Average Run Length Computations of Autoregressive and Moving Average Process using the Extended EWMA Procedure

PHUNSA MONGKOLTAWAT ${ }^{1}$, YUPAPORN AREEPONG ${ }^{*}$, SAOWANIT SUKPARUNGSEE
${ }^{1}$ Department of Applied Statistics, Faculty of Applied Statistics, King Mongkut's University of Technology North Bangkok, Bangkok 10800, THAILAND
*Corresponding Author

Abstract

In the past, the control chart served as a statistical tool for detecting process changes. The Exponentially Weighted Moving Average (EWMA) control chart is highly effective for detecting small changes. This research introduces the Extended Exponentially Weighted Moving Average (Extended EWMA) control chart for the Autoregressive and Moving average process with order $p=1$ and $q=1$ (ARMA(1,1)) The Extended EWMA control chart incorporates two smoothing parameters (λ_{1} and λ_{2}) derived from the EWMA control chart. A comparative analysis of the performance of the EWMA control chart. The Average Run Length (ARL) value as determined by the explicit formulas in this research, serves as a metric for evaluating the performance of the Extended EWMA control chart and the EWMA control chart. The Numerical Integral Equation (NIE) method is used to verify the accuracy of the ARL for the explicit formulas of the two control charts which has not been before discovered. The effectiveness of control charts can also be evaluated by analyzing SDRL, ARL, MRL, RMI, AEQL, and PCI values as metrics for various design parameter values. After analyzing the results of the ARL and all five performance meters, it was determined that the Extended EWMA control chart is better than the EWMA control chart at all shift sizes of process changes. Finally, the assessment of the ARMA process is being conducted to evaluate the ARL using a dataset on PM2.5 dust levels in Bangkok, Thailand during January and February of 2024.

Key-Words: - Average Run Length, Autoregressive and Moving Average Process, Extended Exponentially Weighted Moving Average control chart, Explicit Formula, Numerical Integral Equation, ARL, NIE method.

Received: March 14, 2024. Revised: April 19, 2024. Accepted: April 24, 2024. Published: May 20, 2024.

1 Introduction

The statistically important tool is the control chart. [1], invented the control chart, which detects the alteration of the control diagram, which is commonly used in the manufacturing industry. The Shewhart control chart is very efficient with small change detection as well. [2], introduced an EWMA control chart for better detection of small changes. The Cumulative Sum (CUSUM) control chart, developed by [3], is extensively utilized in statistical control charting. In 2017, [4], developed and presented a more efficient, Modified EWMA control chart than the EWMA control chart in the detection of minor changes. [5], presented The Extended EWMA control chart as a powerful chart designed to detect minor changes in the process being examined. The effectiveness of control charts can be assessed by utilizing the ARL, [6]. The ARL
is divided into two values, [7], The ARL_{0} is the number of expected observations required before a process is under control, and The ARL $_{1}$ refers to the amount of observations expected from an uncontrollable process and should be reduced. In 1990, [8], are presented a quantitative analysis comparing the EWMA control chart and the CUSUM control chart. [9], examined the design of the optimal EWMA control chart and compared it to the CUSUM control chart. [10], are presented, and the autocorrelation data will be linked to a statistical model. The ARMA process is a frequently employed model in real-world data analysis. [11], have introduced datasets with exponential white noise to the control chart. [12], shows the performance of the CUSUM control chart for autocorrelated seasonal consistency of trends using the Midpoint Rule method with exponential white noise. [13], presented an
approximating of the ARL of changes in the mean of a Seasonal Time Series Model with exponential white noise running on a CUSUM control chart. [14], presented the explicit formulas and NIE of ARL when observations were seasonal autoregressive models with an exogenous variable SARX(P,r) ${ }_{\mathrm{L}}$ with exponential white noise based on the CUSUM control chart. [15], proposed an explicit formula for the ARL using the Fredholm integral equation method in the EWMA control chart on the $\operatorname{MAX}(\mathrm{q}, \mathrm{r})$ process. [16], are improving the CUSUM control chart for monitoring a change in processes based on a seasonal autoregressive model with one exogenous variable. [17], introduced a Modified EWMA control chart that is derived from its particular examples. [18], developed the explicit formula for the ARL on a Modified EWMA control chart for the AR(1) process. Subsequently, [19], presents analytical explicit formulas of the ARL of Homogenously Weighted Moving Average control chart (HEWMA) based on a MAX process.

However, the derivation of the explicit formula for the ARL on the Extended EWMA control chart for the Autoregressive and Moving Average process with parameters $p=1$ and $q=1$ (ARMA(1,1)), when there are two smoothing parameters $\left(\lambda_{1}\right.$ and $\left.\lambda_{2}\right)$ for the $\operatorname{ARMA}(1,1)$ process has not been reported previously. The objective of this research is to determine the explicit formula for the ARL on the Extended EWMA control chart for the ARMA $(1,1)$. The explicit formula for the ARL was compared with the NIE method. This research differs from that of other researchers, using five additional statistical performance measurements, Standard of Deviation Run Length (SDRL), Median Run Length (MRL), [20], Related Mean Index (RMI), [21], Average Extra Quadratic Loss (AEQL), [22] and Performance Comparison Index (PCI). The comparison of performance between the Extended EWMA control chart and the EWMA control chart using a dataset on PM2.5 dust levels in Bangkok, Thailand during January and February of 2024.

