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1 Introduction
The framework existing among the living and non-
living organisms in the environmental structure ex-
hibit nonlinear feature. To investigate their interac-
tions, their behaviours are captured and mathemat-
ically described mainly in the form of differential
equations. Many predator-prey species demonstrate
an unexpected diversity of dynamical behavioural
patterns, which has sparked a boom in the design of
mathematical models of ecosystems.

The first predator-prey model has been devel-
oped by Alfred James Lotka and Vito Volterra. The
Lotka-Volterra system of equations has an extensive
record which originated before a century. These
equations expressed an association between two or
more species. From then on, various types of model
equations have been developed, modified, and ex-
tended extensively incorporating many traits of the
species under study. In [1], the authors focused on
the predator-prey system, striving to provide a cut-
ting edge over view of recent models incorporating
the Allee effect, fear effect, cannibalism and im-
migration, and juxtaposed the qualitative outcomes
achieved for each element with a special focus on

equilibria, both local and global stability and the pres-
ence of limit cycles. Anderson and May (1981) were
the first to explore a population model with infection.
Since then, many ecoepidemiological models have
been studied incorporating disease in prey / preda-
tor or both species with various modes of disease
transmission. Considering the Holling-type interac-
tion, [2], proved that a judicious selection of gen-
eral Holling parameters, disease management can be
achieved by regulating the interacting function within
the ecosystem. The authors in [3], studied a prey-
predator model where the disease spreads only among
predators, transmitted horizontally through contact
between infected and susceptible individuals. An epi-
demic model that integrates vertical and horizontal
transmission of infection employing a nonlinear in-
cidence rate was investigated, [4].

By offering refuge, the ecosystem provides some
kind of defense to the prey from predators. The in-
fluence of prey refuge was explored on the dynamic
behavior of themodel using the Lotka-Volterra frame-
work that features a Holling type III functional re-
sponse, [5]. Prey refuges have highly complicated
consequences on the dynamics of population, [6]. The
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fear factor may alter the normal behavior of the prey,
which in turn has a significant impact on the popula-
tion model, [7], [8], [9], [10].

Fear induced by the risk of predation decreases
prey birth rates. Also limit cycle observation revealed
that predation fear can both stabilise and destabilise
the ecosystem, [11]. With an increasing fear effect,
the final density of the prey species may approach
zero, driving them to extinction. The fear phenom-
ena negatively impact prey survival, potentially a sig-
nificant factor in their extinction, [12], differing from
Wang’s result, [13]. The findings of [14], suggested
that increasing the prey refuge or Allee effect en-
hances the dynamic complexity of the system. More-
over, while the fear effect or the Allee effect does not
have an impact on the density of the predator, it can
reduce the predator population at a positive equilib-
rium, [14]. Fear can cause backward bifurcation and
chaos by supressing prey growth and disease trans-
mission leading to a significant reduction in the in-
fection rate, [15]. Ecologically, prey adapt to fear be-
yond a critical threshold, which is essential to sustain
the ecosystem. Fear not only stabilizes the system, but
also regulates disease and diminishes predator pop-
ulation, [16]. Increasing fear level enhances system
stability by eradicating periodic solutions and reduc-
ing predator population at the coexisting equilibrium
point without leading to predator extinction. Also,
prey refuge significantly contributes to predator per-
sistence, [17]. The fear factor serves to stabilize the
dynamics of the system, [18]. Despite its study, the
influence of predator fear on prey with the inclusion
of disease in the dynamical model has not yet been
fully addressed, [19], [20], [21].

The objective of the present work is to formu-
late and study a predator-prey model that integrates
predators’ fear effects on prey together with prey af-
fected by disease and with a Volterra-type functional
response. The sections in this paper are ordered as
follows. Section 2 presents the mathematical popula-
tion model. Section 3 discusses the positivity of the
solution and the boundedness. In section 4, all the
equilibrium points are determined. Section 5 analysis
the local stability behavior at the equilibrium points.
The last section is the conclusion.

