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Abstract: - In the past, the control chart served as a statistical tool for detecting process changes. The 
Exponentially Weighted Moving Average (EWMA) control chart is highly effective for detecting small 
changes. This research introduces the Extended Exponentially Weighted Moving Average (Extended EWMA) 
control chart for the Autoregressive and Moving average process with order p = 1 and q = 1 (ARMA(1,1)) The 
Extended EWMA control chart incorporates two smoothing parameters ( 1  and 2 ) derived from the EWMA 
control chart. A comparative analysis of the performance of the EWMA control chart. The Average Run 
Length (ARL) value as determined by the explicit formulas in this research, serves as a metric for evaluating 
the performance of the Extended EWMA control chart and the EWMA control chart. The Numerical Integral 
Equation (NIE) method is used to verify the accuracy of the ARL for the explicit formulas of the two control 
charts which has not been before discovered. The effectiveness of control charts can also be evaluated by 
analyzing SDRL, ARL, MRL, RMI, AEQL, and PCI values as metrics for various design parameter values. 
After analyzing the results of the ARL and all five performance meters, it was determined that the Extended 
EWMA control chart is better than the EWMA control chart at all shift sizes of process changes. Finally, the 
assessment of the ARMA process is being conducted to evaluate the ARL using a dataset on PM2.5 dust levels 
in Bangkok, Thailand during January and February of 2024. 
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1   Introduction 
The statistically important tool is the control chart. 
[1], invented the control chart, which detects the 
alteration of the control diagram, which is 
commonly used in the manufacturing industry. The 
Shewhart control chart is very efficient with small 
change detection as well. [2], introduced an 
EWMA control chart for better detection of small 
changes. The Cumulative Sum (CUSUM) control 
chart, developed by [3], is extensively utilized in 
statistical control charting. In 2017, [4], developed 
and presented a more efficient, Modified EWMA 
control chart than the EWMA control chart in the 
detection of minor changes. [5], presented The 
Extended EWMA control chart as a powerful chart 
designed to detect minor changes in the process 
being examined. The effectiveness of control charts 
can be assessed by utilizing the ARL, [6]. The ARL 

is divided into two values, [7], The ARL0 is the 
number of expected observations required before a 
process is under control, and The ARL1 refers to 
the amount of observations expected from an 
uncontrollable process and should be reduced. In 
1990, [8], are presented a quantitative analysis 
comparing the EWMA control chart and the 
CUSUM control chart. [9], examined the design of 
the optimal EWMA control chart and compared it 
to the CUSUM control chart. [10], are presented, 
and the autocorrelation data will be linked to a 
statistical model. The ARMA process is a 
frequently employed model in real-world data 
analysis. [11], have introduced datasets with 
exponential white noise to the control chart. [12], 
shows the performance of the CUSUM control 
chart for autocorrelated seasonal consistency of 
trends using the Midpoint Rule method with 
exponential white noise. [13], presented an 
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approximating of the ARL of changes in the mean 
of a Seasonal Time Series Model with exponential 
white noise running on a CUSUM control chart. 
[14], presented the explicit formulas and NIE of 
ARL when observations were seasonal 
autoregressive models with an exogenous variable 
SARX(P,r)L with exponential white noise based on 
the CUSUM control chart. [15], proposed an 
explicit formula for the ARL using the Fredholm 
integral equation method in the EWMA control 
chart on the MAX(q,r) process. [16], are improving 
the CUSUM control chart for monitoring a change 
in processes based on a seasonal autoregressive 
model with one exogenous variable. [17], 
introduced a Modified EWMA control chart that is 
derived from its particular examples. [18], 
developed the explicit formula for the ARL on a 
Modified EWMA control chart for the AR(1) 
process. Subsequently, [19], presents analytical 
explicit formulas of the ARL of Homogenously 
Weighted Moving Average control chart 
(HEWMA) based on a MAX process. 

However, the derivation of the explicit formula 
for the ARL on the Extended EWMA control chart 
for the Autoregressive and Moving Average 
process with parameters p = 1 and q = 1 
(ARMA(1,1)), when there are two smoothing 
parameters ( 1  and 2 ) for the ARMA(1,1) 
process has not been reported previously. The 
objective of this research is to determine the 
explicit formula for the ARL on the Extended 
EWMA control chart for the ARMA(1,1). The 
explicit formula for the ARL was compared with 
the NIE method. This research differs from that of 
other researchers, using five additional statistical 
performance measurements, Standard of Deviation 
Run Length (SDRL), Median Run Length (MRL), 
[20], Related Mean Index (RMI), [21], Average 
Extra Quadratic Loss (AEQL), [22] and 
Performance Comparison Index (PCI). The 
comparison of performance between the Extended 
EWMA control chart and the EWMA control chart 
using a dataset on PM2.5 dust levels in Bangkok, 
Thailand during January and February of 2024.  

 
 

2 Materials and Methods 
 

2.1 The Exponential Weighted Moving 

 Average Control Chart  
This research describes the properties of the EWMA 
control chart for ARMA(p,q) processes. The 
EWMA control chart is defined by a recursive 
equation, [2]. 