2 Materials and Methods

2.1 The Exponential Weighted Moving Average Control Chart

This research describes the properties of the EWMA control chart for $\operatorname{ARMA}(p, q)$ processes. The EWMA control chart is defined by a recursive equation, [2].

$$
\begin{equation*}
Z_{t}=(1-\lambda) Z_{t-1}+\lambda W_{t}, t=1,2,3, \ldots \tag{1}
\end{equation*}
$$

where W_{t} is a sequence of an $\operatorname{ARMA}(p, q)$ processes with exponential white noise and $0<\lambda \leq 1, W_{0}$ is the initial value of the EWMA statistics, $Z_{0}=u$. The control limits of the EWMA control chart consist of the upper control limit (UCL) and the lower control limit (LCL) are:

$$
\begin{align*}
& U C L=\mu_{0}+\gamma \sigma \sqrt{\frac{\lambda}{2-\lambda}} \\
& L C L=\mu_{0}-\gamma \sigma \sqrt{\frac{\lambda}{2-\lambda}} \tag{2}
\end{align*}
$$

where μ_{0} is process mean of $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process, σ is the process standard deviation parameter, γ is a suitable control limit width. Let b be an UCL on Z_{t}. The stopping time $\left(\tau_{b}\right)$ of the Extended EWMA control chart is defined as

$$
\tau_{b}=\inf \left\{t>0 ; Z_{t} \geq b\right\}
$$

3 The Exact Solutions of the ARL on the Extended EWMA Control Chart

3.1 The Explicit Formula of the ARL on the Extended EWMA Control Chart for ARMA(p,q) process
 The $\operatorname{ARMA}(p, q)$ process are defined by the

 following recursion:$$
\begin{align*}
W_{t}= & \phi_{0}+\phi_{1} W_{t-1}+\phi_{2} W_{t-2}+\ldots+\phi_{p} W_{t-p} \tag{3}\\
& +\vartheta_{t}-\theta_{t} \vartheta_{t-1}-\theta_{2} \vartheta_{t-2}-\ldots-\theta_{q} \vartheta_{t-q}
\end{align*}
$$

where W_{t} is a sequence of the $\operatorname{ARMA}(p, q)$ processes with exponential white noise, ϕ_{t} is autoregressive parameter, $W_{0}=u$ is the initial value, where $u=[0, b]$ and b is UCL of the Extended EWMA control chart
[6], presented The Extended EWMA control chart. The performance control chart is highly efficient in detecting small changes in the monitored process. The Extended EWMA statistic can be derived as:

$$
\begin{equation*}
\omega_{t}=\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{t-1}+\lambda_{1} W_{t}-\lambda_{2} W_{t-1}, t=1,2,3, \ldots \tag{4}
\end{equation*}
$$

where W_{t} is a process with mean, λ_{1} and λ_{2} are exponential smoothing parameters with
$0 \leq \lambda_{2}<\lambda_{1}<1$ and ω_{0} is the initial value of the Extended EWMA statistics, $\omega_{0}=u$ and $\vartheta_{0}=v$. The UCL and the LCL are:

$$
\begin{align*}
& U C L=\mu_{0}+\gamma \sigma \sqrt{\frac{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2}\left(1-\lambda_{1}+\lambda_{2}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)-\left(\lambda_{1}-\lambda_{2}\right)^{2}}} \\
& L C L=\mu_{0}-\gamma \sigma \sqrt{\frac{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2}\left(1-\lambda_{1}+\lambda_{2}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)-\left(\lambda_{1}-\lambda_{2}\right)^{2}}} \tag{5}
\end{align*}
$$

where μ_{0} is the process mean of moving average process, σ is the process standard deviation parameter and γ is a suitable control limit width, and $W_{t}=\phi_{0}+\phi_{1} W_{t-1}+\phi_{2} W_{t-2}+\ldots+\phi_{p} W_{t-p}$

$$
\begin{equation*}
+\vartheta_{t}-\theta_{t} \vartheta_{t-1}-\theta_{2} \vartheta_{t-2}-\ldots-\theta_{q} \vartheta_{t-q} \tag{6}
\end{equation*}
$$

Hence, the formulation of the Extended EWMA control chart for the $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process is as.
$\omega_{t}=\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{t-1}+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{t-1}+\phi_{2} W_{t-2}+\ldots+\phi_{p} W_{t-p}\right.$ $\left.+\vartheta_{t}-\theta_{t} \vartheta_{t-1}-\theta_{2} \vartheta_{t-2}-\ldots-\theta_{q} \vartheta_{t-q}\right)-\lambda_{2} W_{t-1}, t=1,2,3, \ldots$
When $t=1$
$\omega_{1}=\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}\right.$
$\left.-\theta_{1} \vartheta_{0}-\theta_{2} \vartheta_{-1}-\ldots-\theta_{q} \vartheta_{1-q}\right)-\lambda_{2} W_{0}+\vartheta_{1} \lambda_{1}, t=1,2,3, \ldots$
Let $\Delta=\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}$

$$
-\theta_{1} \vartheta_{0}-\theta_{2} \vartheta_{-1}-\ldots-\theta_{q} \vartheta_{1-q}
$$

So

$$
\begin{equation*}
\omega_{1}=\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}+\lambda_{1} \Delta-\lambda_{2} u+\vartheta_{1} \lambda_{1}, t=1,2,3, \ldots \tag{7}
\end{equation*}
$$

Let's examine the in-control process, where the $\mathrm{UCL}=b$ and the $\mathrm{LCL}=0$.

