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1 Introduction
In [1], gave the definition of the fuzzy binary op-
eration using the notion of a fuzzy subset of a
fuzzy set introduced by Zadeh in his famous pa-
per, [2], published in 1965. Taking advantage of
this definition, extensive work has been published
by several researchers (see, [3], [4], [5], for further
references). In 2004, a new definition of fuzzy
group was created by the two researchers, [6],
they also presented the notion of commutativity
of a fuzzy group and some of its basic principles.
After these studies, in [7], created the concept
of fuzzy ring based on the definition of [6], of a
fuzzy group, and they obtained interesting results
on this subject. Motivated by the classical theory
of near-rings, we refer the reader to [8], and the
work of [7], in which the two operations ∗ and ◦
are two mappings constructed from the fuzzy bi-
nary operations T and L as given in the section
of preliminary, we succeed to define the notion of
fuzzy near-ring as follows:

Definition 1. For any nonempty set X with two
fuzzy binary operations T and L is said fuzzy left
near-ring if the following assertions hold:

i) (X,T ) is a fuzzy group not necessarily commu-
tative,

ii) ∀a, b, c, x1, x2 ∈ X, we have (a∗(b∗c))(x1) > θ
and ((a ∗ b) ∗ c)(x2) > θ =⇒ x1 = x2,

iii) ∀a, b, c, x1, x2 ∈ X, we have

(a∗(b◦c))(x1) > θ and ((a∗b)◦(a∗c))(x2) > θ
=⇒ x1 = x2,

where θ ∈ [0, 1) is a fixed number. Further, if we
replace the last condition by:

iv) ∀a, b, c, x1, x2 ∈ X, (b ◦ c) ∗ a)(x1) > θ and
((b ∗ a) ◦ (c ∗ a))(x2) > θ =⇒ x1 = x2,

then (X,T, L) is called right fuzzy near-ring.
And (X,T, L) is said to be a fuzzy ring, when
(X,T, L) is a left and right fuzzy near-ring and
(X,T ) is abelain. Moreover, according to, [7, Def-
inition 9], (X,T, L) is said to be a commutative
fuzzy ring if (a ∗ b)(u) > θ ⇔ (b ∗ a)(u) > θ for
all a, b ∈ X.

Noting that (X,T, L) is called a prime fuzzy
near-ring, if it has the property that ((x ∗ y) ∗
z)(e) > θ for all x, y, z ∈ X implies that x = e
or z = e. Also, ZF (X) = {x ∈ X /L(x, y, z) >
θ ⇐⇒ L(y, x, z) > θ, ∀y, z ∈ X} denote the
fuzzy multiplicative center of X.

2 Preliminary results
In this section, we will formulate some basic
definitions and results that will be essential for
the rest of this paper.

Definition 2. [9, Definition 2.1] Let X be a
nonempty set and T be a fuzzy subset of X×X×X
and θ ∈ [0, 1) is a fixed number. T is called a
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fuzzy binary operation on X if the following con-
ditions hold:
(C1) ∀x, y ∈ X,∃ z ∈ X such that T (x, y, z) > θ.
(C2) ∀x, y, t1, t2 ∈ X, T (x, y, t1) > θ and
T (x, y, t2) > θ implies t1 = t2.

Let T and L be two fuzzy binary operations on
X, then we can defined the following mappings:

◦ : F(X)× F(X) −→ F(X)
(µ, v) 7−→ µ ◦ v

and

∗ : F(X)× F(X) −→ F(X)
(µ, v) 7−→ µ ∗ v ,

where F(X) = {µ |µ : X −→ [0, 1]}, and for all
µ, v ∈ F(X), we have(µ ∗ v)(z) =

∨
x,y ∈X

(
µ(x) ∧ v(y) ∧ L(x, y, z)

)
,

(µ ◦ v)(z) =
∨

x,y ∈X

(
µ(x) ∧ v(y) ∧ T (x, y, z)

)
.

Let x, y ∈ X, µ = {x} and v = {y}, and let µ ◦ v
and µ∗v be denoted by x◦y and x∗y, respectively.
Then, we have for all z, t ∈ X

(x ◦ y)(z) = T (x, y, z), (1)

(x ∗ y)(z) = L(x, y, z), (2)

((x◦y)◦z)(t) =
∨

h∈X

(
T (x, y, h)∧T (h, z, t)

)
, (3)

(x◦(y ◦z))(t) =
∨

h∈X

(
T (y, z, h)∧T (x, h, t)

)
, (4)

((x∗y)∗z)(t) =
∨

h∈X

(
L(x, y, h)∧L(h, z, t)

)
, (5)

(x∗ (y ∗z))(t) =
∨

h∈X

(
L(y, z, h)∧L(x, h, t)

)
, (6)

(x∗ (y ◦z))(t) =
∨

h∈X

(
T (y, z, h)∧L(x, h, t)

)
, (7)

((x ∗ y) ◦ (x ∗ z))(t) =∨
d,h∈X

(
L(x, y, d) ∧ L(x, z, h) ∧ T (d, h, t)

)
.

