields that the inequality 



 

 

holds, contradicting (27). Thus, this completes the 
proof of this theorem. 
Corollary 2. Let  be a nondominated solution 
of (FO) and all the hypotheses of Theorem 4 be 
satisfied. Moreover, if we assume that the penalty 
parameter  is sufficiently large (namely, let us set 
the penalty parameter  is assumed to satisfy the 
condition ), then  is also a 
nondominated solution in each associated penalized 
fuzzy optimization problem (FP()) with the  exact 
penalty fuzzy function. 

Now, we show that a weak Karush-Kuhn-Tucker 
point in the original fuzzy minimization problem 
(FO) is also a weakly nondominated solution in its 
associated penalized fuzzy optimization problem 
(FP()) for sufficiently large . 
Theorem 5. Let  be a weak Karush-Kuhn-
Tucker point of (FO) and the conditions (14)-(16) be 
satisfied at  with Lagrange multipliers  , 

for some . Furthermore, assume that the 
functions  and  are invex at  on  with respect 
to  and the constraints , , are also 

invex at  on  with respect to the same function . 
If we assume the penalty parameter  to be 
sufficiently large (namely, let us set the penalty 
parameter  to satisfy the condition 

),), then  is a weakly 
nondominated solution of (FP()). 

Proof. From the assumption, we have that the 
weak Karush-Kuhn-Tucker optimality conditions 
(14)-(16) are fulfilled at  with Lagrange multipliers 

, , for some . By means of 
contradiction, suppose that  is not a weakly 
nondominated solution of (FP()). Therefore, by 
Definition 15, there exists  such that 

. In particular, there exists  
such that the system of inequalities 


is satisfied for some . By (25), the above 
inequalities yield, respectively, 





 
 
By , the inequalities (32) imply, respectively, 


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 

 
 
By assumption, ),) Thus, the 
inequalities above give, respectively, 

 

 

 
 
Using the feasibility of  in (FO) and (24) together 
with the Karush-Kuhn-Tucker optimality condition 
(16), we get 

 

 
or 

 

 
 
By hypotheses, the functions  and  are invex at 

 on  with respect to  and, moreover, the 
constraint functions , , are also invex at 

 on  with respect to the same function . Hence, 
by Definitions 14 and 8, respectively, the inequalities 
hold. 

 

 

 
 
Now if we multiply the inequalities (37)-(39) by 
corresponding Lagrange multipliers and then adding 
both sides of the resulting inequalities, then we 
obtain that the inequalities 

 

    (40) 
 

 

    (41) 
 

hold for any , ,  
. Thus, by the Karush-Kuhn-Tucker 

optimality conditions (14) and (15), (40)-(41) yield 
that the inequalities 

 

 

 
hold, which contradicting (35) or (36). Hence, the 
proof of this theorem is completed. 
Corollary 3. Let  be a weakly nondominated 
solution of (FO) and all the assumptions of Theorem 
5 be satisfied. Then  is also a weakly nondominated 
solution of (FP()). 

Now, we establish the converse results to those 
ones established above. First, we derive some useful 
results, which we use in proving them. 
Proposition 5. Let  be a nondominated solution 
of (FP()). Then, there is no  such that  

 . (42) 
Proposition 6. Let  be a weakly nondominated 
solution of (FP()). Then, there is no  such that  

 . (43) 
 

Theorem 6. Let  be a compact subset of  and 
 be a (weakly) nondominated solution of the 

fuzzy penalized optimization problem (FP()) with 
the  exact fuzzy penalty function. Further, assume 
that the objective function f is an invex fuzzy 
function at  on  with respect to , each inequality 
constraint , , is invex at  on  with respect to 
the same function . If the penalty parameter  is 
sufficiently large, then  is also a (weakly) 
nondominated solution of the considered fuzzy 
optimization problem (FO). 
Proof. Let  be a nondominated solution in the 
fuzzy penalized optimization problem (FP()) with 
the  exact fuzzy penalty function. 
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Firstly, we assume that . Hence, by 
Proposition 5, it follows that that there does not exist 

 such that (42) is satisfied. Thus, by Definition 
16,  is a nondominated solution of the considered 
fuzzy optimization problem (FO).  