$$
\begin{gathered}
0<\omega_{1}<b \\
0<\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}+\lambda_{1} \Delta-\lambda_{2} u+\vartheta_{1} \lambda_{1}<b \\
0<\vartheta_{1} \lambda_{1}<b-\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}-\lambda_{1} \Delta+\lambda_{2} u \\
0<\vartheta_{1}<\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}-\lambda_{1} \Delta+\lambda_{2} u}{\lambda_{1}} \\
0<\vartheta_{1}<\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\lambda_{1} \Delta+\lambda_{2} u}{\lambda_{1}}
\end{gathered}
$$

The function $\rho(u)$ can be obtained by Fredholm integral equation of the second kind as follows;

$$
\begin{equation*}
\rho(u)=1+\int_{0}^{b} \rho\left(\omega_{1}\right) f(\vartheta) d \vartheta \tag{8}
\end{equation*}
$$

$\rho(u)=1+\int_{0}^{b} \rho\left(\left(1-\lambda_{1}+\lambda_{2}\right) \omega_{0}+\lambda_{1} \Delta-\lambda_{2} u+\vartheta_{1}\right) f(\vartheta) d \vartheta$

Therefore, the function $\rho(u)$ is obtained as follows:
$\rho(u)=1+\frac{1}{\lambda_{1}} \int_{0}^{b} \rho(k) f\left(\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\lambda_{1} \Delta+\lambda_{2} u+\vartheta_{1}}{\lambda_{1}}\right) d k$
Given that $\varepsilon_{t} \square \operatorname{Exp}(\alpha) \quad$ is determined, $f(k)=\frac{1}{\alpha} e^{-\frac{k}{\alpha}}$
$\rho(u)=1+\frac{e^{\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\lambda_{1} \Delta+\lambda_{2} u}{\lambda_{1}}+\frac{\vartheta_{1}}{\alpha}}}{\lambda_{1} \alpha} \int_{a}^{b} \rho(k) e^{-\frac{k}{\lambda_{1} \alpha}} d k$
Setting $\Gamma(u)=e^{\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\lambda_{1} \Delta+\lambda_{2} u}{\lambda_{1}}+\frac{q_{1}}{\alpha}}$ and $\Pi=\int_{0}^{b} \rho(k) e^{-\frac{k}{\lambda_{1} \alpha}} d k$

$$
\begin{equation*}
\text { Thus } \rho(u)=1+\frac{\Gamma(u)}{\lambda_{1} \alpha} \Pi \tag{9}
\end{equation*}
$$

Consider Π and take run $\rho(k)$

$$
\begin{equation*}
\Pi=\frac{-\lambda_{1} \alpha\left(e^{-\frac{b}{\lambda_{1} \alpha}}-1\right)}{1+\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)} e^{\frac{b-\left(1-\lambda_{1}+\lambda_{2}\right) u-\lambda_{1} \Delta+\lambda_{2} u}{\lambda_{1} \alpha}+\frac{\vartheta_{1}}{\alpha}}\left(e^{\frac{-\left(\lambda_{1}-\lambda_{2}\right) b}{\lambda_{1} \alpha}}-1\right)} \tag{10}
\end{equation*}
$$

By substituting the value of an equal to α_{1} into $\rho(u)$, we can get the explicit formula of the ARL_{1} on the Extended EWMA control chart as follows:

$$
\begin{aligned}
& A R L_{1}=1-\frac{\left(\lambda_{1}-\lambda_{2}\right) e^{\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u}{\lambda_{1} \alpha_{1}}}\left(e^{-\frac{b}{\lambda_{1} \alpha_{1}}}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right) e^{\frac{\left(1-\lambda_{1} \lambda_{2}\right) u \lambda_{1} \Delta-\lambda_{2} u}{\lambda_{1} \alpha}+\frac{\theta_{1}}{\alpha}}+\left(e^{\frac{-\left(\lambda_{1}-\lambda_{2}\right) b}{\lambda_{1} \alpha_{1}}}-1\right)} \\
& A R L_{1}=1-\frac{\left(\lambda_{1}-\lambda_{2}\right) e^{\frac{\left(1-\lambda_{1}+\lambda_{2}\right) u}{\lambda_{1} \alpha_{1}}}\left(e^{-\frac{b}{\lambda_{1} \alpha_{1}}}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right) e^{\frac{\left(1-\lambda_{1}+\lambda_{2}\right) \lambda_{1}+\lambda_{1} \Delta-\lambda_{2} u}{\lambda_{1} \alpha_{1}}+\frac{\theta_{1}}{\alpha_{1}}}+\left(e^{\frac{-\left(\lambda_{1}-\lambda_{2}\right) b}{\lambda_{1} 1_{1}}}-1\right)} \\
& A R L_{1}=1
\end{aligned}
$$

From Equation (11), the ARL finished explicit formula of the Extended EWMA control chart for the $\operatorname{ARMA}(p, q)$ process is to be compared to the EWMA control chart.

3.2 The Numerical Integral Equation of the ARL on the Extended EWMA Control Chart of ARMA (\mathbf{p}, \mathbf{q}) process.

Let $\psi(u)$ denote the estimated value of the ARL determined from the m linear equation systems using the composite midpoint quadrature rule.

