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Abstract: - This paper presents a modified technique that utilizes the homotopy-perturbation method (HPM) to 
solve a system of integro-differential equation of Volterra kind. By providing practical examples and 
conducting numerical simulations, we showcase the effectiveness and efficiency of this modification in solving 
these systems encountered in various scientific fields. Furthermore, we compare the performance of the HPM 
with the exact solution, emphasizing its advantages in terms of accuracy, convergence, and computational 
efficiency. 
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1  Introduction 
Integro-differential equations are commonly 
encountered in engineering and scientific 
disciplines. Scientific and engineering disciplines 
frequently use integral-differential equations. A 
wide range of physical phenomena, including wind 
ripples in deserts, dropwise consideration in 
nonhydrodynamics, and the formation of glass, are 
explained by them, [1], [2] and [3]. In addition, 
many equations equation have important 

applications in theoretical physics and as 
mathematical representations of viscoelasticity. 
Numerical solutions are essential for 
comprehending complicated dynamical systems in 
physics, biology, and economics, among other 
disciplines.Volterra integro-differential equations, 
which incorporate integrals and derivatives, describe 
these systems. These equations are difficult to find 
analytical solutions for, which is why approximating 
their solutions numerically is a common practice. 
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Different numerical techniques have been developed 
by many scholars to solve systems of linear integro-
differential equations. Numerous scholars have 
devised numerous numerical techniques to resolve 
linear integro-differential equation systems. 
Specifically, systems of Volterra integro-differential 
equations are solved using the reconstruction of the 
variational iteration approach, [4]. This method 
produces results that are more accurate than the 
homotopy perturbation method, according to 
comparisons between the two.  Researchers in their 
work, [5], used the homotopy perturbation method 
to estimate the solution of Volterra integro-
differential equation systems. The optimal 
homotopy asymptotic method was employed to find 
the solutions of a system of Volterra integro-
differential equations, [6].  

Moreover, authors in their research, [7], used 
the Sinc collocation and Chebyshev wavelet 
methods to solve linear Volterra integro-differential 
equation systems. Chebyshev polynomials [8], the 
single-term Walsh series technique, [9], the 
differential transform method, [10], the power series 
method, [11], the homotopy perturbation method, 
[12], the homotopy analysis method, [13], and the 
modified Adomian decomposition method, [14], are 
other numerical techniques that are frequently used 
to solve such systems. However, the presence of 
integrals requires special attention to efficiently 
handle the integral terms. Additionally, in general, 
the stability and convergence of numerical schemes, 
[15], [16], [17], [18], [19], [20], [21], [22], [23], 
[24], [25], [26], are crucial factors in obtaining 
accurate results. 
    In this work, we introduce a new improvement to 
the solution of the HPM procedure, specifically for 
solving systems of Volterra integro-differential 
equations. Our method applies to any given 
problem, offering accurate approximate solutions 
that approach the exact solution as the number of 
approximation terms increases. It is important to 
note that the accuracy of our method depends on the 
order of the approximation used, which may require 
additional computational effort and time, especially 
for nonlinear problems. Therefore, researchers are 
continuously striving to develop or modify 
numerical techniques to achieve higher accuracy or 
exact solutions. 
The main objective of this paper is to enhance the 
accuracy of the HPM by employing an alternative 
approach. This approach involves modifying the 
series solution of the HPM by applying the Laplace 
transformation to the truncated HPM solution. 
Subsequently, the transformed series is converted 
into a meromorphic function using Padé 

approximants. Finally, we apply the inverse Laplace 
transformation to obtain the desired solution for the 
given problem. This method is straightforward and 
yields precise results with high performance, 
without requiring significant effort. The structure of 
this paper is organized as:  Section 2 introduces the 
fundamental concept of the HPM, along with a brief 
explanation of the Pade approximants. In Section 3, 
numerical examples are presented to demonstrate 
the effectiveness of the discussed procedure in 
obtaining the analytic solution of systems of 
Volterra integro differential equations. The results 
highlight that accurate solutions can be obtained 
with only a few terms. The final section summarizes 
the conclusions of this work. 
 