Now, under the assumptions of this theorem, we 
shall prove that the case  is impossible. By 
means of contradiction, suppose that . Since  
is a nondominated solution in the fuzzy penalized 
optimization problem , there exist , 

, , ,  and 
, such that 

. Using the 
definition of the absolute value exact fuzzy penalty 
function, one has 

 

. 
 
Since the weights  and  are nonnegative 
for each , therefore, equality holds in 
Proposition 3. Thus, the above relation yields 



 . 
Using  together with Proposition 2, 
we get  



 
Thus, by Proposition 3, we have 



 
 
By hypothesis,  is an invex fuzzy function at  on 

 (with respect to ). Then, by Definition 14, the 
functions  and  are invex at  on  with respect 
to  for each  Hence, for each , the 
inequalities 

 

 
 
hold for all . Further, since each constraint 
function , , is invex at  on  with 
respect to the same function , by Proposition 4, also 
the functions , are invex on  with respect 
to the same function . Hence, by Definition 14, the 
inequalities 

 
 
hold for all . Multiplying (47) by , we 
obtain, for any , 

 
 
Combining (45), (46) and (48), we have that the 
inequalities 

 

   

 



   
 
hold for all  and any , , 

. 
Now, if we multiply (49) and (50) by  and 

, respectively, and then we add both sides of 
them, we get 



  


Since , we have that, for all  
and any , , 

, 

 

 
  

. 
 
Hence, by (44), (51) implies that the inequality 

 

   
 
is satisfied for all . By (24), for each , 
one has . Hence, the above inequality 
yields that the inequality 
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  
   

 
is fulfilled for all . By assumption,  is not a 
feasible solution of the original fuzzy optimization 
problem (FO). Hence, by (24), one has 

. Then, by the foregoing inequality, 
(52) gives 

 

. 

 
From the assumption,  is sufficiently large. Now, 
we suppose that, for each ,  is assumed to 
satisfy 

  

 

 
 

We now prove that, by (53),  is a finite 
nonnegative real number. Indeed, by assumption,  
is a nondominated solution in the penalized fuzzy 
optimization problem ( ) with the absolute 
value exact penalty fuzzy function. Then, by 
Definition 16, there does not exist  such that 

 
Hence, by (54), we have that . From the 

assumption,  is a compact subset of . This 
implies that  is a finite real number. Since the 
inequality (54) contradicts the inequality (53), this 
gives that the case  is impossible. Thus,  is 
feasible in the oroginal fuzzy optimization problem 
(FO). This means that, for any , , which is a 
nondominated solution of (FP( )), is also a 
nondominated solution of (FO). Thus, the conclusion 
of the theorem follows from Proposition 5. The proof 
of this theorem, in the case when  is a weakly 
nondominated solution of the fuzzy penalized 
optimization problem (FP( )), is similar and the 
conclusion theorem follows from Proposition 6 in 
such a case. Thus, this completes the proof of this 
theorem. 

Now, we present one of the main results of this 
work which follows directly from the results 
established above. 
Theorem 7. Let all the hypotheses of Corollary 2 
(Corollary 3, respectively) and Theorem 6 be 

satisfied. Then  is a (weakly) nondominated of the 
considered fuzzy optimization problem (FO) with 
the fuzzy objective function if and only if  is a 
(weakly) nondominated of the penalized fuzzy 
optimization problem (FP()) with the  exact 
penalty fuzzy function. 