The evaluation of the ARL approaching NIE on the Extended EWMA control chart is carried out in the following manner:

$$
\begin{equation*}
\psi(u)=\int_{0}^{b} \rho\left(\omega_{t}\right) f(k) d k \approx \sum_{j=1}^{s} c_{j} f\left(x_{j}\right) \tag{12}
\end{equation*}
$$

The system of s linear equations is represented as
$L_{s \times 1}=1_{s \times 1}+R_{s \times s} L_{s \times 1}$ or $L_{s \times 1}=\left(I_{s}-R_{s s s}\right)^{-1} 1_{s \times 1}$
$L_{\text {sx1 }}=\left[L_{\text {NIE }}\left(x_{1}\right), L_{\text {NIE }}\left(x_{1}\right), \ldots, L_{\text {NIE }}\left(x_{s}\right)\right]^{T}$,
$I_{s}=\operatorname{diag}(1,1, \ldots, 1)$ and $1_{s \times 1}=[1,1, \ldots, 1]^{T}$.
Let $R_{s \times s}$ be a matrix. The s to $s^{\text {th }}$ element matrix R is defined as follows:
$\left[R_{i j}\right] \approx \frac{1}{\lambda_{1}} c_{j}$
$f\left(\frac{k_{j}-\left(1-\lambda_{1}+\lambda_{2}\right) u+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}-\theta_{1} \vartheta_{0}-\theta_{2} \vartheta_{-1}-\ldots-\theta_{q} \vartheta_{1-q}\right)-\lambda_{2} u+\vartheta_{1}}{\lambda_{1}}\right)$
The answer to the NIE can be succinctly expressed as.
$\psi(u)=1+\frac{1}{\lambda_{1}} \sum_{j=1}^{s} c_{j}$

$$
\begin{equation*}
f\left(\frac{\left(k_{1}-\left(1-h_{1}+\lambda_{2}\right) \mu_{1}+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{1}+\ldots+\phi_{W_{1}}-\theta_{1}-\theta_{\theta_{2}}-\theta_{2} \theta_{1}-\ldots-\theta_{2} \theta_{1-1}\right)-h_{2} u+\theta_{1}\right.}{h_{1}}\right) \tag{13}
\end{equation*}
$$

where k_{j} is a set of the division point on the interval $[0, b]$ as $k_{j}=\left(j-\frac{1}{2}\right) c_{j}, j=1,2, \ldots$, s. c_{j} is a weight of composite midpoint formula $c_{j}=\frac{b}{s}$.

From Equation (13), the NIE method is a comparative criterion to the explicit formulas that the explicit formula is accurate. As a result, both ARL values are similar.

4 Existence and Uniqueness of ARL

The answer is obtained from the explicit formula using the ARL of the existence of the NIE, as proven by Banach's fixed-point theorem, [23]. In this study, let T denote an operation on the set of all continuous functions that are defined.

$$
\begin{gather*}
T(\rho(u))=1+\frac{1}{\lambda_{1}} \sum_{j}^{s} c_{j} \tag{14}\\
f\left(\frac{k_{j}-\left(1-\lambda_{1}+\lambda_{2}\right) u+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}-\theta_{1} \theta_{0}-\theta_{2} \theta_{-1} \ldots-\theta_{q} \vartheta_{1-q}\right)-\lambda_{2} u+\vartheta_{1}}{h_{1}}\right) d k
\end{gather*}
$$

According to Banach's fixed-point theorem, if an operator T is guaranteed to satisfy the criterion of being a contraction, $T(\rho(u))=\rho(u)$ has a one solution, as previously stated. For Equation (14) to have a solution that is both present and unique, the Banach fixed-point theorem can be utilized. The Banach fixed-point theorem, also referred to as the contraction mapping theorem, was initially introduced concretely in Banach's.

Typically, it is employed to determine the existence of a solution to an integral problem. Following this, [24], have extensively utilized this tool to address numerous problems related to the presence of solutions in diverse mathematical domains, due to its straightforwardness and practicality. The following information provides the specific details.

Theorem 1 Banach's Fixed-point Theorem : Assume that $D: X \rightarrow X$ is a contraction mapping with contraction constant $0 \leq S<1$, such that $\left\|D\left(\rho_{1}\right)-D\left(\rho_{2}\right)\right\| \leq S\left\|\rho_{1}-\rho_{2}\right\| \forall \rho_{1}, \rho_{2} \in X$, meets this criterion. [25], have established the existence of a single unique a. $\rho(.) \in X$ such that $D(\rho(u))=\rho(u)$ has a unique fixed point in X.

Proof: To demonstrate the value of T, as determined by the equation $T(\rho(u))$ is a contraction mapping for $\rho_{1}, \rho_{2} \in \Omega[0, b]$. that $\left\|D\left(\rho_{1}\right)-D\left(\rho_{2}\right)\right\| \leq S\left\|\rho_{1}-\rho_{2}\right\|, \quad \forall \rho_{1}, \rho_{2} \in \Omega[0, b]$. with $0 \leq S<1$ under the norm $\left\|\rho_{\infty}\right\| \leq \sup _{u \in[0, b]}\|\rho(u)\|$ From $\rho(u)$ and $D(\rho(u))$.
$\left\|D\left(\rho_{1}\right)-D\left(\rho_{2}\right)\right\|_{\infty}$