(8)

Definition 3. [9, Definition 2.2] Let X be a
nonempty set and T a fuzzy binary operation on
X. Then (X,T ) is called a fuzzy group if the fol-
lowing conditions hold:

1. ∀a, b, c, c1, c2 ∈ X, ((a ◦ b) ◦ c)(c1) > θ and
(a ◦ (b ◦ c))(c2) > θ =⇒ c1 = c2.

2. ∃ e ∈ X such that for all x ∈ X, (e◦x)(x) > θ
and (x ◦ e)(x) > θ. e is called the identity
element of (X,T ).

3. ∀x ∈ X, ∃ y ∈ X such that (x o y)(e) > θ
and (y o x)(e) > θ. y is called the inverse
element of x and denoted by x−1.

Lemma 1. [6, Proposition 2.1] Let (X,T ) be a
fuzzy group, then

1) (x ◦ y)(a) > θ and (x ◦ z)(a) > θ =⇒ y = z;

2) (a ◦ x)(y) > θ and (b ◦ x)(y) > θ =⇒ a = b;

3) (a ◦ b)(c) > θ and (b−1 ◦ a−1)(d) > θ =⇒
d = c−1;

4) (a ◦ a)(a) > θ =⇒ a = e;

5) (a−1)−1 = a.

Definition 4. [7, Definition 6] Let (X,T ) be a
fuzzy group. (X,T ) is called abelian fuzzy group
if we have, for all x, y, z ∈ X,

T (x, y, z) > θ ⇐⇒ T (y, x, z) > θ.

Lemma 2. [9, Theorem 3.1 & Theorem 3.3]
1- Let (X,T, L) be a left fuzzy near-ring, then

ZF (T ) =

{x ∈ X | ∀y ∈ X, ((x ∗ y) ◦ (y ∗ x−1))(e) > θ}.

2- Let (X,T, L) be a right fuzzy near-ring, then

ZF (T ) =

{x ∈ X | ∀y ∈ X, ((x ∗ y) ◦ (y−1 ∗ x))(e) > θ}.

Lemma 3. [9, Proposition 3.1 & Proposition
3.2]
1- Let (X,T, L) be a left fuzzy near-ring, then

∀x, y, z ∈ X,
(
((x∗y)∗z)◦((x∗y)∗z−1)

)
(e) > θ.

2- Let (X,T, L) be a right fuzzy near-ring, then

∀x, y, z ∈ X,
(
(x∗(y∗z))◦(x−1∗(y∗z))

)
(e) > θ.

Lemma 4. [9, lemma 3.1 & lemma 3.2]
1- Let (X,T, L) be a left fuzzy near-ring, then

∀k, x ∈ X,
(
(k ∗ x) ∗ (k ∗ x−1)

)
(e) > θ.

2- Let (X,T, L) be a right fuzzy near-ring, then

∀x, k ∈ X,
(
(k ∗ x) ∗ (k−1 ∗ x)

)
(e) > θ.
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3 Main results
In this section, we define the notion of fuzzy
left semigroup ideal (resp. fuzzy right semigroup
ideal) of a fuzzy near-ring and we prove some
of their basic properties which are analogous to
those of the classical semigroup theory in the case
of near-rings. Also, we show that under some con-
ditions on fuzzy left semigroup (resp. fuzzy right
semigroup ideal), the fuzzy near-rings must be a
fuzzy commutative rings.

Definition 5. Let (X,T, L) be a fuzzy near-ring
and I a nonempty subset of X, then I is called

1. A fuzzy left semigroup ideal of X if (x ∗
s)(t) > θ implies t ∈ I, ∀x ∈ X,∀s ∈ I.

2. A fuzzy right semigroup ideal of X if (s ∗
x)(t) > θ implies t ∈ I, ∀x ∈ X,∀s ∈ I.

3. A fuzzy semigroup ideal of X if is both right
and left fuzzy semigroup ideal. Moreover, I
is said to be non trivial if I 6= {e}.

Lemma 5. Let (X,T, L) be a fuzzy prime near-
ring, I a nontrivial fuzzy semigroup ideal of X
and let x ∈ X.

i) If for all y ∈ I, (x ∗ y)(e) > θ then x = e,

ii) If for all y ∈ I, (y ∗ x)(e) > θ then x = e.