 

𝟐  Fundamental Idea of HPM 

Procedure 
To demonstrate the fundamental concept of the 
HPM procedure, [27], [28], [29] and [30], consider:  

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω,       (1) 
 

Given that 𝐴 is a general integral operator, 𝐵 is 
a boundary operator, 𝑓(𝑟)is a known analytic 
function, and 𝛤 is the boundary of the domain 𝛺. 
The operator 𝐴 can be divided into two parts: 𝐿 is 
linear, while 𝑁 is nonlinear. Thus, the Eq. (1) can 
be rewritten as follows: 

𝐿(𝑢) −  𝑁(𝑢) −  𝑓(𝑟)  =  0.            (2) 
 
Now, we construct 𝑣 ∶ 𝛺[0, 1] →R which satisfies 
𝐻(𝑣;  𝑝) =  𝐿(𝑣) −  𝐿(𝑣0) +  𝑝𝐿(𝑣0)  +  𝑝[𝑁(𝑣)

−  𝑓(𝑟)]  
=  0.                                             (3) 

 
or 
 

𝐻(𝑣;  𝑝)  =  (1 −  𝑝)[𝐿(𝑣) −  𝐿(𝑣0)]  +  𝑝[𝐴(𝑣0)
− 𝐹(𝑟)]  
=  0.                                             (4) 

 
where 𝑟 𝜖 𝛺, 𝑝 𝜖 [0, 1] that is parameter, and 
𝑣0(𝑥)is an initial approximation of Eq. (1). Hence 
(𝑣;  0) =  𝐿(𝑢) − 𝐿(𝑣0) =  0,     𝐻(𝑣;  1)

=  𝐴(𝑣) − 𝐹(𝑟)
=  0.                                          (5) 

 
and the process of changing 𝑝 from  to 0 to 1, and  
𝐻(𝑣;  𝑝) from 𝐿(𝑢)  −  𝐿(𝑣0) to 𝐴(𝑣) −  𝐹(𝑟) 
which is called deformation in topology, this, 
where 𝐿(𝑢)  − 𝐿(𝑣0) and 𝐴(𝑣)  −  𝐹(𝑟) are called 
homotopic. Since 0 ≤ 𝑝 ≤ 1, considered a small 
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parameter, we assume the solution of Eqs. (4) or 
(5) expressed in the following: 

𝑣 =  𝑣0  +  𝑝𝑣1  +  𝑝
2𝑣2 + 𝑝

3𝑣3 + . . .         (6) 
 

when 𝑝 → 1, Eq. (6) becomes the approximate 
solution of Eq. (1). i.e., 𝑢(𝑥) =  lim

𝑝→1
𝑣(𝑥) =  𝑣0 +

𝑣1 + 𝑣2 + 𝑣3 +
⋯                                                                             (7) 

 
 
𝟑   Padѐ Approximation 
The function 𝑢(𝑥) is defined by the Padé 
approximation, [25], [31], [32], [33] and [34]. 

[
𝐿

𝑀
] =

𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
, 

 
where the highest degree polynomial for 𝐿 is 𝑃𝐿(𝑥) 
and the highest degree polynomial for 𝑀 is 𝑄𝑀(𝑥). 
Regarding the formal power series 

𝑢(𝑥) =∑𝑎𝑖𝑥
𝑖.

∞

𝑖=1

 

 
We can find the coefficients of the polynomials 

by using the following equation: 
𝑃𝐿(𝑥) and 𝑄𝑀(𝑥). 

𝑢(𝑡) −
𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
= 𝑂(𝑥𝐿+𝑀+1).            (8) 

 
When the denominator and numerator's 

functions 𝑃𝐿(𝑥)
𝑄𝑀(𝑥)

 is multiplied by a constant that is 
not zero, the fractional values stay the same, such 
that we can set up the normalization requirement 
as:                                                  

           QM(0) = 1.                                   (9) 
 

It should be noted that the polynomial for 
functions 𝑃𝐿(𝑥) and 𝑄𝑀(𝑥) has no public factors.  If 
the coefficients of the polynomial functions 𝑄𝑀(𝑥)  
and 𝑃𝐿(𝑥)  are expressed as:                                                                                              

𝑃𝐿(𝑡) = 𝑃0 + 𝑃1𝑡 + 𝑃2𝑡
2 +⋯+ 𝑃𝐿𝑡

𝐿

𝑄𝑀(𝑡) = 𝑞0 + 𝑞1𝑡 + 𝑞2𝑡
2 +⋯+ 𝑞𝑀𝑡

𝑀 (10) 

 
We can derive the following linear systems of 

coefficients by multiplying Eq. (8) by 𝑄𝑀(𝑥) to be: 

{
 
 

 
 𝑎𝐿+1 + 𝑎𝐿𝑞1 +⋯+ 𝑎𝐿−𝑀+1𝑞𝑀 = 0
𝑎𝐿+2 + 𝑎𝐿+1𝑞1 +⋯+ 𝑎𝐿−𝑀+2𝑞𝑀 = 0.