We now present the example of a nonlinear 
nonconvex fuzzy optimization problem in which its 
objective function is a nondifferentiable invex fuzzy 
function and its constraints are invex crisp functions 
with respect to the same function . Then, using the 

 exact penalty method analyzed in this paper, we 
solve this nonsmooth fuzzy extremum problem in 
order to illustrate the result formulated in Theorem 7. 
Example 2. Consider the nonconvex nonsmooth 
fuzzy optimization problem with the fuzzy-valued 
objective function formulated as follows: 



 
where  and  are continuous triangular fuzzy 
numbers. These fuzzy numbers are defined as triples 

 and . Hence, by (4), the -
level sets of these triangular fuzzy numbers are 

and , respectively. 
Moreover, we notice that 

 is 
the set of all feasible solutions of (FO1) and, 
moreover,  is a feasible solution of (FO1). 
Further, by (1) and (2), the -level cut of the fuzzy 
objective function  is given by 

for any . Clearly, the left- and right-hand 
side functions  and  are not convex and so 

 is not convex. Since  and  are not 
differentiable at ,  is not a level-wise 
differentiable fuzzy function at  (see Definition 
4.2 [40]). The Karush-Kuhn-Tucker optimality 
conditions (11)-(13) are fulfilled with Lagrange 
multipliers , , ,  for 
each . Moreover, all functions constituting 
(FO1) are locally Lipschitz, that is, the objective 
function is a locally Lipschitz fuzzy function by 
Definition 10. Further, the functions involved in 
(FO1) satisfy invexity hypotheses of Corollary 2. 
Indeed, if we define  by 

, then the functions , , 
 and  are invex at  on R with respect to . 

Since we use the  exact penalty function method in 
solving (FO1), therefore, we have to construct its 
associated penalized fuzzy optimization problem 
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(FP1()) with the  exact fuzzy penalty function 
defined by: 


  
 (  

 
 

Since all the assumptions of Corollary 2 are 
satisfied,  is a nondominated solution in 
(FP1()) for any penalty parameter . Further, 
all hypotheses Theorem 6 are also fulfilled. Thus, if 
we assume that  is a nondominated solution in 
(FP1()), then it is also a nondominated solution of 
(FO1). Hence, we have shown under invexity 
hypotheses the equivalence between nondominated 
solutions in fuzzy optimization problems (FO1) and 
(FP1()) for any penalty parameter . 

 
 

6 The Convergence of the Absolute 

Value Exact Fuzzy Penalty Function 

Method 
In this section, we present an algorithm for solving 
the investigated nondifferentiable fuzzy optimization 
problem (FO) with fuzzy objective function and 
crisp inequality constraints by using the  exact 
penalty fuzzy function method and we prove its 
convergence in the considered fuzzy case. 

Therefore, we create the following sequence of 
the associated fuzzy penalized optimization 
problems (FP( )) for the original nondifferentiable 
fuzzy extremum problem (FO) as follows: 


where  is a sequence of penalty parameters with 

 and, moreover, . 
 

Algorithm (l1EFPFM) of the  exact fuzzy 

penalty function method:  
Given , tolerance  and starting point ; 
FOR  

Starting at , solve  to find a weakly 
nondomi-nated solution ; 
IF , THEN 

STOP with an approximate weakly 
nondominated solution ; 

ELSE 
a new penalty parameter  should be 

chosen; 
a new starting point  should be chosen; 

END IF; 
END FOR; 

 
Before we establish the convergence of the 

analyzed  exact penalty fuzzy function method 
which is used to solve the considered 
nondifferentiable fuzzy optimization problem (FO), 
we present and prove some useful results. 
Lemma 1. i) If , then . 

ii) If , then . 

Proposition 7. Let  be a weakly nondominated 
solution of the penalized fuzzy optimization problem 
(FP( )),  generated by Algorithm 
(l1EFPFM). If  is a convergent subsequence of 

 and its limit point, i.e.  is a feasible 
solution of the original fuzzy optimization problem 
(FO), then . 

Proof. By means of contradiction, suppose that 

  

 
Hence, (55) implies that there exists a convergent 
subsequence  of  generated by Algorithm 
(l1EFPFM) such that 

 ,        (56)
 
where  is a nonnegative real number. Since  is a 
weakly nondominated solution of , by 
Definition 15, there is no  such that 

 
 (57)

 
Hence, (57) implies that there is no  such that 

 for all  

or  for all  

or  for all . 

 
Then, by (23), it follows that, for  there is 
no  such that, 

  for all  or 
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  for all  or  

  
for all . 
 