               11 , 1,2,3,...
t t t

Z W tZ  


              (1) 
where 

t
W  is a sequence of an ARMA(p,q) 

processes with exponential white noise and 
0 1  , 0W  is the initial value of the EWMA 

statistics, 0Z u . The control limits of the EWMA 
control chart consist of the upper control limit 
(UCL) and the lower control limit (LCL) are: 
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where 0  is process mean of ARMA(p,q) process, 
  is the process standard deviation parameter,   is 
a suitable control limit width. Let b be an UCL on   

tZ . The stopping time ( )b  of the Extended 
EWMA control chart is defined as 
  inf{ 0; }b tt Z b     
 
 
3 The Exact Solutions of the ARL on 

 the Extended EWMA Control 

 Chart 
 

3.1 The Explicit Formula of the ARL on the 

 Extended EWMA Control Chart for 

 ARMA(p,q) process  
The ARMA(p,q) process are defined by the 
following recursion: 

0 1 1 2 2 ...t t t p t pW W W W            (3) 
       1 2 2 ...t t t t q t q             

 
where 

t
W is a sequence of the ARMA(p,q) 

processes with exponential white noise, t  is 

autoregressive parameter, 0W u  is the initial 
value, where [0, ]u b  and b is UCL of the 
Extended EWMA control chart 

 [6], presented The Extended  EWMA control 
chart. The performance control chart is highly 
efficient in detecting small changes in the 
monitored process. The Extended EWMA statistic 
can be derived as: 

  11 2 1 2 11 , 1,2,3,...
t t t tW tW    

       (4) 
 
where 

t
W  is a process with mean, 1  and 2 are 

exponential smoothing parameters with 
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2 10 1     and 0  is the initial value of the 

Extended EWMA statistics, 0 u   and 0 v  . 
The UCL and the LCL are: 

2 2
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 (5)                

 
where 0  is the process mean of moving average 
process,   is the process standard deviation 
parameter and   is a suitable control limit width, 
and 0 1 1 2 2 ...t t t p t pW W W W         

            
 (6) 

 1 2 2 ...t t t t q t q             
 
Hence, the formulation of the Extended EWMA 

control chart for the ARMA(p,q) process is as. 
  11 2 1 0 1 1 2 21 ( ...

t t t t p t pW W W       
         

1 2 2 2 1, 1,2,3,...... )t t t t q t q t tW                    
When t = 1 

 1 01 2 1 0 1 0 2 1 11 ( ... p pW W W                

1 0 2 1 1 2 0 1 1, 1,2,3,...... )q q tW               
Let 0 1 0 2 1 1... p pW W W            
 1 0 2 1 1... q q          

So  
 1 01 2 1 2 1 11 , 1,2,3,...tu          

   
(7) 

 
Let's examine the in-control process, where the      

UCL = b and the LCL = 0. 
10 b   
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The function ( )u  can be obtained by 
Fredholm integral equation of the second kind as 
follows; 

1
0
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Therefore, the function ( )u  is obtained as 
follows: 
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Given that ( )t Exp   is determined, 
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By substituting the value of an equal to 1  into 

( )u , we can get the explicit formula of the ARL1 
on the Extended EWMA control chart as follows: 
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(11) 

 
From Equation (11), the ARL finished  explicit 

formula of the Extended EWMA control chart for 
the ARMA(p,q) process is to be compared to the 
EWMA control chart. 
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3.2 The Numerical Integral Equation of the 

 ARL on the Extended EWMA Control 

 Chart of ARMA(p,q) process. 
Let ( )u  denote the estimated value of the ARL 
determined from the m linear equation systems 
using the composite midpoint quadrature rule.  

The evaluation of the ARL approaching NIE on 
the Extended EWMA control chart is carried out in 
the following manner: 

        
10

( ) ( ) ( )
b s

t j j

j

u f k dk c f x  


         (12) 

The system of s linear equations is represented 
as   

1 1 11s s s s sL R L      or  
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T

s NIE NIE NIE sL L x L x L x      

 1,1,...,1sI diag  and  11 1,1,...,1 .T

s   
Let 

s sR 
 be a matrix. The s to sth element matrix 

R is defined as follows: 
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1
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
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The answer to the NIE can be succinctly 

expressed as.  
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(13) 
 

where kj is a set of the division point on the interval 

[0,b] as 1 , 1,2,..., .
2j jk j c j s

 
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 

jc  is a weight of 

composite midpoint formula .j

b
c

s
  

From Equation (13), the NIE method is a 
comparative criterion to the explicit formulas that 
the explicit formula is accurate. As a result, both 
ARL values are similar. 

 
 

4  Existence and Uniqueness of  ARL 
The answer is obtained from the explicit formula 
using the ARL of the existence of the NIE, as 
proven by Banach's fixed-point theorem, [23]. In 
this study, let T denote an operation on the set of all 
continuous functions that are defined. 

1

1( ( )) 1
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T u c


                       

(14) 
 

1 2 1 0 1 0 2 1 1 1 0 2 1 1 2 1

1

(1 ) ( ... ... )j p p q qk u W W W u
f dk

             



                 
 
 

  
According to Banach’s fixed-point theorem, if 

an operator T is guaranteed to satisfy the criterion 
of being a contraction, ( ( )) ( )T u u   has a one 
solution, as previously stated. For Equation (14) to 
have a solution that is both present and unique, the 
Banach fixed-point theorem can be utilized. The 
Banach fixed-point theorem, also referred to as the 
contraction mapping theorem, was initially 
introduced concretely in Banach's. 