Proof. i) Assume that for all y ∈ I, (x∗y)(e) > θ.
Letting z ∈ X, s ∈ I, then there exits t ∈ X
satisfies (z ∗ s)(t) = L(z, s, t) > θ. Since I is a
fuzzy semigroup ideal of X, it follows that t ∈ I.
In particular, putting y = t in our assumption,
we get

L(x, t, e) = (x ∗ t)(e) > θ. (9)

Consequently,(
x ∗
(
z ∗ s

))
(e) ≥ L(z, s, t) ∧ L(x, t, e) > θ. (10)

In view of the fuzzy primeness of (X,T, L), the
last result shows that x = e or s = e. Taking
into account that I is nontrivial, we can consider
s 6= e and therefore x = e.
ii) Consider z ∈ X and s ∈ I, there exits t ∈ X
such that (s ∗ z)(t) = L(s, z, t) > θ. Using the
same argument as used above, we infer that((

s ∗ z
)
∗ x
)
(e) ≥ L(s, z, t) ∧ L(t, x, e) > θ. (11)

By the fuzzy primeness of (X,T, L) and I is non-
trivial, we get the required result.

In the case of classical near-rings, in [10],
showed in the case of a 3-prime near-ring N , if
xIy = {0} then x = 0 or y = 0, where I is a semi-
group ideal of N . The following theorem treats
this result in the case of a fuzzy semigroup ideal.

Theorem 1. Let (X,T, L) be a fuzzy prime near-
ring, I a nontrivial fuzzy semigroup ideal of X
and let x, y ∈ X. Then,

∀r ∈ I,
((
x∗r

)
∗y
)
(e) > θ =⇒ x = e or y = e.

Proof. Suppose that ∀r ∈ I,
((
x ∗ r

)
∗ y
)
(e) > θ.

Let (z, s) ∈ X × I and taking t ∈ X satisfying
(z ∗ s)(t) > θ. Using the fact that I is a fuzzy
semigroup ideal of X, we conclude that t ∈ I and
hence, ((

x ∗ t) ∗ y
)
(e) > θ. (12)

Let h ∈ X such that L(x, t, h) > θ, then equation
(12) proves that L(h, y, e) > θ. Also,(
x ∗ (z ∗ s)

)
(h) ≥ L(z, s, t) ∧ L(x, t, h) > θ, (13)

Let v, l ∈ X such that L(x, z, v) > θ and
L(v, s, l) > θ, then(

(x ∗ z) ∗ s
)
(l) ≥ L(x, z, v) ∧ L(v, s, l) > θ. (14)

Definition 1 (ii) together (13) and (14) show that
l = h, so that L(v, s, h) > θ, which implies that(

(v ∗s)∗y)
)
(e) ≥ L(v, s, h)∧L(h, y, e) > θ. (15)

Let k and n be two elements of X which are sat-
isfying L(s, y, k) > θ and L(v, k, n) > θ. So,(
v ∗ (s ∗ y)

)
(n) ≥ L(s, y, k)∧L(v, k, n) > θ. (16)

Once again Definition 1 ii) forces n = e which
gives L(v, k, e) > θ. Consequently,(

(x ∗ z) ∗ k
)
(e) ≥ L(x, z, v)∧L(v, k, e) > θ. (17)

In virtue of the fuzzy primeness of (X,T, L), the
latter result shows that x = e or k = e. Now,
suppose that k = e, then L(s, y, e) > θ which
means that (s ∗ y)(e) > θ. Since s is an arbitrary
element of I, then Lemma 5 (ii) assures that y =
e and consequently,

x = e or y = e.

Lemma 6. Let (X,T ) be a fuzzy group. If for all
x, y ∈ X, ∃ t ∈ X such that(

(x ◦ x) ◦ (y ◦ y)
)
(t) > θ and(

(x ◦ y) ◦ (x ◦ y)
)
(t) > θ,

then (X,T ) is abelian.
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Proof. Let a, b, c ∈ X such that T (a, b, c) > θ.
Our main is to prove that T (b, a, c) > θ, for this,
choosing h ∈ X which is satisfying T (b, a, h) > θ
and proving that h = c.
From our hypotheses, there exists t ∈ X such
that (

(a ◦ a) ◦ (b ◦ b)
)
(t) > θ, (18)

and (
(a ◦ b) ◦ (a ◦ b)

)
(t) > θ. (19)

Taking t1, t2 ∈ X such that T (a, a, t1) > θ and
T (b, b, t2) > θ, thus (18) and (19) give respec-
tively T (t1, t2, t) > θ and T (c, c, t) > θ. Then,

(
t1◦(b◦b)

)
(t) ≥ T (b, b, t2)∧T (t1, t2, t) > θ, (20)

and(
c ◦ (a ◦ b)

)
(t) ≥ T (a, b, c) ∧ T (c, c, t) > θ. (21)

Now, let x1, x2, y1, y2 ∈ X satisfy T (t1, b, x1) > θ,
T (x1, b, y1) > θ, T (c, a, x2) > θ and T (x2, b, y2) >
θ. Then,(