By assumption, . Since the above 

system of inequalities is not satisfied for any , 
therefore, it is not satisfied also for . Thus, we 
get that the following system of inequalities 

  for all  or 

  for all  or  

  
for all  

is not satisfied. Therefore, for each point , we 
have 

 or 

 for some , 

 or 

 for some , 

 or  

 for some . 
 
Taking limit  and using (56), we obtain 

 or 
  

 for some . 
 
We have that . Since  and  are 
continuous for each , the above system of 
inequalities gives 

  
or   
 for some . 
 
Since , by Lemma 1, the above inequalities 
reduce to the inequality , which contradicts the 
fact that  is a nonnegative real number. This 
completes the proof of this proposition. 
Theorem 8. Let  be a weakly nondominated 
solution in  generated by 

Algorithm (l1EFPFM). If  is a convergent 

subsequence of  and  is a feasible 

point of (FO), then  is its weakly nondominated 
solution. 

Proof. Let . It is known that  is a 

weakly nondominated solution of . Hence, 
by Definition 15, there is no  such that 

 . (58)
Hence, (58) gives 

 for all  

or  for all  

or  for all . 

Then, by (23), it follows that, for  

  

  for all  or 
 

  

 for all  or  

  

for all . 
 
By assumption, . Thus, by Lemma 1 
i), it follows that . Since , 
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 are weakly nondominated solutions of 
,  generated by Algorithm 

(l1EFPFM), by Proposition 6, we have that 
. Taking limit  in the 

above system of inequalities, we get that there is no 
 such that 

  or  

  

or  . 

 
Hence, by Definition 15,  is a weakly 
nondominated solution of (FO). This completes the 
proof of this theorem. 
 
 
7 The Simulation of the Choice of the 

Penalty Parameter 
One of the important factors that can ensure the 
success of using the fuzzy exact penalty function l₁ 
method considered in the article for solving fuzzy 
optimization problems is the strategy for appropriate 
choosing the penalty parameter. Namely, if the initial 
value of the penalty parameter  is too small in the 
algorithm, more cycles may be needed in the 
aforesaid approach to determine its appropriate 
value. Moreover, the choice of the initial value of  
also affects the choice of the starting point . In the 
next examples, we illustrate some difficulties that 
can be caused by the choice of inappropriate values 
of the penalty parameter . 
Example 3. Consider the following fuzzy 
optimization problem: 


where  is a continuous triangular fuzzy number. It is 
given as triple . Hence, by (4), the -level 
set of this triangular fuzzy number is 

. The set of all feasible 
solutions is  and  is an 
feasible solution in (FO2). 

Now, we use the  exact penalty fuzzy function 
method in solving the fuzzy optimization problem 
(F02) considered in this example. Then, by (22), we 
construct the unconstrained fuzzy optimization 
problem (FP2). Hence, by (25), for any fixed 

 the -levels of the fuzzy  exact penalty 
function are as follows: 





where 

 

 
 
Hence, one has 

 

 
 
Now, we consider two cases: 
1)  
In this case, , 

where 

 

 
 
The graphs of  and  for chosen 

-cuts are presented on Figure 2. 
2) . 
In this case, , where 

 

 
 
The graphs of  and  for chosen -

cuts are presented on Figure 3. 
 
It is not difficult to note that there is the 

significantly better case than the previous one. 
Namely, if  and the current iterate  is any real 
number (including the initial point ), then, for the 
almost any -cuts , all implementations of 
the absolute value exact penalty fuzzy function 
method will 
give a step that moves to the solution  (maybe 
except the 0-cut, namely  if  and 

 if  . 
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Fig. 2: The graphs of  and  
 

 
Fig. 3: The graphs of  and . 

 
As it follows even from these above cases, the 

value of the penalty parameter is crucial to obtain a 
correct solution in the applied  exact penalty fuzzy 
function method to solve fuzzy optimization 
problems. However, also the value of  is important 
in the considered penalty method. 

For example, for , for larger -cuts (that is, 
), and any , the value of 

 in next iterates tends to a solution 
(moreover, the method behaved similarly for even 
greater values of the penalty parameter, for which 

the functions ,  tends to a solution, 
what is more, for all -cuts. Therefore, the initial  
depends on the values of the penalty parameter and 
also on -cuts.  