$=\left\|\rho_{1}-\rho_{2}\right\|_{\infty} \sup _{u \in[0, b]}\left|e^{\left(\frac{k_{j}-\left(1-\lambda_{1}+\lambda_{2}\right) u+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}-\theta_{1} \theta_{0}-\theta_{2} \theta_{-1}-\ldots-\theta_{q} \theta_{-q}\right)-\lambda_{2} u+\theta_{1}}{\lambda_{1}}\right)}\right|$
$\left\lvert\, 1-\left[e^{-\frac{b}{\lambda_{1} \alpha}}-1\right] \leq S\left\|\rho_{1}-\rho_{2}\right\|_{\infty}\right.$
where
$S=\operatorname{Sup}_{u \in[0, b]}\left|e^{\left(\frac{k_{j}-\left(1-\lambda_{1}+\lambda_{2}\right) u+\lambda_{1}\left(\phi_{0}+\phi_{1} W_{0}+\phi_{2} W_{-1}+\ldots+\phi_{p} W_{1-p}-\theta_{1} \vartheta_{0}-\theta_{2} \vartheta_{-1}-\ldots-\theta_{q} \vartheta_{1-q}\right)-\lambda_{2} u+\vartheta_{1}}{\lambda_{1}}\right)}\right|$
$\left|1-\left[e^{-\frac{b}{\lambda_{1} \alpha}}-1\right]\right|$
, $0 \leq S<1$, The uniqueness of the solution is ensured by Banach's fixed-point theorem.

5 Numerical Results

In this research, we evaluate the ARL_{0} and ARL_{1} by employing explicit formulas and the NIE for an ARMA(p,q) process on the Extended EWMA control chart. In addition, performance indicators such as the SDRL and MRL are used to assess the effectiveness of control charts. The computation for SDRL and MRL for the in-control process is as follows.

$$
\begin{equation*}
A R L_{0}=\frac{1}{\beta_{0}}, S D R L_{0}=\sqrt{\frac{1-\beta_{0}}{\left(\beta_{0}\right)^{2}}}, M R L_{0}=\frac{\log \left(\frac{1}{2}\right)}{\log \left(1-\beta_{0}\right)} \tag{15}
\end{equation*}
$$

where β_{0} represents an error of type I. This research analysis determined that $\mathrm{ARL}_{0}=370$. The value of the ARL_{0} can be computed using Equation (15) as SDRL_{0} and MRL_{0} with an approximate value. Conversely, $\mathrm{ARL}_{1}, \mathrm{SDRL}_{1}$ and MRL_{1} are calculated using Equation (16).

$$
\begin{equation*}
A R L_{1}=\frac{1}{\beta_{1}}, S D R L_{1}=\sqrt{\frac{1-\beta_{1}}{\left(\beta_{1}\right)^{2}}}, M R L_{1}=\frac{\log \left(\frac{1}{2}\right)}{\log \left(1-\beta_{1}\right)} \tag{16}
\end{equation*}
$$

where β_{1} represents an error of type II

The minimum values of the $\mathrm{ARL}_{1}, \mathrm{SDRL}_{1}$ and MRL_{1} indicate a higher ability to promptly detect variations in the process mean. To conduct a comparison analysis, we will examine the Extended EWMA control charts and the EWMA control charts for the ARMA (p, q) process.

RMI is employed to assess the efficacy of the Extended EWMA control chart. RMI can be computed.

$$
\begin{equation*}
R M I=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{A R L_{i}(M A X)-A R L_{i}(M I N)}{A R L_{i}(M I N)}\right], \tag{17}
\end{equation*}
$$

where $A R L_{i}(M A X)$ is the $A R L_{i}$ of row i on the control chart under examination. $A R L_{i}(M I N)$ is the minimum of the ARL_{1} for row i. A control chart is deemed more effective when it has a lower RMI.

Furthermore, performance measurements can be utilized to evaluate the effectiveness of control charts across a range of modifications. In addition, the AEQL may pertain to costs that have been accrued as a result of an unmanageable situation. This comparison may entail the utilization of various control chart kinds to determine the most efficient strategy for a specific procedure. These include the study model, the research data set, the appropriate parameter value, the control chart that the research is introduced, as well as the application of the actual data to make the chart of this research result as desired.

The AEQL can be determined by using the following formula.

$$
\begin{equation*}
A E Q L=\frac{1}{\Phi} \sum_{\text {shif }_{i}=\text { shift }_{\min }}^{\text {shiff }_{\max }}\left(\text { shift }_{i}^{2} \times A R L\left(\text { shift }_{i}\right)\right) \tag{18}
\end{equation*}
$$

where shift refers to a distinct change in the process. Φ denotes the aggregate of number of divisons from $\operatorname{shift} t_{\min }\left(\delta_{\text {min }}\right)$ to $\operatorname{shift}_{\max }\left(\delta_{\max }\right)$. In this research, $\Phi=10, \delta_{\min }=0.01$ and $\delta_{\max }=3.00$. The most effective control chart is the one with the minimum AEQL value.