2 Mathematical Model
The proposed mathematical dynamical model con-
sists of the prey density X and the predator density
z at any time t. As a result of infection in the prey
group, they are classified as susceptible prey x and
infected prey y. Only susceptible prey reproduces.
There is intraspecific competition in the prey and also
in the predator species. The predator preys on suscep-
tible and infected prey. Without predator, the prey
species increases logistically. The prey is the only

source of food, and in conditions of nonavailability
of prey, the predator dies. With these assumptions the
model takes the form:

ẋ =
α

1 + fz
x− δ1x

2 − δ2xy − d1x− β1xy

−c1 (1−m)xz = F1 (x, y, z) , (1)
ẏ = β1xy − δ3y

2 − δ4xy − d2y

−c2 (1−m) yz = F2 (x, y, z) , (2)
ż = µ1c1 (1−m)xz + µ2c2 (1−m) yz

−δ5z
2 − d3z = F3 (x, y, z) , (3)

with initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. (4)

All the parameters are presumed positive.

Nomenclature

x susceptible prey density
y infected prey density
z predator density
f fear rate of the prey
α growth rate of prey
β1 disease transmission rate
δ1 competition within the susceptible prey
δ2 competition between the susceptible

and infected prey
δ3 competition within the infected prey
δ4 competition between the susceptible

and infected prey
δ5 competition within the predator
c1 catchability rate of susceptible prey
c2 catchability rate of the infected prey
µ1 conversion rate of susceptible prey
µ2 conversion rate of infected prey
m ∈ [0, 1) constant proportion of prey taking refuge

3 Positivity and Boundedness
We prove that the system given (1)-(3) with (4) is well
posed mathematically in the positive quadrant

Ω = {(x, y, z) /x ≥ 0, y ≥ 0, z ≥ 0}

and solutions exists for all positive time. The vari-
ables x, y, z represent biological species and have the
domain Ω inR3

+. The R.H.S of system (1)-(3) is con-
tinuously differentiable and locally Lipschitz in the
first quadrant Ω. Hence, there are solutions for the
initial value problem (1)-(3) with non-negative initial
conditions.

Theorem 3.1 For every solution of system (1)-(3)
that starts in the positive quadrant, the solutions are
uniformly bounded.
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Proof: Considering (x, y, z) as the solution of (1)-(3)
with (4).
Let S = x+ y + z.
Taking the time derivative of S, we get

Ṡ = ẋ+ ẏ + ż

=
α

1 + fz
x− δ1x

2 − (d1x+ d2y + d3z)

−δ2xy − δ4xy − δ3y
2 − δ5z

2

−c1 (1−m)xz (1− µ1)

−c2 (1−m) yz (1− µ2)

Let η = min {d1, d2, d3},
After simple algebraic simplification,

Ṡ ≤ αx− δ1x
2 − ηS − (δ2 − δ4)xy − δ3y

2

−δ5z
2 − (1−m)xzc1 (1− µ1)

− (1−m) yzc2 (1− µ2)

If µ1 < 1, µ2 < 1, then the above equation becomes,

Ṡ ≤ αx− δ1x
2 − ηS

Ṡ + ηS ≤ −δ1

(
x2 − αx

δ1

)
Rearranging and writing as perfect squares,

Ṡ + ηS ≤ −δ1

(
x− α

2δ1

)2

+
α2

4δ1

Let α2

4δ1
= N , then Ṡ + ηS ≤ N

By a theorem of differential inequality,

lim︸︷︷︸
t→∞

supS (t) ≤ N
η , ∀t > 0

Hence, the proof is complete.

4 Determination of Equilibrium
Points

Here the equilibrium points of system (1)-(3) are de-
termined.

1. f0 (0, 0, 0) is the trivial equilibrium point.
2. f1 (x, 0, 0) is the infection free and predator free

equilibrium point where

x =
α− d1
δ1

, α− d1 > 0

3. f2
(
x, y, 0

)
-the predator free equilibrium point

exists only with the existence of positive solution to
the below equations:

αx− δ1x
2 − δ2xy − d1x− β1xy = 0,

β1xy − δ3y
2 − δ4xy − d2y = 0.

From the above equation, we get,

y =
(β1 − δ4)x− d2

δ3
,

Then,

x =
(α− d1) δ3 + d2 (δ2 + β1)

δ1δ3 + (δ2 + β1) (β1 − δ4)
.

This equilibrium point exists if

x >
d2

β1 − δ4
, (β1 − δ4) > 0 and (α− d1) > 0.