(t1 ◦ b) ◦ b
)
(y1) > θ and

(
(c ◦ a) ◦ b

)
(y2) > θ,

which, because of (20) and (21) together Defini-
tion 3, implies that y1 = t and y2 = t. It follows
that T (x1, b, t) > θ and T (x2, b, t) > θ, hence
in view of Lemma 1(2) we get x1 = x2. Conse-
quently, T (t1, b, x1) > θ and T (c, a, x1) > θ. So
that,(

(a ◦ a) ◦ b
)
(x1) ≥ T (a, a, t1) ∧ T (t1, b, x1) > θ,

(22)
and(

(a◦b)◦a
)
(x1) ≥ T (a, b, c)∧T (c, a, x1) > θ. (23)

Let v, k ∈ X such that T (a, c, v) > θ and
T (a, h, k) > θ. Then,(

a ◦ (a ◦ b)
)
(v) ≥ T (a, b, c) ∧ T (a, c, v) > θ

and(
a ◦ (b ◦ a)

)
(k) ≥ T (b, a, h) ∧ T (a, h, k) > θ.

(24)

Combining (22), (23), (24) and using Definition
3, we obtain v = x1 and h = x1 and therefore,
T (a, c, x1) > θ and T (a, h, x1) > θ. Once again,
using Lemma 1(1) we conclude that c = h. So
that, T (b, a, c) > θ.
Conversely, assuming that T (b, a, c) > θ and us-
ing similar arguments as used above to prove that
T (a, b, c) > θ. Thus, (X,T ) is a commutative
fuzzy group.

Theorem 2. Let (X,T, L) be a fuzzy near-ring.
If there exists z ∈ ZF (X)∗ such that T (z, z, r) >
θ =⇒ r ∈ ZF (X) for all r ∈ X, then (X,T ) is
abelian.

Proof. Suppose that (X,T, L) is a left fuzzy near-
ring and let x, y ∈ X. Consider z the element of
our hypothesis; by Definition 2 there exists t ∈ X
such that T (z, z, t) > θ which, according to our
hypothesis, implies that t ∈ ZF (X).
Now, let v, h ∈ X such that T (x, y, v) > θ and
L(t, v, h) > θ. Then,(
t ∗ (x ◦ y)

)
(h) ≥ T (x, y, v)∧L(t, v, h) > θ. (25)

Taking h1, h2, h
′ ∈ X such that L(t, x, h1) > θ,

L(t, y, h2) > θ and T (h1, h2, h
′
) > θ. Then,(

(t ∗ x) ◦ (t ∗ y)
)
(h

′
) ≥

L(t, x, h1) ∧ L(t, y, h2) ∧ T (h1, h2, h
′
).

(26)
From Definition 1 (iii), (25) and (26) give h

′
= h,

so that
T (h1, h2, h) > θ. (27)

Also, as t ∈ ZF (X), we have L(x, t, h1) > θ and
L(y, t, h2) > θ, then(
x ∗ (z ◦ z)

)
(h1) ≥ T (z, z, t) ∧ L(x, t, h1) > θ and(

y ∗ (z ◦ z)
)
(h2) ≥ T (z, z, t) ∧ L(y, t, h2) > θ.

Choosing v1, v2, v3, v4 ∈ X such that L(x, z, v1) >
θ, L(y, z, v2) > θ, T (v1, v1, v3) > θ and
T (v2, v2, v4) > θ, we infer that(
(x∗z)◦(x∗z)

)
(v3) > θ and

(
(y∗z)◦(y∗z)

)
(v4) > θ.

(28)
Consequently, in virtue of Definition 1 (iii), we
conclude that v3 = h1 and v4 = h2 which implies
that T (v1, v1, h1) > θ and L(v2, v2, h2) > θ. Once
again, since z ∈ ZF (X)∗, we have L(z, x, v1) > θ
and L(z, y, v2) > θ, thus(
(z∗x)◦(z∗x)

)
(h1) > θ and

(
(z∗y)◦(z∗y)

)
(h2) > θ.