Typically, it is employed to determine the 
existence of a solution to an integral problem. 
Following this, [24], have extensively utilized this 
tool to address numerous problems related to the 
presence of solutions in diverse mathematical 
domains, due to its straightforwardness and 
practicality. The following information provides 
the specific details. 

Theorem 1 Banach’s Fixed-point Theorem : 

Assume that :D X X  is a contraction mapping        
with contraction constant 0 1,S   such that 

 1 2( )D D  1 2S    1 2, X   , meets this 

criterion. [25], have established the existence of a 
single unique a. (.) X   such that 

( ( )) ( )D u u   has a unique fixed point in .X  
Proof: To demonstrate the value of T, as 

determined by the equation ( ( ))T u  is a      
contraction mapping for 1 2, [0, ].b    that 
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0 1S   under the norm 
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                






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1 2 1 0 1 0 2 1 1 1 0 2 1 1 2 1

1

1

(1 ) ( ... ... )
( )

1 2
[0, ]

1 2

sup

1 1

j p p q qk u W W W u

u b

b

e

e S

              





 

 

                








 

 
    
  

where 
1 2 1 0 1 0 2 1 1 1 0 2 1 1 2 1

1

1

(1 ) ( ... ... )
( )

[0, ]
sup

1 1

j p p q qk u W W W u

u b

b

S e

e

              





                







 
  
  

, 0 1,S   The uniqueness of the solution is 
ensured by Banach's fixed-point theorem. 
 

 

5  Numerical Results 
In this research, we evaluate the ARL0 and ARL1 
by employing explicit formulas and the NIE for an 
ARMA(p,q) process on the Extended EWMA 
control chart. In addition, performance indicators 
such as the SDRL and MRL are used to assess the 
effectiveness of control charts. The computation for 
SDRL and  MRL for the in-control process is as 
follows. 

0
0 0 02

0 0 0

1log( )1 1 2, ,
( ) log(1 )

ARL SDRL MRL


  


  


    

(15) 
 
where 0  represents an error of type I. This 
research analysis determined that ARL0 = 370. The 
value of the ARL0 can be computed using Equation 
(15) as SDRL0 and MRL0 with an approximate 
value. Conversely, ARL1, SDRL1 and MRL1 are 
calculated using Equation (16). 

1
1 1 12

1 1 1

1log( )1 1 2, ,
( ) log(1 )

ARL SDRL MRL


  


  


 

(16) 
 
where 1  represents an error of type II 

 
The minimum values of the ARL1, SDRL1 and 

MRL1  indicate a higher ability to promptly detect 
variations in the process mean. To conduct a 
comparison analysis, we will examine the Extended 
EWMA control charts and the EWMA control 
charts for the ARMA(p,q) process. 

RMI is employed to assess the efficacy of the 
Extended EWMA control chart. RMI can be 
computed. 

    
1

( ) ( )1 ,
( )

n
i i

i i

RMI
ARL MAX ARL MIN

n ARL MIN


 
 
 

           (17) 

 
where ( )iARL MAX  is the ARLi of row i on the 
control chart under examination. ( )iARL MIN  is 
the minimum of the ARL1 for row i. A control chart 
is deemed more effective when it has a lower RMI.  

Furthermore, performance measurements can be 
utilized to evaluate the effectiveness of control 
charts across a range of modifications. In addition, 
the AEQL may pertain to costs that have been 
accrued as a result of an unmanageable situation. 
This comparison may entail the utilization of 
various control chart kinds to determine the most 
efficient strategy for a specific procedure. These 
include the study model, the research data set, the 
appropriate parameter value, the control chart that 
the research is introduced, as well as the application 
of the actual data to make the chart of this research 
result as desired. 

The AEQL can be determined by using the 
following formula. 

max

min

21 ( ( ))
i

shift

i i

shift shift

AEQL shift ARL shift


 


   (18) 

 
where shift refers to a distinct change in the 
process.   denotes the aggregate of number of 
divisons from shiftmin( min ) to shiftmax( max ). In 
this research, min10, 0.01    and max 3.00 

. The most effective control chart is the one with 
the minimum AEQL value.  