.
𝑎𝐿+𝑀 + 𝑎𝐿+𝑀−1𝑞1 +⋯+ 𝑎𝐿𝑞𝑀 = 0 }

 
 

 
 

, (11) 

{
 
 

 
 

𝑎0 = 𝑃0
𝑎1 + 𝑎0𝑞1 = 𝑃1

𝑎2 + 𝑎1𝑞1 + 𝑎0𝑞2 = 𝑃2
.
.

𝑎𝐿 + 𝑎𝐿−1𝑞1 +⋯+ 𝑎0𝑞𝐿 = 𝑃𝐿}
 
 

 
 

,       (12)                                            

 
These equations will be solved using Eq. (11), 

which represents a set of linear formulas for the 
unidentified variables. Once the 𝑞'𝑠 are identified, 
we can derive an explicit formula for the unknown 
p's, which will provide the solution to the problem.  

[
𝐿

𝑀
]

=

𝑑𝑒𝑡

[
 
 
 
 

𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+2    … 𝑎𝐿+1
. . … .
. . . .
𝑎𝐿 𝑎𝐿+1 . 𝑎𝐿+𝑀

∑ 𝑎𝑗−𝑀𝑋
𝑗𝐿

𝑗=𝑀 ∑ 𝑎𝑗−𝑀+1𝑋
𝑗𝐿

𝑗=𝑀−1 … ∑ 𝑎𝑗𝑋
𝑗𝐿

𝑗=0 ]
 
 
 
 

𝑑𝑒𝑡

[
 
 
 
 
𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+2 … 𝑎𝐿+1

. . . .

. . . .
𝑎𝐿 𝑎𝐿+1 … 𝑎𝐿+𝑀
𝑋𝑀 𝑋𝑀−1 … 1 ]

 
 
 
 

  

, 

(13) 
 
 

4  Applications of HPM 
The purpose is to demonstrate the effectiveness and 
reliability of our modified procedure. 
Example 𝟏.  Given the system of integro-differential 
equations of Volterra type, [34], [35], [36], and [37]. 

𝑢1′(𝑡) = 1 + 𝑡 + 𝑡
2 − 𝑢2(𝑡)  

− ∫ (𝑢1(𝑥) + 𝑢2(𝑥))𝑑𝑥
𝑡

0

, 

𝑢2
′ (𝑡) = 1 − 𝑡 + 𝑢1(𝑡) − ∫ (𝑢1(𝑥) −

𝑡

0

                    𝑢2(𝑥))𝑑𝑥,                                 (14) 
 

Subject to 𝑢1(0) = 1, 𝑢2(0) =  −1,  and exact 
solutions 𝑢 = (𝑢1(𝑡), 𝑢2(𝑡)) = (𝑡 + 𝑒𝑡 , 𝑡 − 𝑒𝑡).  
Based on the algorithm presented in Section 2, we 
will now proceed to construct the following 
homotopy equation.   

                            
(1 − 𝑞)[𝑑𝑣(𝑡;𝑝)

𝑑𝑡
= 

(ℎ; 𝑞) [
𝑑𝑣(𝑡; 𝑝)

𝑑𝑡
− 1 − 𝑡 − 𝑡2 + 𝑣2(𝑡; 𝑝)

+ ∫ (𝑢1(𝑥) + 𝑢2(𝑥))𝑑𝑥
𝑡

0

], 

(1 − 𝑝)[𝑑𝑣(𝑡;𝑝)
𝑑𝑡

= 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.43

Nidal Anakira, Adel Almalki, 
M. J. Mohammed, Safwat Hamad, 

Osama Oqilat, Ala Amourah

E-ISSN: 2224-2880 402 Volume 23, 2024



(ℎ; 𝑞) [
𝑑𝑣(𝑡;𝑝)

𝑑𝑡
+ 1 + 𝑡 − 𝑣1(𝑡; 𝑝) + ∫ (𝑢1(𝑥) −

𝑡

0

                     𝑢2(𝑥))𝑑𝑥],                        (15) 
 
The zeroth-order problem is expressed in Eqs. (16),  
as follows: 

𝑢1,0
′ (𝑥) = 1, 
𝑢2,0
′ (𝑥) = −1,                     (16)                                             

 
which has the solution 

𝑢1,1(𝑥) = 1, 
𝑢2,1(𝑥) = −1,                  (17) 

 
Based on Eqs. (15) the first-order problem is given 
in the form of 

𝑢′1,1(𝑡) = 2 + 𝑡 + 𝑡
2, 

𝑢′2,1(𝑡) = −3𝑡,                          (18)                                                            
 
under the conditions  𝑢1(0) = 0,   𝑢2(0) = 0. 
Therefore, it has the following solution. 