From which it follows the aforesaid result? We 
consider the Karush-Kuhn-Tucker necessary 
optimality conditions at  for the analyzed fuzzy 
optimization problem. Then, we have the following 
relation: 

. 
 
Note that Lagrange multipliers depend on the value 
. In fact, we consider the following cases of -cuts 
(where we normalize Lagrange  to 
satisfy ): 
1) . Then, we have from the above equation:  

 
2) . Then, we have from the above 

equation: 

 
3) . Then, we have from the above equation: 

 
 
As it follows from the above, the maximum value 

of Lagrange multiplier  decreases for larger -
cuts. Hence, for all penalty parameters  greater than 
the threshold equal to the largest Lagrange multiplier 
associated to the constraint g, we can obtain the 
solution (in such a case, threshold is equal to  
since there is only one constraint in the analyzed 
fuzzy optimization problem). Hence, we conclude 
that that if the value of  is larger then, in general, 
the aforesaid threshold is smaller. 

In the previous example, we considered such a 
fuzzy optimization problem, for which there exists a 
threshold of the penalty parameter  such that, for 
any penalty parameter greater than the aforesaid 
threshold, all implementations of the   exact fuzzy 
penalty function method will give a step that moves 
to the solution  starting from any initial point (no 
maybe, except for the case of 0-cut). Moreover, such 
a behavior will be repeated in the algorithm and, 
thus, it will produce increasingly better iterates, until 
the penalty parameter  is not decreased below some 
threshold value. However, there are also such cases, 
in which the aforesaid threshold of the penalty 
parameter may not exist. So, there are such cases, in 
which, even if we know an appropriate value of the 
penalty parameter  for a given solution , this value 
may cause the appearance of iterations that move 
away from the correct solution or it may be an 
insufficient at the starting point. The next example of 
a fuzzy optimization problem shows that it is not 
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possible to prescribe in advance a value of the 
penalty parameter that is adequate at every iteration. 
Example 4. Consider the following fuzzy 
optimization problem: 


 
where  is a continuous triangular fuzzy number, 
which is defined as triple . Then, by 
(4), the -level set of this triangular fuzzy number is 

. The set of all feasible solutions 
is  and the solution . 
We now apply the  exact penalty fuzzy function 
method in solving (FO3) considered in this example. 
Then, by (22), we construct the unconstrained fuzzy 
optimization problem (FP3()). Hence, by (25), for 
any fixed , the -levels of the fuzzy  exact 
penalty function are as follows: 




where 

 

 
 
Hence, one has 

 

 
 
 
Note that by the Karush-Kuhn-Tucker necessary 

optimality conditions, one has 
. 

 
 

Then, if we normalize Lagrange multipliers 
 (to satisfy the condition 

) associated to -cuts of the 
objective function, then we note that 

. Therefore, the threshold of 
the penalty parameter , for which there is the 
equivalence between nondominated solutions in 
(F03) and (FP3()) just for all penalty parameters, 
satisfies the condition . Now, we 
illustrate this result and, therefore, we consider two 
sample values of . 

 
 

 
Fig. 4: The graphs of  and  dla , 

.  
 

 
Fig. 5: The graphs of  and  dla , . 

 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.44 Tadeusz Antczak

E-ISSN: 2224-2880 425 Volume 23, 2024



Now, we consider two cases: 
Firstly, we consider the case, in which the penalty 

parameter .  
Note that the graphs on Figure 4 confirm that if  

is larger then  is a local undominated solution 
of  provided that the penalty parameter 
satisfies the condition given above. However, 

 and  are unbounded below as 
 (Figure 4). Therefore, for all -cut and for 

every penalty parameter , there is a starting point 
, such that there doesn't exist decreasing path in 

both  and  from the aforesaid 
starting point  to the solution . 

Now, we consider the case, in which the penalty 
parameter . 