Additionally, the examination of control chart performance can be carried out by utilizing the performance evaluation criteria of the PCI. The determination of the PCI value entails comparing the AEQL of a certain control chart to the AEQL of the control chart with the minimum value. This helps identify the control chart that has the highest level of efficiency. The PCI can be computed:

$$
\begin{equation*}
P C I=\frac{A E Q L}{A E Q L_{\min }} \tag{19}
\end{equation*}
$$

The ARL was approximated by NIE using the composite midpoint rule on the Extended EWMA control chart for the $\operatorname{ARMA}(p, q)$ process with a sample size of 1,000 nodes. When $\mathrm{ARL}_{0}=370, \phi_{0}$ $=0.5, \quad \phi_{1}=0.1, \theta_{1}=-0.1$ and $0.1, \theta_{2}=-0.2$
and $0.2, \quad \theta_{3}=0.3, \lambda_{1}=0.05,0.10, \lambda_{2}=$ 0.01 , and $\delta=0.01,0.03,0.05,0.10,0.30,0.50$, $1.00,2.00$ and 3.00 , The in-control process is $\alpha_{0}=1$. The results indicate that the ARL of the explicit formulas and the NIE are very similar for the $\operatorname{ARMA}(1,1), \operatorname{ARMA}(1,2)$, and $\operatorname{ARMA}(1,3)$ processes in Table 1, Table 2 and Table 3 in Appendix. The results of the ARL of the Extended EWMA control chart using an explicit formula are shown in Table 4, Table 5 and Table 6 in Appendix. These Tables compare the performance of the Extended EWMA control chart against the EWMA control chart for $\operatorname{ARMA}(1,1)$, ARMA(1,2), and $\operatorname{ARMA}(1,3)$ processes. Based on the results, the Extended EWMA control chart outperformed the EWMA control chart in terms of the ARL, SDRL, and MRL for λ_{1} values of 0.05 and 0.10 . In addition, the results suggest that the Extended EWMA control chart with $\lambda_{1}=0.10$ exhibits the minimum values for RMI, AEQL, and PCI.

Therefore, it can be inferred that the Extended EWMA control chart exhibits greater performance when compared to the EWMA control chart. Moreover, the RMI, AEQL, and PCI derived from each control chart are utilized to assess the effectiveness of the aforementioned control charts. The Extended EWM control chart exhibited superior performance. Based on the minimal values for RMI, AEQL, and PCI, all of them were equal to one.

6 Application to Real-world Data

In this study, the explicit formulas of the ARL on the Extended EWMA control chart for the ARMA(1,1) prcess were applied to the dataset on PM2.5 dust levels in Bangkok, Thailand during January and February of 2024 and generated a forecasting process. The ARL was calculated using explicit formulas on the Extended EWMA control chart with $\mathrm{ARL}_{0}=370$ for $\lambda_{1}=0.05,0.10$ and $\lambda_{2}=0.01$, shift (δ) equal to $0.01,0.03,0.05$, $0.10,0.30,0.50,1.00,2.00,3.00$ and sample size $=$ 1,000 nodes. The performance of the control chart was evaluated by comparing it to the EWMA control chart using a dataset on PM2.5 dust levels in Bangkok, Thailand during January and February of 2024. The coefficient parameters estimated for the $\operatorname{ARMA}(1,1)$ process are determined using maximum likelihood estimation: $\alpha_{0}=27.3401, \phi_{1}$ $=0.947, \quad \theta_{1}=0.616$. The $\operatorname{ARMA}(1,1)$ process can
be defined by utilizing the parameter of this forecasting process.
$\hat{W}_{t}=0.947 W_{t-1}-0.616 \vartheta_{t-1}$
Using the explicit formula, we compare the ARL values of the $\operatorname{ARMA}(1,1)$ process on the Extended EWMA control chart with the ARL, SDRL, and MRL of the EWMA control charts. This comparison evaluates their efficiency. The results are presented in Table 7 (Appendix) and Figure 1 (Appendix), demonstrating a clear agreement with the findings seen in Table 4, Table 5 and Table 6 in Appendix. Figure 2 (Appendix) displays a comparison of the RMI, AEQL, and PCI derived from each control chart. The purpose is to assess the effectiveness of the control charts.

In this research, the performance of the ARL of the Extended EWMA control chart is assessed and contrasted with that of the EWMA control chart. The findings suggest that the Extended EWMA control charts are superior to the EWMA control chart for the ARMA $(1,1)$ process. Additionally, the Extended EWMA control chart, with $\lambda_{1}=0.10$, better than all three control charts.

7 Conclusions

In this study, the formula was successful in finding the ARL value and the accuracy of the Extended EWMA control chart for the ARMA $(1,1)$ compared to the EWMA control chart. the efficacy of control charts was evaluated for the ARL by utilizing the NIE, the explicit formula is subjected to comparison, And use all five measurements as an additional criterion to compare the performance of the two control charts. Both methods demonstrate that the ARL values are similar. The Extended EWMA control chart for the ARMA $(1,1)$ process has superior performance compared to the EWMA control chart. When assessing the comparative efficacy of the ARL under different smoothing factors, it is recommended to utilize a smoothing parameter of $\lambda_{1}=0.10$. The simulation research and the real-world dataset on PM2.5 dust levels in Bangkok, Thailand during January and February of 2024, ultimately, the outcomes were the same. Further research, the extended EWMA control chart can be applied to other aspects, such as health or economics, as well as using an NIE comparison method with the explicit formulas. Several other methods of comparison will generate new control charts.