Additionally, the examination of control chart 
performance can be carried out by utilizing the 
performance evaluation criteria of the PCI. The 
determination of the PCI value entails comparing 
the AEQL of a certain control chart to the AEQL of 
the control chart with the minimum value. This 
helps identify the control chart that has the highest 
level of efficiency. The PCI can be computed: 

  
min

AEQL
PCI

AEQL
             (19) 

 
The ARL was approximated by NIE using the 

composite midpoint rule on the Extended EWMA 
control chart for the ARMA(p,q) process with a 
sample size of 1,000 nodes. When ARL0 = 370, 0  
= 0.5,           1  = 0.1, 1  = -0.1 and 0.1, 2  = -0.2 
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and 0.2,              3  = 0.3, 1  = 0.05, 0.10, 2  = 
0.01, and   = 0.01, 0.03, 0.05, 0.10, 0.30, 0.50, 
1.00, 2.00 and 3.00, The in-control process is 

0 1  . The results indicate that the ARL of the 
explicit formulas and the NIE are very similar for 
the ARMA(1,1), ARMA(1,2), and ARMA(1,3) 
processes in Table 1, Table 2 and Table 3 in 
Appendix. The results of the ARL of the Extended 
EWMA control chart using an explicit formula are 
shown in Table 4, Table 5 and Table 6 in 
Appendix. These Tables compare the performance 
of the Extended EWMA control chart against the 
EWMA control chart for ARMA(1,1), ARMA(1,2), 
and ARMA(1,3) processes. Based on the results, 
the Extended EWMA control chart outperformed 
the EWMA control chart in terms of the ARL, 
SDRL, and MRL for 1  values of 0.05 and 0.10. In 
addition, the results suggest that the Extended 
EWMA control chart with 1  = 0.10 exhibits the 
minimum values for RMI, AEQL, and PCI. 

Therefore, it can be inferred that the Extended 
EWMA control chart exhibits greater performance 
when compared to the EWMA control chart. 
Moreover, the RMI, AEQL, and PCI derived from 
each control chart are utilized to assess the 
effectiveness of the aforementioned control charts. 
The Extended EWM control chart exhibited 
superior performance. Based on the minimal values 
for RMI, AEQL, and PCI, all of them were equal to 
one. 

 
 

6   Application to Real-world Data 
In this study, the explicit formulas of the ARL on 
the Extended EWMA control chart for the 
ARMA(1,1) prcess were applied to the dataset on 
PM2.5 dust levels in Bangkok, Thailand during 
January and February of 2024 and generated a 
forecasting process. The ARL was calculated using 
explicit formulas on the Extended EWMA control 
chart with ARL0 = 370 for 1  = 0.05, 0.10 and          

2  = 0.01, shift  ( )  equal to 0.01, 0.03, 0.05, 
0.10, 0.30, 0.50, 1.00, 2.00, 3.00 and sample size = 
1,000 nodes. The performance of the control chart 
was evaluated by comparing it to the EWMA 
control chart using a dataset on PM2.5 dust levels 
in Bangkok, Thailand during January and February 
of 2024. The coefficient parameters estimated for 
the ARMA(1,1) process are determined using 
maximum likelihood estimation: 0  = 27.3401, 1

= 0.947,   1  = 0.616. The ARMA(1,1) process can 

be defined by utilizing the parameter of this 
forecasting process. 

 1 1
ˆ 0.947 0.616t t tW W     

Using the explicit formula, we compare the 
ARL values of the ARMA(1,1) process on the 
Extended EWMA control chart with the ARL, 
SDRL, and MRL of the EWMA control charts. 
This comparison evaluates their efficiency. The 
results are presented in Table 7 (Appendix) and 
Figure 1 (Appendix), demonstrating a clear 
agreement with the findings seen in Table 4, Table 
5 and Table 6 in Appendix. Figure 2 (Appendix) 
displays a comparison of the RMI, AEQL, and PCI 
derived from each control chart. The purpose is to 
assess the effectiveness of the control charts.  

In this research, the performance of the ARL of 
the Extended EWMA control chart is assessed and 
contrasted with that of the EWMA control chart. 
The findings suggest that the Extended EWMA 
control charts are superior to the EWMA control 
chart for the ARMA(1,1) process. Additionally, the 
Extended EWMA control chart, with 1  = 0.10, 
better than all three control charts. 

 

 

7 Conclusions 
In this study, the formula was successful in finding 
the ARL value and the accuracy of the Extended 
EWMA control chart for the ARMA(1,1) compared 
to the EWMA control chart.  the efficacy of control 
charts was evaluated for the ARL by utilizing the 
NIE, the explicit formula is subjected to 
comparison, And use all five measurements as an 
additional criterion to compare the performance of 
the two control charts. Both methods demonstrate 
that the ARL values are similar. The Extended 
EWMA control chart for the ARMA(1,1) process 
has superior performance compared to the EWMA 
control chart. When assessing the comparative 
efficacy of the ARL under different smoothing 
factors, it is recommended to utilize a smoothing 
parameter of 1  = 0.10. The simulation research 
and the real-world dataset on PM2.5 dust levels in 
Bangkok, Thailand during January and February of 
2024, ultimately, the outcomes were the same. 
Further research, the extended EWMA control 
chart can be applied to other aspects, such as health 
or economics, as well as using an NIE comparison 
method with the explicit formulas. Several other 
methods of comparison will generate new control 
charts. 
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APPENDIX 
 

Table 1. ARL comparison of the Extended EWMA control chart for ARMA(p,q) using explicit formulas 
against  NIE method when 0 = 0.5. 1 = 0.1, 1 = 0.1, 0  = 1 for ARL0 = 370 

 

 