4. f3 (x̃, 0, z̃) - the equilibrium point without
disease exists only with the existence of positive
solution to the following equations:

α

1 + f z̃
− δ1x̃− d1 − c1 (1−m) z̃ = 0, (5)

µ1c1 (1−m) x̃− δ5z̃ − d3 = 0. (6)

From (6), we get,

x̃ =
δ5z̃ + d3

µ1c1 (1−m)
(7)

Substituting (7) in (5) and letting A = δ1
µ1c1(1−m) , we

obtain

[c1 (1−m) f +Aδ5f ] z̃
2

+ [c1 (1−m) +Aδ5 + (Ad3 + d1) f ] z̃

+(Ad3 + d1)− α = 0 (8)

Utilizing sign rule of Descarte’s if (Ad3 + d1) < α,
then (8) has a unique positive root.

5. f4
(˜̃x, ˜̃y, ˜̃z) - the interior equilibrium point ex-

ists only with the existence of positive solution to the
below equations:

α

1 + f ˜̃z − δ1˜̃x− δ2˜̃y − d1 − β1˜̃x− c1 (1−m) ˜̃z = 0,

(9)

β1˜̃x− δ3˜̃y − δ4˜̃x− d2 − c2 (1−m) ˜̃z = 0,
(10)

µ1c1 (1−m) ˜̃x+ µ2c2 (1−m) ˜̃y − δ5˜̃z − d3 = 0.
(11)

From (11) we have

˜̃z =
µ1c1 (1−m) ˜̃x+ µ2c2 (1−m) ˜̃y − d3

δ5
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Let µ1c1(1−m)
δ5

= w1;
µ2c2(1−m)

δ5
= w2;

d3

δ5
= w3.

Then, ˜̃z = w1
˜̃x+ w2

˜̃y − w3 (12)

exists if w1
˜̃x+ w2

˜̃y > w3 (13)

Substituting ˜̃z in (10), we get,
˜̃y = [(β1−δ4)−c2(1−m)w1]˜̃x+[c2(1−m)w3−d2]

c2(1−m)w2+δ3
.

Let (β1 − δ4)− c2 (1−m)w1 = A1;
c2 (1−m)w3 − d2 = A2;
c2 (1−m)w2 + δ3 = A3.

Therefore, ˜̃y = A1
˜̃x+A2

A3
exists, provided that

A1
˜̃x+A2 > 0.

(12) can be written as

˜̃z =

[
w1 +

w2A1

A3

] ˜̃x+
w2A2

A3
− w3.

Substitute ˜̃y and ˜̃z in (9), we get
−[δ1f

(
w1 +

w2A1

A3

)
+ (δ2+β1)fA1

A3

(
w1 +

w2A1

A3

)
+c1f (1−m)

(
w1 +

w2A1

A3

)2
]˜̃x2

−[δ1 +
(δ2+β1)A1

A3
+ δ1f

(
w2A2

A3
− w3

)
+ (δ2+β1)fA1

A3

(
w2A2

A3
− w3

)
+ (δ2+β1)fA2

A3

(
w2A1

A3
+ w1

)
+(d1f + c1 (1−m))

(
w2A1

A3
+ w1

)
+2c1f (1−m)

(
w2A1

A3
+ w1

)(
w2A2

A3
− w3

)
]˜̃x

+α− [ (δ2+β1)A2

A3
+ d1 +

(δ2+β1)fA2

A3

(
w2A2

A3
− w3

)
+(d1f + c1 (1−m))

(
w2A2

A3
− w3

)
+c1f (1−m)

(
w2A2

A3
− w3

)2
] = 0

Using the sign rule of Descarte’s, ˜̃x has a unique
positive root if

[ (δ2+β1)A2

A3
+ d1 +

(δ2+β1)fA2

A3

(
w2A2

A3
− w3

)
+(d1f + c1 (1−m))

(
w2A2

A3
− w3

)
+c1f (1−m)

(
w2A2

A3
− w3

)2
] < α.

5 Analysis for Local Stability
Behavior

Determining the local stability of the equilibrium
points involves analyzing the behavior of the sys-

tem near each equilibrium point. This analysis typ-
ically involves linearizing the system of differential
equations around each equilibrium point and examin-
ing the eigenvalues of the resulting Jacobian matrix.
The sign of the real parts of the eigenvalues indicates
whether the equilibrium point is stable, unstable, or
semi-stable. The necessary criteria for the system (1)-
(3) to be stable locally at the equilibrium points are
determined in this section using the Routh Hurwitz
criterion, [22].