Acknowledgement:

The authors gratefully acknowledge the editor and referees for their valuable comments and suggestions which greatly improve this paper. The research was funding by King Mongkut's University of Technology North Bangkok Contract no. KMUTNB-67-BASIC-02

References:

[1] W. A. Shewhart, Economic Control of Quality of Manufactured Product, NY, USA: Van Nostrand, 1931.
[2] W. S. Roberts, Control chart tests based on geometric moving averages, Technometrics, Vol.1, No.3, 1959, pp. 239-250.
[3] E. S. Page, Continuous inspection schemes, Biometrika, Vol.41, No.1-2, 1954, pp. 100115
[4] N. Khan, M. Alsam and C. H. Jun, Design of a control chart using a modified EWMA statistics, Quality and Reliability Engineering International, Vol.33, No.5, 2017, pp. 10951104
[5] M. Neveed, M. Azam, N. Khan and M. Aslam, Design a control chart using extended EWMA statistic, Technologies, Vol.6, No.4, 2018, pp. 108-122.
[6] H. Khusna, M. Mashuri, S. Suhartono, D. D. Prastyo and M. Ahsan, Multioutput least square SVR-based multivariate EWMA control chart: The performance evaluation and application, Cogent Engineering, Vol.5, No.1, 2018, pp.1-14.
[7] C. W. Champ and S. E. Rigdon, A comparison of the markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts, Communications in StatisticsSimulation and Computation, Vol.20, No.1, 1991, pp. 191-203.
[8] J. M. Lucas and M. S. Saccucci, Exponentially weighted moving average control schemes properties and enhancements, Technometrics, Vol.32, No.1, 1990, pp. 1-12. DOI: 10.2307/1269835.
[9] Y. H. Wu, Design of control charts for detecting the change point, In Change-Point Problems, Vol.23, No.1, 1994, pp. 330-345. DOI: $10.1214 / / \mathrm{nms} / 1215463134$.
[10] G. E. P. Box and G. M. Jenkins, Time Series Analysis Forecasting and Control, HoldenDay, San Francisco, 1970.
[11] M. Ibazizen and H. Fellag, Bayesian estimation of an $\operatorname{AR}(1)$ process with
exponential white noise, Statistics, Vol.37, No.5, 2003, pp. 365-372.
[12] K. Petcharat, The effectiveness of CUSUM Control Chart for Trend Stationary Seasonal Autocorrelated Data, Thailand Statistician, Vol.20, No.2, 2022, pp. 475-478.
[13] W. Peerajit, Approximating the ARL of Changes in the Mean of a Seasonal Time Series Model with Exponential White Noise Running on a CUSUM Control Chart, WSEAS Transactions on System and Control, Vol.18, 2023, pp. 370-381. DOI: 10.37394/23203.
[14] S. Phanyaem, Explicit Formulas and Numerical Integral Equation of ARL for SARX(P,r)L Model Based on CUSUM Chart, Mathematics and Statistics, Vol.10, No.1, 2022, pp. 88-99.
[15] W. Suriyakat and K. Petcharat, Exact Run Length Computation on EWMA Control Chart for Stationary Moving Average Process with Exogenous Variables, Mathematics and Statistics, Vol.10, 2022, No.3, pp. 624-635.
[16] C. Chananet and S. Phanyaem, Improving CUSUM control chart for monitoring a change in processes based on seasonal ARX model, IAENG International Journal of Applied Mathematics, Vol.52, No.3, 2022, pp. 1-8.
[17] A. Saghir, M. Aslam, A. Faraz, L. Ahmad and C. Heuchenne, Monitoring process variation using modified EWMA, Quality and Reliability Engineering International, Vol.36, No.1, 2020, pp. 328-339.
[18] P. Phanthuna, Y. Areepong and S. Sukparungsee, Exact run length evaluation on a two-sided modified exponentially weighted moving average chart for monitoring process mean, Computer Modeling in Engineering and Sciences, Vol.1271, No.1, 2021, pp. 23-40.
[19] R. Sunthornwat, S. Sukparungsee and Y. Areepong, Analytical Explicit Formulas of Average Run Length of Homogenously Weighted Moving Average Control Chart Based on a MAX Process, Symmetry, Vol.15, No.12, 2023, Article number 2112.
[20] A. Fonseca, PH. Ferreira, DC. Nascimento, R. Fiaccone, CU. Correa, AG. Pina and F. Louzada, Water Particles Monitoring in the Atacama Desert: SPC approach Based on proportional data, Axioms, Vol.10, No.3, 2021, pp. 154.
[21] A. Tang, P. Castagliola, J. Sun and X. Hu, Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length, Quality Technology and Quantitative Management, Vol.16, No.4, 2018, pp. 439-458.
[22] V. Alevizakos, K. Chatterjee and C. Koukouvinos, The triple exponentially weighted moving average control chart, Quality Technology \& Quantitative Management, Vol.18, No.3, 2021, pp. 326354.
[23] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intregrales. Fund. Math. Vol.3, No.1, 1992, pp. 133-181.
[24] M. Jleli and B. Samet, A new generalization of Banach contraction principle, J. Inequal, Vol.38, No.1, 2014, pp. 439-447.
[25] M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of contact problems with adhesion or damage, Chapman and Hill/CRC, 2005 DOI: 10.1201/9781420034837.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

- Phunsa Mongkoltawat carried out the writingoriginal draft preparation and simulation.
- Yupaporn Areepong has organized the conceptualization, writing-review and editing, and validation
- Saowanit Sukparungsee has implemented the methodology and solfware.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

The research was funding by King Mongkut's University of Technology North Bangkok Contract no. KMUTNB-67-BASIC-02.