 
Table 2. ARL comparison of the Extended EWMA control chart for ARMA(p,q) using explicit formulas 

against  NIE method when 0 = 0.5. 1 = 0.1, 1 = -0.1, 0  = 1 for ARL0 = 370 

 
Table 3. ARL comparison of the Extended EWMA control chart for ARMA(p,q) using explicit formulas 

against  NIE method when 0 = 0.5. 1 = 0.1, 1 = -0.1, 2 = -0.2, 0  = 1 for ARL0 = 370 

 
 
  

2 =0.01 

  1 = 0.1 1 = 0.1, 2 = 0.2 1 = 0.1, 2 = 0.2, 3 = 0.3 

Process ARMA(1,1) ARMA(1,2) ARMA(1,3) 

1  0.05 0.10 0.05 0.10 0.05 0.10 

 b 2.96646 3.63105 2.96808 3.63040 2.96850 3.63300 
0.00 Explicit 

NIE 
370.00200 
370.00200 

370.55058 
370.55058 

370.50773 
370.50773 

370.04983 
370.04983 

370.54021 
370.54021 

370.59006 
370.59006 

0.01 Explicit 
NIE 

358.74338 
358.74338 

357.14330 
357.14330 

359.22690 
359.22690 

356.66069 
356.66069 

359.25546 
359.25546 

357.17068 
357.17068 

0.03 Explicit 
NIE 

337.80512 
337.80512 

332.44859 
332.44859 

338.24730 
338.24730 

331.99912 
331.99912 

338.26862 
338.26862 

332.45412 
332.45412 

0.05 Explicit 
NIE 

318.76091 
318.76091 

310.26908 
310.26908 

319.16611 
319.16611 

309.84910 
309.84910 

319.18091 
319.18091 

310.25553 
310.25553 

0.10 Explicit 
NIE 

278.06230 
278.06230 

263.82544 
263.82544 

278.39071 
278.39071 

263.46626 
263.46626 

278.39183 
278.39183 

263.77384 
263.77384 

0.30 Explicit 
NIE 

177.21156 
177.21156 

155.21847 
155.21847 

177.36603 
177.36603 

154.99343 
154.99343 

177.33527 
177.33527 

155.09284 
155.09284 

0.50 Explicit 
NIE 

125.76868 
125.76868 

104.21405 
104.21405 

125.84709 
125.84709 

104.05419 
104.05419 

125.80204 
125.80204 

104.06690 
104.06690 

1.00 Explicit 
NIE 

69.34975 
69.34975 

52.92752 
52.92752 

69.36142 
69.36142 

52.83141 
52.83141 

69.30529 
69.30529 

52.78121 
52.78121 

2.00 Explicit 
NIE 

34.94470 
34.94470 

24.95056 
24.95056 

34.93253 
34.93253 

24.89444 
24.89444 

34.87852 
34.87852 

24.83357 
24.83357 

3.00 Explicit 
NIE 

3.16420 
3.16420 

1.17294 
1.17294 

3.14954 
3.14954 

1.13249 
1.13249 

3.10190 
3.10190 

1.07843 
1.07843 

 
 
  

2 =0.01 

  1 = -0.1 1 = -0.1, 2 = 0.2 1 = -0.1, 2 = 0.2, 3 = 0.3 

Process ARMA(1,1) ARMA(1,2) ARMA(1,3) 

1  0.05 0.10 0.05 0.10 0.05 0.10 

 b 2.96750 2.96808 2.96900 3.63200 2.96850 3.63300 
0.00 Explicit 

NIE 
370.50578 
370.50578 

370.50773 
370.50773 

370.91904 
370.91904 

370.77768 
370.77768 

370.56128 
370.56128 

370.67882 
370.67882 

0.01 Explicit 
NIE 

359.23026 
359.23026 

359.22690 
359.22690 

359.62363 
359.62363 

357.35786 
357.35786 

359.27603 
359.27603 

357.25643 
357.25643 

0.03 Explicit 
NIE 

338.26024 
338.26024 

338.24730 
338.24730 

338.61718 
338.61718 

332.64039 
332.64039 

338.28826 
338.28826 

332.53439 
332.53439 

0.05 Explicit 
NIE 

319.18744 
319.18744 

319.16611 
319.16611 

319.51189 
319.51189 

310.44085 
310.44085 

319.19975 
319.19975 

310.33096 
310.33096 

0.10 Explicit 
NIE 

278.42876 
278.42876 

263.80566 
263.80566 

278.68608 
278.68608 

263.95661 
263.95661 

278.40903 
278.40903 

263.83937 
263.83937 

0.30 Explicit 
NIE 

177.43595 
177.21156 

155.23175 
155.23175 

177.54395 
177.54395 

155.26439 
154.26439 

177.34909 
177.34909 

155.13671 
155.13671 

0.50 Explicit 
NIE 

125.92494 
125.92494 

104.23758 
104.23758 

125.97011 
125.97011 

104.22719 
104.22719 

125.81467 
125.81467 

104.10135 
104.10135 

1.00 Explicit 
NIE 

69.43484 
69.43484 

52.95400 
52.95400 

69.42895 
69.42895 

52.91705 
52.91705 

69.31705 
69.31705 

52.80609 
52.80609 

2.00 Explicit 
NIE 

34.98837 
34.98837 

24.97123 
24.97123 

34.96830 
34.96830 

24.93601 
24.93601 

34.88929 
34.88929 

24.85146 
24.85146 

3.00 Explicit 
NIE 

3.19345 
3.19345 

1.18909 
1.18909 

3.17426 
3.17426 

1.16019 
1.16019 

3.11154 
3.11154 

1.09275 
1.09275 
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Table 4. ARL comparison of the Extended EWMA control chart for ARMA(1,1) against EWMA control charts 
   when 0 = 0.5. 1 = 0.1, 1 = 0.1, 2 =0.01, 0  = 1 for ARL0 = 370 