Theorem 5.1 The trivial equilibrium point
f0 (0, 0, 0) is locally asymptotically stable for
system (1)-(3) if d1 > α.

Proof:
The Jacobin matrix at f0 (0, 0, 0) is:

J(0,0,0) =

[
α− d1 0 0

0 −d2 0
0 0 −d3

]

If d1 > α, then all the roots of the characteristic equa-
tion of J(0,0,0) are negative and thus the trivial equi-
librium point is locally asymptotically stable.

Theorem 5.2 The equilibrium point f1 (x, 0, 0) is lo-
cally asymptotically stable for the system (1)-(3) if
β1 − δ4 <

d2δ1
α−d1

and (α− d1)µ1c1(1−m) < d3δ1.

Proof:
The Jacobin matrix at f1 (x, 0, 0) is:
J(x,0,0) =−(α− d1) − (δ2−β1)(α−d1)

δ1
− (α−d1)[αf+c1(1−m)]

δ1

0 (β1−δ4)(α−d1)
δ1

− d2 0

0 0 (α−d1)µ1c1(1−m)
δ1

− d3


If β1 − δ4 < d2δ1

α−d1
and (α − d1)µ1c1(1 − m) <

d3δ1, then all the roots of the characteristic equation
of J(x,0,0) are negative. So, the equilibrium point
f1 (x, 0, 0) is locally asymptotically stable.

Theorem 5.3 The equilibrium point f2
(
x, y, 0

)
is lo-

cally asymptotically stable for the system (1)-(3) if it
satisfies the condition

(α− d1) < 2δ1x+ (δ2 + β1) y, (14)
(β1 − δ4)x < 2δ3y + d2, (15)

µ1c1 (1−m)x+ µ2c2 (1−m) y < d3. (16)

Proof:
The Jacobin matrix at f2

(
x, y, 0

)
is:

J(x,y,0) =

[
c11 c12 c13
c21 c22 c23
c31 c32 c33

]
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where

c11 = (α− d1)− 2δ1x− (δ2 + β1)y;
c12 = −(δ2 + β1)x;
c13 = −[αf + c1(1−m)]x;
c21 = (β1 − δ4)y;
c22 = (β1 − δ4)x− 2δ3y − d2;
c23 = −c2(1−m)y;
c31 = 0; c32 = 0;
c33 = µ1c1(1−m)x+ µ2c2(1−m)y − d3.

The characteristic equation of J(x,y,0) is

(c33 − λ)[λ2 − (c11 + c22)λ+ c11c22 − c12c21] = 0.
(17)

ie., (c33 − λ) = 0,
(18)

and λ2 − (c11 + c22)λ+ c11c22 − c12c21 = 0.
(19)

From (18) λ = c33 < 0 provided µ1c1(1 − m)x +
µ2c2(1−m)y < d3.

Using Routh-Hurwitz criterion (19) has negative
roots only if conditions (14) and (15) are satisfied.
Henceforth, the theorem follows.

Theorem 5.4 The equilibrium point f3(x̃, 0, z̃) is lo-
cally asymptotically stable for the system (1)-(3) if it
satisfies the condition:

1

1 + fz̃
< 2δ1x̃+ d1 + c1(1−m)z̃,

(20)

x̃ < min

{
d2 + c2(1−m)z̃

β1 − δ4
,

2δ5z̃ + d3
µ1c1(1−m)

}
.

(21)

Proof:
The Jacobin matrix at f3(x̃, 0, z̃) is given by

J(x̃,0,z̃) =

[
c11 c12 c13
c21 c22 c23
c31 c32 c33

]

where
c11 =

α
1+fz̃ − 2δ1x̃− c1(1−m)z̃;

c12 = −(δ2 + β1)x̃ < 0;

c13 = −
[

αf
(1+fz̃)2 + c1(1−m)

]
x̃ < 0;

c21 = 0; c22 = (β1 − δ4)x̃− d2 − c2(1−m)z̃;
c23 = 0; c31 = µ1c1(1−m)z̃ > 0;
c32 = µ2c2(1−m)z̃ > 0;
c33 = µ1c1(1−m)x̃− 2δ5z̃ − d3.