(29)
Next, choose `1, `2, `3, `4 such that T (x, x, `1) >
θ, T (y, y, `2) > θ, L(z, `1, `3) > θ and
L(z, `2, `4) > θ, which yields(
z∗(x◦x)

)
(`3) > θ and

(
z∗(y◦y)

)
(`4) > θ. (30)

Invoking Definition 1 (iii), we arrive at `3 = h1
and `4 = h2. So that, L(z, `1, h1) > θ and
L(z, `2, h2) > θ. Because of (27), we get(

(z ∗ `1) ◦ (z ∗ `2)
)
(h) ≥

L(z, `1, h1) ∧ L(z, `2, h2) ∧ T (h1, h2, h) > θ.
(31)
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Taking x1, h
′′ ∈ X satisfy T (`1, `2, x1) > θ and

L(z, x1, h
′′
) > θ, we obtain(

z ∗ (`1 ◦ `2)
)
(h

′′
) > θ, (32)

which, because of Definition 1 (iii), implies that
h = h

′′
and therefore,

L(z, x1, h) > θ. (33)

Similarly, since L(v, t, h) > θ, then we have(
v ∗ (z ◦ z)

)
(h) ≥ T (z, z, t) ∧ L(v, t, h) > θ. (34)

Let t1, t2 ∈ X such that L(v, z, t1) > θ and
T (t1, t1, t2) > θ, which implies that(

(v ∗ z) ◦ (v ∗ z)
)
(t2) ≥

L(v, z, t1) ∧ L(v, z, t1) ∧ T (t1, t1, t2) > θ.
(35)

Definition 1 (iii) assures that t2 = h and thus,
T (t1, t1, h) > θ.
In virtue of z ∈ ZF (X)∗ and L(v, z, t1) > θ, we
get L(z, v, t1) > θ, then

(
(z ∗ v) ◦ (z ∗ v)

)
(h) > θ.

Taking h
′′′
, x2 ∈ X verify T (v, v, x2) > θ and

L(z, x2, h
′′′

) > θ, then
(
z∗(v◦v)

)
(h

′′′
) > θ which,

by Definition 1, guarantees that h
′′′

= h, and thus

L(z, x2, h) > θ. (36)

Now, from Lemma 4 (1.), we have(
(z ∗ x2) ◦ (z ∗ x−12 )

)
(e) > θ. (37)

Let m ∈ X such that L(z, x−12 ,m) > θ and com-
bining (36) and (37), we find that T (h,m, e) > θ.
Hence, because of (33) we get(

(z∗x1) ◦ (z ∗ x−12 )
)
(e) ≥

L(z, x1, h) ∧ L(z, x−12 ,m) ∧ T (h,m, e) > θ.
(38)

Let y1, y2 ∈ X such that T (x1, x
−1
2 , y1) > θ

and L(z, y1, y2) > θ. It follows that(
z ∗ (x1 ◦ x−12 )

)
(y2) ≥

T (x1, x
−1
2 , y1) ∧ L(z, y1, y2) > θ.

(39)
Once again by Definition 1 (iii), (38) and (39)
shows that y2 = e and thus L(z, y1, e) > θ.
Let k an arbitrary element of X, we have(
k∗(z∗y1)

)
(e) ≥ L(z, y1, e)∧L(k, e, e) > θ. (40)

Taking s, c ∈ X such that L(k, z, s) > θ and
L(s, y1, c) > θ, which proves that(

(k ∗ z) ∗ y1
)
(c) > θ. (41)

Because of Definition 1 (ii), the last two results
show that c = e, which allowed us to conclude
that L(s, y1, e) > θ.
In view of z ∈ ZF (X)∗ and L(k, z, s) > θ, we
have L(z, k, s) > θ and hence, for all k ∈ X(

(z∗k)∗y1
)
(e) ≥ L(z, k, s)∧L(s, y1, e) > θ. (42)

In the light of the primeness of (X,T, L) and z ∈
ZF (X)∗, the last relation shows that y1 = e, and
thus

T (x1, x
−1
2 , e) > θ. (43)

Once again, from Lemma 4 (1.), we have(
(z ∗ x−12 ) ◦ (z ∗ x2)

)
(e) > θ. (44)

By reasoning in the same way as above, we arrive
at

T (x−12 , x1, e) > θ. (45)

Now, from Definition 3 and (43) and (45), we
obtain x1 = (x−12 )−1 and by lemma 1 (5), we
arrive at x1 = x2. Thus,(

(x ◦ x) ◦ (y ◦ y)
)
(x1) ≥

L(x, x, `1) ∧ L(y, y, `2) ∧ T (`1, `2, x1) > θ,
(46)

and(
(x ◦ y) ◦ (x ◦ y)

)
(x1) ≥

T (x, y, v) ∧ T (x, y, v) ∧ T (v, v, x1) > θ.
(47)

Consequently, (X,T ) is an abelian fuzzy group by
Lemma 6. This ends the prove of our Theorem.

Remark 1. The results in the previous Theo-
rem remain valid for right fuzzy near-rings with
the obvious changes by using the second case of
Lemma 4.

Theorem 3. Let (X,T, L) be a fuzzy prime near-
ring, I be a nontrivial fuzzy semigroup ideal of
(X,T, L) and x ∈ X. If for all u ∈ I, there exists
t ∈ X such that (u ∗ x)(t) > θ and (x ∗ u)(t) > θ,
then x ∈ ZF (X).