𝑢1,1(𝑡) = 2𝑡 +
𝑡2

2
+
𝑡3

3
 

u2,1(t) = −
3t2

2
                            (19)                                                                  

 
The following formula defines the second-order 
problem. 

𝑢′1,2(𝑡) =
𝑡2

2
+
𝑡3

3
−
𝑡4

12
, 

𝑢′2,2(𝑡) = 2𝑡 −
𝑡2

2
−
𝑡3

3
−
𝑡4

12
,      (20) 

 
using the conditions  𝑢1(0) = 0,   𝑢2(0) = 0. We 
have the following solution 

𝑢1,2(𝑡) =
𝑡3

6
+
𝑡4

12
−
𝑡5

60
, 

𝑢2,2(𝑡) = 𝑡
2 −

𝑡3

6
−
𝑡4

12
−
𝑡5

60
,              (21) 

 
Based on the HPM procedure, we have the 5th -order 
HPM approximate solution 
𝑢̃1(𝑡) = 1 + 2𝑡 +

𝑡2

2
+
𝑡3

6
+

𝑡4

24
+

𝑡5

120
+

𝑡6

720
+

𝑡7

2520
−

𝑡9

90720
+

𝑡10

907200
+

𝑡11

4989600
,       (22) 

 
        𝑢̃2(𝑡)

= −1 −
𝑡2

2
−
𝑡3

6
−
𝑡4

24
−
𝑡5

120
−
𝑡6

240
+

𝑡8

5040

−
𝑡9

90720
−

𝑡10

302400
,                                               (23) 

      
This leads to 𝑢 = (𝑢1(𝑡), 𝑢2(𝑡)) =

(𝑡 + 𝑒𝑡 , 𝑡 − 𝑒𝑡). as lim
𝑛→ ∞

𝑢̃𝑛(𝑡).  Table 1 and 

Table 2 depicts numerical results for HPM 
Procedure and the exact one. The HPM is well-
known for its simplicity and versatility. It allows the 
calculation of approximate solutions to differential 
equations without requiring linearization or 
restrictive assumptions. To enhance the accuracy of 
the HPM solution, we will use the MHPM that 
builds upon the capabilities of the HPM by 
addressing its limitations in terms of the number of 
terms, convergence rate, and computational 
complexity. We achieve this by employing Pade 
approximation, Laplace transformation, and 
ultimately the inverse Laplace transformation, as 
described below: 

𝐿(𝑢̃1(𝑡)) =
1

𝑠7
+
1

𝑠6
+
1

𝑠5
+
1

𝑠4
+
1

𝑠3
+
2

𝑠2
+
1

𝑠
, 

𝐿(𝑢̃2(𝑡)) = −
3

𝑠7
−

1

𝑠6
−

1

𝑠5
−

1

𝑠4
−

1

𝑠3
−
1

𝑠
.   (24)                                      

 
Use  𝑠 = 1

𝑥
 , leads to 

𝐿(𝑢̃1(𝑡)) = 𝑧 + 2𝑧
2 + 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7, 

𝐿(𝑢̃2(𝑡)) = −𝑧 − 𝑧
3 − 𝑧4 − 𝑧5 − 𝑧6

− 3𝑧7.                                          (25) 
 
The Pade approximates of order  [3

3
] in term of 𝑥 =

1

𝑠
 , gives 

[
3

3
] = −

1

(1−
1

𝑠
)𝑠3
+

1

(1−
1

𝑠
)𝑠2
+

1

(1−
1

𝑠
)𝑠

 . 

[
3

3
] = −

1

(1−
1

𝑠
)𝑠3
+

1

(1−
1

𝑠
)𝑠2
−

1

(1−
1

𝑠
)𝑠
,          (26) 

 
The modified approximation solution  𝑢 =
(𝑢1(𝑡), 𝑢2(𝑡)) = (𝑡 + 𝑒

𝑡 , 𝑡 − 𝑒𝑡).,  is obtained by 
applying the inverse Laplace transform to the [3

3
] 

Pade approximate. 
 