 
  

Control    
Chart 

Extended EWMA Extended EWMA EWMA EWMA 

1 = 0.05 1 = 0.10 1 = 0.05 1 = 0.10 

UCL 2.96646 3.63105 2.96920 3.63200 
0.00 ARL0 

SDRL0 

MRL0 

370.00200 
370.00200 
370.00200 

370.55058 
370.55058 
370.55058 

370.96100 
370.96100 
370.96100 

370.68423 
370.68423 
370.68423 

0.01 ARL1 
SDRL1 

MRL1 

358.74338 
358.64338 
 247.30530 

357.14330 
357.04330 
246.20230 

359.66153 
359.56153 
247.93820 

359.26077 
359.16770 
247.66200 

0.03 ARL1 
SDRL1 

MRL1 

337.80512 
337.66369 
232.87120 

332.44859 
332.30716 
229.17860 

339.64755 
339.50612 
234.14130 

334.53658 
334.39515 
230.61800 

0.05 ARL1 
SDRL1 

MRL1 

318.76091 
318.53730 
219.74280 

310.26908 
310.04547 
213.88880 

319.53546 
319.31185 
220.27670 

312.33100 
312.10739 
215.31020 

0.10 ARL1 
SDRL1 
MRL1 

278.06230 
277.74607 
191.68660 

263.82544 
263.50921 
181.87220 

279.69520 
279.37897 
192.81220 

265.83410 
265.51787 
183.25690 

0.30 ARL1 
SDRL1 
MRL1 

177.21156 
176.66383 
122.16350 

155.21847 
154.67074 
107.00230 

179.51763 
178.96990 
123.75330 

157.11150 
156.56377 
108.3072 

0.50 ARL1 
SDRL1 
MRL1 

125.76868 
125.06157 
86.70059 

104.21405 
103.50694 
71.84157 

127.92548 
127.21837 
88.18741 

106.05878 
105.35167 
73.11326 

1.00 ARL1 
SDRL1 

MRL1 

69.34975 
68.34975 
47.80732 

52.92752 
51.92752 
36.48641 

69.36277 
68.36277 
47.81630 

54.73000 
53.73000 
37.72897 

2.00 ARL1 
SDRL1 

MRL1 

34.94470 
33.53048 
24.08967 

24.95056 
23.53634 
17.20005 

36.88625 
35.47203 
25.42811 

26.73442 
25.32020 
18.42979 

3.00 ARL1 
SDRL1 

MRL1 

3.16420 
1.43214 
1.18129 

1.17294 
0.55911 
0.50858 

23.08540 
21.35334 
15.42811 

15.95210 
14.22004 
10.99683 

 RMI 
AEQL 

PCI 

0.31766 
28.89150 
1.39533 

0.0000 
20.70582 
1.00000 

2.21926 
47.67518 
2.30250 

1.41800 
34.89650 
1.68534 

Table 5. ARL comparison of the Extended EWMA control chart for ARMA(1,2) against EWMA control charts 
  when 0 = 0.5. 1 = 0.1, 1 = 0.1, 2 = 0.2, 2 =0.01, 0  = 1 for ARL0 = 370 

 Control  Extended EWMA Extended EWMA EWMA EWMA 

 
 
  

2 =0.01 

  1 = -0.1 1 = -0.1, 2 = -0.2 1 = -0.1, 2 = -0.2, 3 = 0.3 

Process ARMA(1,1) ARMA(1,2) ARMA(1,3) 