Proof. Suppose that (X,T, L) is a fuzzy prime left
near-ring. By Lemma 2 (1), it suffices to prove
that ∀y ∈ X, ((x ∗ y) ◦ (y ∗ x−1))(e) > θ. For this,
let y ∈ X and u ∈ I.
By the definition of a fuzzy binary operation,
there are `1, `2, ` ∈ X such that L(x, y, `1) > θ,
L(y, x−1, `2) > θ and T (`1, `2, `) > θ which give
((x ∗ y) ◦ (y ∗ x−1))(`) > θ. Our goal is to show
that ` = e.
Taking h ∈ X such that (u ∗ y)(h) = L(u, y, h) >
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θ, in virtue of I is a fuzzy semigroup ideal of
X, we find that h ∈ I. Taking into account
our hypotheses, there exists t ∈ X satisfying
(h ∗ x)(t) > θ and (x ∗ h)(t) > θ. Then,(

(u ∗ y) ∗ x
)
(t) ≥ L(u, y, h)∧L(h, x, t) > θ, (48)

and(
x ∗ (u ∗ y)

)
(t) ≥ L(u, y, h)∧L(x, h, t) > θ. (49)

Also, by our hypotheses, there exists an element
t1 ∈ X such that (x ∗u)(t1) = L(x, u, t1) > θ and
(u ∗ x)(t1) = L(u, x, t1) > θ. Choosing h1 ∈ X
satisfying L(t1, y, h1) > θ. Then,(

(x ∗ u) ∗ y
)
(h1) ≥ L(x, u, t1) ∧ L(t1, y, h1) > θ.

(50)
According to the second condition of Definition 1,
the two relations (49) and (50) affirm that h1 = t,
then L(t1, y, t) > θ. So that,(

(u∗x)∗y
)
(t) ≥ L(u, x, t1)∧L(t1, y, t) > θ, (51)

Now, taking h2 ∈ X satisfying L(u, `1, h2) > θ,
we get(
u ∗ (x ∗ y)

)
(h2) ≥ L(x, y, `1) ∧ L(u, `1, h2) > θ.

(52)
Once again, in view of Definition 1 (ii), (51) and
(52) give h2 = t and hence L(u, `1, t) > θ. From
Lemma 3 (1), we have((

(u ∗ y) ∗ x
)
◦
(
(u ∗ y) ∗ x−1

))
(e) > θ. (53)

Let v, t2 ∈ X such that L(u, y, t2) > θ and
L(t2, x

−1, v) > θ, which implies that

((u ∗ y) ∗ x−1)(v) ≥ L(u, y, t2)∧L(t2, x
−1, v) > θ.

(54)
Using (48), (53) and (54), we infer that
T (t, v, e) > θ. Choose h3 ∈ X such that
L(u, `2, h3) > θ, then(
u∗(y∗x−1)

)
(h3) ≥ L(y, x−1, `2)∧L(u, `2, h3) > θ.

(55)
From (54) and (55), because of Definition 1 (ii),
we conclude that h3 = v which implies that
L(u, `2, v) > θ. Consequently,(

(u ∗ `1)◦(u ∗ `2)
)
(e) ≥

L(u, `1, t) ∧ L(u, `2, v) ∧ T (t, v, e) > θ.
(56)

Let k ∈ X such that L(u, `, k) > θ, it follows
that(
u ∗ (`1 ◦ `2)

)
(k) ≥ L(`1, `1, `) ∧ L(u, `, k) > θ.

(57)

According to Definition 1 (iii), (56) and (57) as-
sure k = e and then (u ∗ `)(e) = L(u, `, e) > θ.
Once again Lemma 5 shows that ` = e, and hence
x ∈ ZF (X). This proves the desired result.

Remark 2. If we consider that (X,T, L) is a
fuzzy right near-ring, we can follow the same ar-
guments as those used previously, taking into ac-
count the second condition in Lemmas 2 and 3.

As an application of Theorems 2 and 3, we get
the following result.

Theorem 4. Let (X,T, L) be a fuzzy near-ring.
If ZF (X) contains a nontrivial fuzzy semigroup
ideal I, then (X,T, L) is a fuzzy commutative
ring.

Proof. We divide the proof into four essential
steps.
• In the first part, we assume that (X,T, L) is a
fuzzy left near-ring, and we prove that property
(iv) of Definition 1 is satisfied.
Firstly, showing that ∀x, y, t1, t2 ∈ X and z ∈ I,
if
(
(x◦y)∗z

)
(t1) > θ and

(
(x∗z)◦(y∗z)

)
(t2) > θ,

then t1 = t2.
In fact, let x, y, t1, t2 ∈ X and z ∈ I satisfy(
(x ◦ y) ∗ z

)
(t1) > θ and

(
(x ∗ z) ◦ (y ∗ z)

)
(t2) > θ.