Example 𝟒. 𝟐 Considering the system of differential 
equations of Volterra integro type, [38], [39] and 
[40]. 

𝑢1
′′(𝑡) = −𝑠𝑖𝑛𝑡 − 𝑡2 − 1 +∫ (𝑢1(𝑥) + 𝑢2(𝑥))𝑑𝑥

𝑡

0

, 

𝑢2
′′(𝑡) = 1 − 𝑐𝑜𝑠𝑡 − 2𝑠𝑖𝑛𝑡 + ∫ (𝑢1(𝑥) −

𝑡

0

                     𝑢2(𝑥))𝑑𝑥,                                      (27) 
 

Subject to 𝑢1(0) =  𝑢′1(0) = 1, 𝑢2(0) = 0,
𝑢′2(0) = 2,  and exact solutions 

𝑢 = (𝑢1(𝑡), 𝑢2(𝑡)) = (𝑡 + 𝑐𝑜𝑠𝑡, 𝑡 + 𝑠𝑖𝑛𝑡).    (28) 
 

Based on the algorithm presented in Section 2, 
we will now proceed to construct the following 
homotopy equations. 
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(1 − 𝑝)[𝑑𝑣(𝑡;𝑝)
𝑑𝑡

= 

(ℎ; 𝑞) [
𝑑𝑣2(𝑡; 𝑝)

𝑑𝑡2
+ 𝑆𝑖𝑛𝑡 + 𝑡2 + 1

−∫ (𝑢1(𝑥) + 𝑢2(𝑥))𝑑𝑥
𝑡

0

], 

(1 − 𝑝)[𝑑𝑣(𝑡;𝑝)
𝑑𝑡

= 

(ℎ; 𝑞) [
𝑑𝑣2(𝑡;𝑝)

𝑑𝑡2
+ 𝑐𝑜𝑠𝑡 + 2𝑠𝑖𝑛𝑡 − 1 −

           ∫ (𝑢1(𝑥) − 𝑢2(𝑥))𝑑𝑥
𝑡

0
],                 (29) 

 
Following the same process in example one, we 
have the 5th -order HPM approximate solution 

𝑢̃1(𝑡)                                                                               

= 1 + 𝑡 −
𝑡2

2
+
𝑡4

24
−
𝑡6

720
+

𝑡8

40320
−

𝑡10

3628800

+
𝑡11

39916800
+

𝑡12

479001600
−

𝑡13

6227020800

+
𝑡14

43589145600
−

𝑡16

10461394944000

+
𝑡17

59281238016000
+

𝑡18

1067062284288000

−
𝑡19

20274183401472000

+
𝑡21

12772735542927360000
,                             (30) 

 
𝑢̃2(𝑡)

= 2𝑡 −
𝑡3

6
+
𝑡5

120
−

𝑡7

5040
+

𝑡9

362880
+

𝑡11

39916800

−
𝑡12

479001600
−

𝑡13

6227020800
+

𝑡15

653837184000

+
𝑡17

59281238016000
−

𝑡18

1067062284288000

−
𝑡19

20274183401472000
+

𝑡20

608225502044160000

+
𝑡21

6386367771463680000

−
𝑡22

281000181944401920000
.                     (31) 

 
This leads to the exact solution 𝑢 =

(𝑢1(𝑡), 𝑢2(𝑡)) = (𝑡 + 𝑐𝑜𝑠𝑡, 𝑡 +
𝑠𝑖𝑛𝑡), as lim

𝑛→ ∞
𝑢̃𝑖(𝑡) , 𝑖 = 1,2.  

 
Table 3 and Table 4 depicts numerical results 

for HPM procedure and the exact solutions. We 
observed that accuracy depends on the order of the 
approximations. To obtain more accurate results, we 
will modify the HPM solutions. We will achieve 
this by employing the Laplace transformation on the 
initial terms of the HPM series solutions, using the 
Pade approximants, and finally applying the inverse 
Laplace transformation as depicted below. 