1  0.05 0.10 0.05 0.10 0.05 0.10 

 b 2.96750 2.96808 2.96655 3.62855 2.96801 3.63012 
0.00 Explicit 

NIE 
370.50578 
370.50578 

370.50773 
370.50773 

370.48056 
370.48056 

370.10566 
370.10566 

370.50499 
370.50499 

370.00294 
370.00294 

0.01 Explicit 
NIE 

359.23026 
359.23026 

359.22690 
359.22690 

359.21279 
359.21279 

356.72779 
356.72779 

359.22487 
359.22487 

356.61687 
357.61687 

0.03 Explicit 
NIE 

338.26024 
338.26024 

338.24730 
338.24730 

338.25548 
338.25548 

332.08623 
332.08623 

338.24655 
338.24655 

331.96088 
331.96088 

0.05 Explicit 
NIE 

319.18744 
319.18744 

319.16611 
319.16611 

319.19400 
319.19400 

309.95325 
309.95325 

319.16650 
319.16650 

309.81575 
309.81575 

0.10 Explicit 
NIE 

278.42876 
278.42876 

263.80566 
263.80566 

278.45731 
278.45731 

263.60281 
263.60281 

278..39342 
278.39342 

263.44280 
263.44280 

0.30 Explicit 
NIE 

177.43595 
177.21156 

155.23175 
155.23175 

177.50268 
177.50268 

155.18361 
155.18361 

177.37365 
177.37365 

154.99338 
154.99338 

0.50 Explicit 
NIE 

125.92494 
125.92494 

104.23758 
104.23758 

125.99841 
125.99841 

104.24435 
104.24435 

125.85641 
125.85641 

104.05877 
104.05877 

1.00 Explicit 
NIE 

69.43484 
69.43484 

52.95400 
52.95400 

69.49913 
69.49913 

52.99346 
52.99346 

69.37115 
69.37115 

52.84059 
52.84059 

2.00 Explicit 
NIE 

34.98837 
34.98837 

24.97123 
24.97123 

35.03238 
35.03238 

25.00843 
25.00843 

34.94060 
34.94060 

24.90295 
24.90295 

3.00 Explicit 
NIE 

3.19345 
3.19345 

1.18909 
1.18909 

2.22606 
2.22606 

1.21908 
1.21908 

3.15615 
3.15615 

1.13953 
1.13953 
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  Chart 
1 = 0.05 1 = 0.10 1 = 0.05 1 = 0.10 

UCL 2.96808 3.63040 2.96880 3.63190 
0.00 ARL0 

SDRL0 
MRL0 

370.50773 
370.50773 
370.50773 

370.04983 
370.04983 
370.04983 

370.73988 
370.73988 
370.73988 

370.46651 
370.46651 
370.46651 

0.01 ARL1 
SDRL1 

MRL1 

359.22690 
359.12690 
247.63860 

356.66069 
356.56069 
245.86960 

359.44785 
359.34785 
247.79090 

359.05123 
358.95123 
247.51750 

0.03 ARL1 
SDRL1 

MRL1 

338.24730 
338.07409 
233.17600 

331.99912 
331.82591 
228.86870 

339.44759 
339.27438 
234.00350 

334.34198 
334.16877 
230.48380 

0.05 ARL1 
SDRL1 
MRL1 

319.16611 
318.94250 
220.02210 

309.84910 
309.62549 
213.59930 

319.34781 
319.12420 
220.14740 

312.14968 
311.92607 
215.18520 

0.10 ARL1 
SDRL1 
MRL1 

278.39071 
278.07448 
191.91290 

263.46626 
263.15003 
181.62450 

279.53339 
279.21716 
192.70070 

265.68011 
265.36388 
183.15070 

0.30 ARL1 
SDRL1 
MRL1 

177.36603 
176.81830 
122.27000 

154.99343 
154.44570 
106.84710 

179.41662 
178.86889 
123.68360 

157.01868 
156.47095 
108.24330 

0.50 ARL1 
SDRL1 
MRL1 

125.84709 
125.13998 
86.75464 

104.05419 
103.34708 
71.73137 

127.85347 
127.14636 
88.13777 

106.99335 
106.28624 
73.75752 

1.00 ARL1 
SDRL1 
MRL1 

69.36142 
68.36142 
47.81537 

52.83141 
51.83141 
36.42015 

69.42107 
68.42107 
47.85649 

54.69192 
53.69192 
37.70272 

2.00 ARL1 
SDRL1 
MRL1 

34.93253 
33.51831 
24.08128 

24.89444 
23.48022 
17.16137 

36.86304 
35.44882 
25.41211 

26.71276 
25.29854 
18.41485 

3.00 ARL1 
SDRL1 
MRL1 

3.14954 
1.14174 
1.14118 

1.13249 
0.59556 
0.58700 

23.06902 
21.33696 
15.90299 

15.93662 
14.20456 
10.98616 

 RMI 
AEQL 

PCI 

0.32930 
28.87843 
1.39977 

0.00000 
20.63083 
1.00000 

2.29702 
28.88843 
1.40025 

1.47237 
34.96265 
1.69467 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. ARL comparison of the Extended EWMA control chart for ARMA(1,3) against EWMA control charts 
 when 0 = 0.5. 1 = 0.1, 1 = 0.1, 2 = 0.2, 3 = 0.3, 2 =0.01, 0  = 1 for ARL0 = 370 

 Control  Extended EWMA Extended EWMA EWMA EWMA 
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  Chart 
1 = 0.05 1 = 0.10 1 = 0.05 1 = 0.10 