Choosing h1 ∈ X such that T (x, y, h1) > θ and
using the fact that

(
(x◦y)∗z

)
(t1) > θ, we obtain

L(h1, z, t1) > θ and in view of z ∈ I ⊆ ZF (X),
we find that L(z, h1, t1) > θ.
Similarly, let h2, h3 ∈ X such that L(x, z, h2) > θ
and L(y, z, h3) > θ and since

(
(x∗z)◦(y∗z)

)
(t2) >

θ, we conclude that T (h2, h3, t2) > θ.
Also, as z ∈ I ⊆ ZF (X), we have L(z, x, h2) > θ
and L(z, y, h3) > θ. Then,(

(z ∗ x) ◦ (z ∗ y)
)
(t2) ≥

L(z, x, h2) ∧ L(z, y, h3) ∧ T (h2, h3, t2) > θ,
(58)

and(
z ∗ (x ◦ y)

)
(t1) ≥ T (x, y, h1) ∧ L(z, h1, t1) > θ.

(59)
Invoking Definition 1 (iii), the last two relations
give t1 = t2.
• Secondly, checking that ∀x, y, t, t1, t2 ∈ X if(
(x ◦ y) ∗ t

)
(t1) > θ and

(
(x ∗ t) ◦ (y ∗ t)

)
(t2) > θ,

then t1 = t2.
For this purpose, let x, y, t, t1, t2 ∈ X such that(
(x ◦ y) ∗ t

)
(t1) > θ and

(
(x ∗ t) ◦ (y ∗ t)

)
(t2) > θ.

Let z ∈ I and taking s ∈ X such that (t ∗ z)(s) >
θ, by defining I, we get s ∈ I.
Let `, h1, h2, h, v ∈ X such that T (x, y, `) > θ,
L(x, s, h1) > θ, L(y, s, h2) > θ, L(`, s, h) > θ and
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T (h1, h2, v) > θ. Then,(
(x ◦ y) ∗ s

)
(h) ≥ T (x, y, `)∧L(`, s, h) > θ, (60)

and(
(x ∗ s) ◦ (y ∗ s)

)
(v) ≥

L(x, s, h1) ∧ L(y, s, h2) ∧ T (h1, h2, v) > θ.
(61)

The previous step guarantees h = v, so that
T (h1, h2, h) > θ.
Also, we have

(` ∗ (t ∗ z))(h) ≥ L(t, z, s) ∧ L(`, s, h) > θ, (62)

and from T (x, y, `) > θ together
(
(x◦y)∗t

)
(t1) >

θ, we get L(`, t, t1) > θ.
Now, taking k ∈ X such that L(t1, z, k) > θ. It
follows that,(

(` ∗ t) ∗ z
)
(k) ≥ L(`, t, t1)∧L(t1, z, k) > θ. (63)

Applying Definition 1 (ii), for (62) and (63), we
get k = h and hence,

L(t1, z, h) > θ. (64)

On the other hand, we have(
x∗(t∗z)

)
(h1) ≥ L(t, z, s)∧L(x, s, h1) > θ (65)

and(
y∗(t∗z)

)
(h2) ≥ L(t, z, s)∧L(y, s, h2) > θ. (66)

Considering `1, `2,m, n ∈ X satisfy L(x, t, `1) >
θ, L(y, t, `2) > θ, L(`1, z,m) > θ and L(`2, z, n) >
θ. Then, we can see that

(
(x ∗ t) ∗ z

)
(m) > θ

and
(
(y ∗ t) ∗ z

)
(n) > θ. Combining the last two

results with (65) and (66), respectively, and apply
Definition 1 (ii), we arrive at m = h1 and n = h2
which give L(`1, z, h1) > θ and L(`2, z, h2) > θ.
Accordingly,(

(`1 ∗ z) ◦ (`2 ∗ z)
)
(h) ≥

L(`1, z, h1) ∧ L(`2, z, h2) ∧ T (h1, h2, h) > θ.
(67)

As well, from L(x, t, `1) > θ, L(y, t, `2) > θ and(
(x ∗ t) ◦ (y ∗ t)

)
(t2) > θ, we get T (`1, `2, t2) > θ.

Let h
′ ∈ X such that L(t2, z, h

′
) > θ, then(

(`1 ◦ `2)∗ z)
)
(h

′
) ≥ L(t2, z, h

′
)∧T (`1, `2, t2) > θ.