𝐿(𝑢̃1(𝑡)) =
1

𝑠9
−
1

𝑠7
+
1

𝑠5
−
1

𝑠3
+
1

𝑠2
+
1

𝑠
, 

  𝐿(𝑢̃2(𝑡))
1

𝑠12
+

1

𝑠10
−

1

𝑠8
+

1

𝑠6
−

1

𝑠4
+

2

𝑠2
,       (32)                                  

Use  𝑠 = 1

𝑧
 , leads to 

𝐿(𝑢̃1(𝑡)) = 𝑧 + 𝑧
2 − 𝑧3 + 𝑧5 − 𝑧7 + 𝑧9, 

𝐿(𝑢̃2(𝑡))2𝑧
2 − 𝑧4 + 𝑧6 − 𝑧8 + 𝑧10

+ 𝑧12,                                           (33) 
 
Using of 𝑡 = 1

𝑠
 , Then, Pade approximates of order  

[
4

4
],  yield to 

[
4

4
] =

1

(1 +
1

𝑠2
)𝑠4

+
1

(1 +
1

𝑠2
)𝑠2

+
1

(1 +
1

𝑠2
)𝑠
, 

[
4

4
] =

1

(1+
1

𝑠2
)𝑠4
+

2

(1+
1

𝑠2
)𝑠2
,                                       (34)                                             

 
The exact solutions  𝑢 = (𝑢1(𝑡), 𝑢2(𝑡)) =

(t + cost, t + sint).,  are obtained by applying the 
inverse Laplace transform to the [4

4
] Pade 

approximate. 
 

Table 1. Numerical result of example 4.1 
𝑥 Exact Solution 

𝑢1(𝑡) = 𝑡 + 𝑒
𝑡 

Approximate 
Solution 

HPM 
Absolute 
Error 

0.0 1.0 1.0 0.0 
0.2 1.4214027582 1.4214027606 2.47×10−9 
0.4 1.8918246976 1.8918250029 3.05×10−7 
0.6 2.4221188004 2.4221238049 5.00 × 10−6 
0.8 3.0255409285 3.0255766320 3.57 × 10−5 
1.0 3.7182818285 3.7184426607 1.61 × 10−4 
 

Table 2. Numerical result of example 4.1 
𝑥 Exact Solution 

𝑢1(𝑡) = 𝑡 − 𝑒
𝑡 

Approximate 
Solution 

HPM Absolute 
Error 

0.0 −1.000000000 −1.000000000 0.0 

0.2 −1.0214027582 −1.0214029328 1.75×10−7 
0.4 −1.0918246976 −1.0918356065 1.09×10−5 
0.6 −1.2221188003 −1.2222391985 1.20 × 10−4 
0.8 −1.4255409285 −1.4261914798 6.51 × 10−4 
1.0 −1.7182818284 −1.7206492504 2.37 × 10−3 
 

Table 3. Numerical result of example 4.2 
𝑥 Exact Solution 

𝑢1(𝑡) = 𝑡 + 𝑐𝑜𝑠𝑡 
Approximate 

Solution 
HPM Absolute 

Error 
0.0 1.0 1.0 0.0 
0.2 1.1800665778 1.1800665778 4.44×10−16 
0.4 1.3210609940 1.3210609940 1.05×10−12 
0.6 1.4253356150 1.42533561490 9.07 × 10−11 
0.8 1.4967067115 1.49670670935 2.14 × 10−9 
1.0 1.5403023307 1.54030230587 2.49 × 10−9 
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Table 4. Numerical result of example 4.2 
𝑥 Exact Solution 

𝑢1(𝑡) = 𝑡 + 𝑠𝑖𝑛𝑡 
Approximate 

Solution 
HPM 

Absolute Error 
0.0 1.0 1.0 0.0 
0.2 0.3986693308 0.3986693308 9.99×10−16 
0.4 0.7894183423 0.7894183423 2.06×10−12 
0.6 1.1646424734 1.1646424736 1.77 × 10−10 
0.8 1.5173560909 1.5173560950 4.14 × 10−9 
1.0 1.8414709848 1.8414710325 4.77 × 10−8 
 
 
5   Conclusion 
In this research study, we propose a new procedure 
based on the HPM for solving a system of Volterra 
integro-differential equations. This procedure is not 
only effective and reliable, but it also offers a 
distinct advantage over other methods. Its ability to 
provide accurate solutions for challenging systems 
highlights its potential as a valuable tool for 
researchers and practitioners seeking to understand 
and analyze dynamic phenomena governed by these 
systems. Through illustrative examples and 
comparisons with numerical results reported in the 
literature, we observed that this procedure can 
achieve the exact analytical solution by utilizing 
only a few terms of the truncated series solution 
derived from the HPM solutions. Consequently, we 
conclude that this procedure represents a potent 
approach and a promising tool for resolving not only 
this particular class of differential equations but also 
various other types of differential equations. 
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