Note that we know the value of the penalty 
parameter  in the considered case, which is 
analyzed for the given solution . However, 
this value is inadequate at any starting point . In 
fact, for any , the values of  in next 
iterates will tend to . In other words, each next 
iterate  moves away from the 
solution . Analogously, if we take a 
sufficiently small starting point , then the values of 

 in next iterates  will tend to  for each 
. In other words, each next iterate 

 for some  with , moves 
away from the solution . As it follows from 
the graphs on Figure 5, such a set is different for 
various -cuts.  

There is the following question  why there is no 
equivalence between nondominated solutions in 
(FP3) and (FP3()), even if we take the penalty 
parameter  greater than the threshold? This follows 
from the fact that none of the functions  and  is 
invex with respect to any function  (see [45]). 
Hence, the assumption that the functions  and  
are invex for all  is not fulfilled. Therefore, 
the objective fuzzy function  is not invex with any 
function .  Thus, this example illustrates the 
case in which not all the functions involved in the 
investigated fuzzy optimization problem are invex. 
In such a case, there is practically no starting point 

 at which the exact method of the fuzzy penalty 
function  could start successfully searching for the 
correct solution (since next iterate may move to  
and the functions  and  may tend also 
to  for all ). 

 
 

8  Conclusions 
We have mentioned in Introduction that there are 
many works in the literature on fuzzy optimization 
problems in which fundamental results from 

optimization theory have been established for such 
mathematical programming problems. However, 
there are still open problems in the iterature 
regarding the introduction of new methods for 
solving such non-deterministic extreme problems in 
optimization theory. In this work, the absolute value 
exact penalty fuzzy function method has been 
applied for the first time to solve a new class of 
mathematical programming problems, which are 
nonconvex and nonsmooth optimization problems 
with fuzzy objective functions. Therefore, for the 
considered minimization problem with fuzzy 
objective function and inequality constraints, the 
formulation of the corresponding fuzzy penalized 
fuzzy optimization problem with the  exact fuzzy 
penalty function has been presented. Then, the main 
from the practical point of view property of the  
exact fuzzy penalty function method, i.e. exactness 
of the penalization, has been defined and analyzed in 
the considered fuzzy case. The equivalence between 
(weakly) nondominated solutions in the analyzed 
constrained fuzzy minimization problem and its 
corresponding penalized fuzzy optimization problem 
has been proven under appropriate invexity 
hypotheses. Also the threshold of the penalty 
parameter has been given. Then, it has been proven 
that the aforesaid equivalence holds if the penalty 
parameter in the penalized fuzzy optimization 
problem exceeds this threshold. However, if the 
functions constituting the considered fuzzy 
optimization problems are not invex, this threshold 
may not exist. This result has been investigated and 
illustrated by an appropriate example of such fuzzy 
optimization problems. In other words, the approach 
for the choice of the penalty parameter has been 
analyzed in the paper and the analysis has been made 
both theoretically and practically. Thus, it has been 
shown that the   exact fuzzy penalty function 
method is applicable also for solving a larger class of 
nonsmooth optimization problems with fuzzy 
objective functions than convex ones. Further, the 
algorithm for the  exact fuzzy penalty function 
method, which is applied for finding weakly 
nondominated solutions of the considered 
nondifferentiable fuzzy optimization problem has 
been given. Also the convergence results have been 
obtained for the algorithm presented in this work. 
Moreover, the simulation of the choice of the initial 
penalty parameter in the aforesaid algorithm has 
been performed. Hence, it can be concluded here that 
the  exact fuzzy penalty function method, 
originally designed for deterministic constrained 
extremum problems, can also be applied for solving 
fuzzy optimization problems. 
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Although we have focused on solving scalar 
fuzzy extremum problems with fuzzy objective 
functions and inequality constraints by applying the 
absolute value exact penalty fuzzy function, 
however, we believe that the established results are 
also applicable for such not well-defined operations 
research problems which are modeled by 
nondeterministic optimization problems of other 
types. Therefore, there remain some interesting 
questions for further research. Namely, it would be 
interesting to investigate whether it is possible to 
prove analogous results for various types of fuzzy 
extremum problems. This question will be 
investigated in our subsequent works. 
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