(68)
Since z ∈ I, then in view of the first part, (67)
and (68) assure that h = h

′
which implies that

L(t2, z, h) > θ. (69)

Let t ∈ X such that L(e, z, t) > θ, then(
(e ◦ e) ∗ z

)
(t) ≥ T (e, e, e) ∧ L(e, z, t) > θ. (70)

Consider v ∈ X such that T (t, t, v) > θ, we have(
(e ∗ z) ◦ (e ∗ z)

)
(v) ≥

L(e, z, t) ∧ L(e, z, t) ∧ T (t, t, v) > θ.
(71)

Using the conclusion of the first part, we obtain
v = t which means that T (t, t, t) > θ and hence
t = e by Lemma 1 (4). Thus, L(e, z, e) > θ.
Now, let t3 ∈ X such that L(`, t−1, t3) > θ which
means

(
(x ◦ y) ∗ t−1

)
(t3) > θ. From lemma 4 (i),

we have
((
` ∗ t

)
◦
(
` ∗ t−1

))
(e) > θ. Using our

hypotheses that L(`, t, t1) > θ and L(`, t−1, t3) >
θ, we find that

(t1 ◦ t3)(e) = T (t1, t3, e) > θ, (72)

that is,(
(t1◦t3)∗z

)
(e) ≥ T (t1, t3, e)∧L(e, z, e) > θ. (73)

Let s1, p ∈ X such that L(t3, z, s1) > θ and
T (h, s1, p) > θ and invoking (64), we obtain(
(t1 ∗ z)◦(t3 ∗ z)

)
(p) ≥

L(t1, z, h) ∧ L(t3, z, s1) ∧ T (h, s1, p) > θ.
(74)

In view of the preceding step, we conclude that
p = e, and therefore T (h, s1, e) > θ.
By using (69), we get(
(t2 ∗ z)◦(t3 ∗ z

)
(e) ≥

L(t2, z, h) ∧ L(t3, z, s1) ∧ T (h, s1, e) > θ,
(75)

Now, choosing v1, v2 ∈ X such that T (t2, t3, v1) >
θ and L(v1, z, v2) > θ, then(

(t2 ◦ t3) ∗ z
)
(v2) > θ. (76)

Once again from the previous step, we get v2 = e,
so that (v1 ∗ z)(e) > θ which, because of Lemma
5 (i), gives v1 = e. And therefore,

(t2 ◦ t3)(e) = T (t2, t3, e) > θ. (77)

Applyiny Lemma 1 (2) to (72) and (77), we find
that t1 = t2.

We can use the same arguments to show the
property (iii) of Definition 1 when (X,T, L) is a
fuzzy right near-ring.

• Thirdly, showing that (X,T ) is commuta-
tive. The fact that I is nontrivial ideal assures
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the existence of x, y, t ∈ I, with t 6= e, such
that (x ∗ y)(t) > θ. Indeed, suppose that for all
x, y, t ∈ I, where t 6= e, we have (x ∗ y)(t) ≤ θ,
then inevitably we will have for all x, y ∈ X,
(x∗y)(e) > θ, and thus Lemma 5 forces that x = e
which means that I = {e}, leading to a contra-
diction with the fact that I is a nontrivial ideal of
X. Consequently, there exist x, y, t ∈ I such that
(x ∗ y)(t) > θ and t 6= e. Since t ∈ I ⊆ ZF (X)
and t 6= e, then t ∈ (ZF (X))∗.
Let v ∈ X such that T (t, t, v) > θ. Our goal is to
show that v ∈ ZF (X). We have(

(x ∗ y) ◦ (x ∗ y)
)
(v) ≥

L(x, y, t) ∧ L(x, y, t) ∧ T (t, t, v) > θ.
(78)

Now, letting h, k ∈ X satisfy T (y, y, h) > θ and
L(x, h, k) > θ, then(
x∗ (y ◦y)

)
(k) ≥ T (y, y, h)∧L(x, h, k) > θ. (79)

Definition 1 (iii) assures that k = v and therefore
L(x, h, v) > θ. Taking into account that x ∈
I and h ∈ X we conclude that v ∈ I, so that
v ∈ ZF (X) and hence (X,T ) is commutative by
Theorem 2.
• Finally, to complete the proof of this theorem,
we show that (X,T, L) is commutative. For this,
let x ∈ X and u ∈ I, then there exists t ∈ X such
that L(x, u, t) > θ. In view of u ∈ I ⊆ ZF (X),
we obtain L(u, x, t) > θ. Then,
∀ u ∈ I, ∃ t ∈ X such that L(x, u, t) > θ and
L(u, x, t) > θ.
By application of Theorem 3, we find x ∈ ZF (X)
and hence, (X,T, L) is a commutative fuzzy ring.

4 Conclusion
In this paper, a new type of fuzzy semigroup ideal
was created and some of its related properties
were studied analogously to the ordinary semi-
group ideal. Also, using this new definition, we
proved that under some other conditions, a fuzzy
near ring must be a fuzzy commutative ring. The
practical applications of our study will be the sub-
ject of future research.
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