UCL 2.96850 3.63300 2.96950 3.63400 
0.00 ARL0 

SDRL0 
MRL0 

370.54021 
370.54021 
370.54021 

370.59006 
370.59006 
370.59006 

370.92196 
370.92196 
370.92196 

370.90797 
370.90797 
370.90797 

0.01 ARL1 
SDRL1 

MRL1 

359.25546 
359.15546 
247.65830 

357.17068 
357.07068 
246.22110 

359.62196 
359.52196 
247.91100 

359.47073 
359.37073 
247.80670 

0.03 ARL1 
SDRL1 

MRL1 

338.26862 
338.09541 
233.19070 

332.45412 
332.28091 
229.18240 

339.60703 
339.43382 
234.11340 

334.72153 
334.54832 
230.74550 

0.05 ARL1 
SDRL1 
MRL1 

319.18091 
318.95730 
220.03230 

310.25553 
310.03192 
213.87950 

319.49410 
319.27049 
220.24820 

312.49391 
312.27070 
215.42250 

0.10 ARL1 
SDRL1 
MRL1 

278.39183 
278.07560 
191.91370 

263.77384 
263.45761 
181.83660 

279.65219 
279.33596 
192.78260 

265.95230 
265.63607 
183.33830 

0.30 ARL1 
SDRL1 
MRL1 

177.33527 
176.80754 
122.24880 

155.09284 
154.54511 
106.91570 

179.47178 
178.92405 
123.72170 

157.13560 
156.58787 
108.32390 

0.50 ARL1 
SDRL1 
MRL1 

125.80204 
125.09493 
86.72358 

104.06690 
103.35979 
71.74013 

127.87959 
127.17248 
88.15578 

106.04689 
105.33978 
73.10507 

1.00 ARL1 
SDRL1 
MRL1 

69.30529 
68.30529 
47.77667 

52.78121 
51.78121 
36.38554 

69.42012 
68.42012 
47.85583 

54.69363 
53.69363 
37.70390 

2.00 ARL1 
SDRL1 
MRL1 

34.87852 
33.46430 
24.04405 

24.83357 
23.41935 
17.11941 

36.85123 
35.43701 
25.40397 

26.69774 
25.28352 
18.40450 

3.00 ARL1 
SDRL1 
MRL1 

3.10190 
1.36984 
1.13834 

1.07843 
0.65362 
0.64343 

23.05620 
21.32414 
15.89415 

15.92080 
14.18874 
10.97525 

 RMI 
AEQL 

PCI 

0.33929 
28.80694 
1.40149 

0.00000 
20.55447 
1.00000 

2.40922 
47.63901 
2.31769 

1.54835 
34.92037 
1.69891 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 7. ARL comparison of the Extended EWMA control chart for ARMA(1,1) using NIE against EWMA 

  control chart when 0  = 27.3401, 1 = 0.947, 1  = 0.616 for ARL0 = 370 

 
  

Control  
Chart 

Extended EWMA Extended EWMA EWMA EWMA 

1 = 0.05 1 = 0.10 1 = 0.05 1 = 0.10 
UCL 81.14050 99.36650 81.20000 99.42950 
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0.00 ARL0 
SDRL0 
MRL0 

370.09745 
370.09745 
370.09745 

370.04424 
370.04424 
370.04424 

370.87888 
370.87888 
370.87888 

370.78295 
370.78295 
370.78295 

0.01 ARL1 
SDRL1 
MRL1 

358.83352 
358.73352 
247.36740 

346.65490 
346.55490 
245.86560 

359.58227 
354.48227 
247.88360 

357.35438 
357.25438 
246.34780 

0.03 ARL1 
SDRL1 
MRL1 

337.88490 
337.71169 
232.92620 

321.99279 
321.81958 
228.86440 

338.57353 
338.40032 
233.40090 

332.62084 
332.44763 
229.29730 

0.05 ARL1 
SDRL1 
MRL1 

318.83135 
318.60774 
219.79130 

299.84205 
299.61844 
213.59440 

319.46609 
319.24248 
220.22890 

310.40691 
310.18330 
213.98380 

0.10 ARL1 
SDRL1 
MRL1 

278.11315 
277.79692 
191.72160 

253.45687 
253.14064 
181.61810 

288.63544 
288.31921 
198.97530 

273.89268 
273.57645 
188.81220 

0.30 ARL1 
SDRL1 
MRL1 

177.21618 
176.66845 
122.16670 

144.97452 
144.42679 
106.83410 

179.47908 
178.93135 
123.72670 

155.13019 
154.58246 
106.94140 

0.50 ARL1 
SDRL1 
MRL1 

125.75122 
125.04411 
86.68855 

94.01994 
93.31283 
71.70776 

127.89571 
127.18860 
88.16689 

106.05868 
105.35157 
73.11319 

1.00 ARL1 
SDRL1 
MRL1 

69.30894 
68.30894 
47.77919 

42.77308 
41.77308 
36.37994 

79.33972 
78.33972 
54.69406 

62.70964 
61.70964 
43.22986 

2.00 ARL1 
SDRL1 

MRL1 

34.89093 
33.47671 
24.05260 

14.80931 
13.39509 
17.10268 

36.86497 
35.45075 
25.41344 

26.70099 
25.28677 
18.40674 

3.00 ARL1 
SDRL1 

MRL1 

3.10585 
1.37379 
1.14106 

1.03310 
0.69895 
0.61218 

23.06385 
21.33179 
15.89942 

15.91344 
14.18138 
10.97018 

 RMI 
AEQL 

PCI 

0.35411 
28.81308 
1.40548 

0.00000 
20.50045 

1.0000 

2.53962 
48.65270 
2.37325 

1.63711 
35.70610 
1.74172 

 

 

 

 
Fig. 1: The ARL1 values on the control chart using a real-world dataset 
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Fig. 2: Comparison the RMI,  AEQL, and PCI values with the Extended EWMA control chart and the EWMA 

control chart for 1  = 0.05, 0.10 
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