The characteristic equation of J(x̃,0,z̃) is

(c22 − λ)[λ2 − (c11 + c33)λ+ c11c33 − c13c31] = 0.
(22)

ie., (c22 − λ) = 0,
(23)

and λ2 − (c11 + c33)λ+ c11c33 − c13c31 = 0.
(24)

From (22) λ = c22 < 0 if condition (21) is met.
By Routh-Hurwitz criterion (24) has negative roots
only if conditions (20) and (21) are satisfied.
Henceforth, the theorem follows.

Theorem 5.5 The equilibrium point f4
(˜̃x, ˜̃y, ˜̃z) is

locally asymptotically stable for the system (1)-(3) if
it satisfies the condition:

α

1 + f ˜̃z < 2δ1˜̃x+ d1 + (δ2 + β1)˜̃y + c1(1−m)˜̃z, (25)
(β1 − δ4)˜̃x < 2δ3˜̃y + d2 + c2(1−m)˜̃z, (26)

µ1c1(1−m)˜̃x+ µ2c2(1−m)˜̃y < 2δ5˜̃z + d3, (27)
ϕ1 < ϕ2, (28)

τ1 + τ2 > 0. (29)

Proof:
The Jacobin matrix at f4

(˜̃x, ˜̃y, ˜̃z) is:

J
(˜̃x,˜̃y,˜̃z) =

[
c11 c12 c13
c21 c22 c23
c31 c32 c33

]

where
c11 =

α

1+f˜̃z − 2δ1˜̃x− d1 − (δ2 + β1)˜̃y− c1(1−m)˜̃z;
c12 = −(δ2 + β1)˜̃x < 0;

c13 = −
[

αf

(1+f ˜̃z)2 + c1(1−m)

] ˜̃x < 0;

c21 = (β1 − δ4)˜̃y > 0;

c22 = (β1 − δ4)˜̃x− 2δ3˜̃y − d2 − c2(1−m)˜̃z;
c23 = −c2(1−m)˜̃y < 0;

c31 = µ1c1(1−m)˜̃z > 0; c32 = µ2c2(1−m)˜̃z > 0;

c33 = µ1c1(1−m)˜̃x+ µ2c2(1−m)˜̃y − 2δ5˜̃z − d3.

The characteristic equation of J
(˜̃x,˜̃y,˜̃z) is given

by

λ3 + a1λ
2 + a2λ+ a3 = 0 (30)
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Here

a1 = −[c11 + c22 + c33],

a2 = c22c33 + c11c33 + c11c22 − [c23c32
+c31c13 + c21c12],

a3 = −c11c22c33 + c11c32c23 + c12c21c33 − c12c31c23
−c13c21c32 + c13c31c22.

Let

ϕ1 = c11c32c23 + c12c21c33 + c13c31c22
−(c13c21c32 + c11c22c33) > 0,

ϕ2 = c12c31c23 > 0.

From conditions (25)-(27), a1 > 0, a2 > 0.
Condition (28) gives a3 > 0.
Now,
a1a2 − a3 = −c211[c22 + c33] + c13c31[c11 + c33] +
c12c21[c11 + c22] − c222[c11 + c33] − 2c11c22c33 +
c23c32[c22 + c33] − c233[c11 + c22] + c12c31c23 +
c13c21c32.
Let
τ1 = −c211[c22+c33]+c13c31[c11+c33]+c12c21[c11+
c22] − c222[c11 + c33] − 2c11c22c33 + c23c32[c22 +
c33]− c233[c11 + c22] + c12c31c23 > 0;
τ2 = c13c21c32 < 0.

If τ1 + τ2 > 0, then a1a2 − a3 > 0.
Then by Routh-Hurwitz criterion, all the roots of (30)
are negative. Henceforth, the theorem follows.

6 Conclusion
A predator prey population model comprising healthy
prey, infected prey and predator is developed integrat-
ing fear effect and refuge factors of the prey. The dis-
ease is transmitted from infected to susceptible prey
with linear incidence rate. The predator feeds on both
the susceptible and infected prey following Volterra
type predation. The positivity and boundedness of
the solution demonstrate that the developed system
behaves well biologically. Five equilibrium points
are located. Conditions for the existence of the equi-
librium points are elaborately discussed. Analyzing
the stability of each equilibrium point allows under-
standing of how the system responds to small pertur-
bations around that point. This information is crucial
for predicting the long-term behavior of the ecologi-
cal system and understanding its resilience to external
factors. Furthermore, distinct requirements are deter-
mined for the system’s local stability at each of the
equilibrium points.
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