Conflicts of Interest

The authors declare no conflict of interest.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.e n US

APPENDIX

Table 1. ARL comparison of the Extended EWMA control chart for ARMA (p, q) using explicit formulas against NIE method when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=0.1, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$

δ	$\lambda_{2}=0.01$						
	θ	$\theta_{1}=0.1$		$\theta_{1}=0.1, \theta_{2}=0.2$		$\theta_{1}=0.1, \theta_{2}=0.2, \theta_{3}=0.3$	
	Process	ARMA(1,1)		ARMA(1,2)		ARMA(1,3)	
	λ_{1}	0.05	0.10	0.05	0.10	0.05	0.10
	b	2.96646	3.63105	2.96808	3.63040	2.96850	3.63300
0.00	Explicit	370.00200	370.55058	370.50773	370.04983	370.54021	370.59006
	NIE	370.00200	370.55058	370.50773	370.04983	370.54021	370.59006
0.01	Explicit	358.74338	357.14330	359.22690	356.66069	359.25546	357.17068
	NIE	358.74338	357.14330	359.22690	356.66069	359.25546	357.17068
0.03	Explicit	337.80512	332.44859	338.24730	331.99912	338.26862	332.45412
	NIE	337.80512	332.44859	338.24730	331.99912	338.26862	332.45412
0.05	Explicit	318.76091	310.26908	319.16611	309.84910	319.18091	310.25553
	NIE	318.76091	310.26908	319.16611	309.84910	319.18091	310.25553
0.10	Explicit		263.82544	278.39071	263.46626	278.39183	
	NIE	278.06230	263.82544	278.39071	263.46626	278.39183	263.77384
0.30	Explicit	177.21156	155.21847	177.36603	154.99343	177.33527	155.09284
	NIE	177.21156	155.21847	177.36603	154.99343	177.33527	155.09284
0.50	Explicit	125.76868	104.21405	125.84709	104.05419	125.80204	104.06690
	NIE	125.76868	104.21405	125.84709	104.05419	125.80204	104.06690
1.00	Explicit	69.34975	52.92752	69.36142	52.83141	69.30529	52.78121
	NIE	69.34975	52.92752	69.36142	52.83141	69.30529	52.78121
2.00	Explicit	34.94470	24.95056	34.93253	24.89444	34.87852	24.83357
	NIE	34.94470	24.95056	34.93253	24.89444	34.87852	24.83357
3.00	Explicit	3.16420	1.17294	3.14954	1.13249	3.10190	1.07843
	NIE	3.16420	1.17294	3.14954	1.13249	3.10190	1.07843

Table 2. ARL comparison of the Extended EWMA control chart for ARMA(p,q) using explicit formulas against NIE method when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=-0.1, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$

δ	$\lambda_{2}=0.01$						
	θ	$\theta_{1}=-0.1$		$\theta_{1}=-0.1, \theta_{2}=0.2$		$\theta_{1}=-0.1, \theta_{2}=0.2, \theta_{3}=0.3$	
	Process	ARMA(1,1)		ARMA(1,2)		ARMA(1,3)	
	λ_{1}	0.05	0.10	0.05	0.10	0.05	0.10
	b	2.96750	2.96808	2.96900	3.63200	2.96850	3.63300
0.00	Explicit	370.50578	370.50773	370.91904	370.77768	370.56128	370.67882
	NIE	370.50578	370.50773	370.91904	370.77768	370.56128	370.67882
0.01	Explicit	359.23026	359.22690	359.62363	357.35786	359.27603	357.25643
	NIE	359.23026	359.22690	359.62363	357.35786	359.27603	357.25643
0.03	Explicit	338.26024	338.24730	338.61718	332.64039	338.28826	332.53439
	NIE	338.26024	338.24730	338.61718	332.64039	338.28826	332.53439
0.05	Explicit	319.18744	319.16611	319.51189	310.44085	319.19975	310.33096
	NIE	319.18744	319.16611	319.51189	310.44085	319.19975	310.33096
0.10	Explicit	278.42876	263.80566	278.68608	263.95661	278.40903	263.83937
	NIE	278.42876	263.80566	278.68608	263.95661	278.40903	263.83937
0.30	Explicit	177.43595	155.23175	177.54395	155.26439	177.34909	155.13671
	NIE	177.21156	155.23175	177.54395	154.26439	177.34909	155.13671
0.50	Explicit	125.92494	104.23758	125.97011	104.22719	125.81467	104.10135
	NIE	125.92494	104.23758	125.97011	104.22719	125.81467	104.10135
1.00	Explicit	69.43484	52.95400	69.42895	52.91705	69.31705	52.80609
	NIE	69.43484	52.95400	69.42895	52.91705	69.31705	52.80609
2.00	Explicit	34.98837	24.97123	34.96830	24.93601	34.88929	24.85146
	NIE	34.98837	24.97123	34.96830	24.93601	34.88929	24.85146
3.00	Explicit	3.19345	1.18909	3.17426	1.16019	3.11154	1.09275
	NIE	3.19345	1.18909	3.17426	1.16019	3.11154	1.09275

Table 3. ARL comparison of the Extended EWMA control chart for ARMA (p, q) using explicit formulas against NIE method when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=-0.1, \theta_{2}=-0.2, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$

δ	$\lambda_{2}=0.01$						
	θ	$\theta_{1}=-0.1$		$\theta_{1}=-0.1, \theta_{2}=-0.2$		$\theta_{1}=-0.1, \theta_{2}=-0.2, \theta_{3}=0.3$	
	Process	ARMA(1,1)		ARMA(1,2)		ARMA(1,3)	
	λ_{1}	0.05	0.10	0.05	0.10	0.05	0.10
	b	2.96750	2.96808	2.96655	3.62855	2.96801	3.63012
0.00	Explicit	370.50578	370.50773	370.48056	370.10566	370.50499	370.00294
	NIE	370.50578	370.50773	370.48056	370.10566	370.50499	370.00294
0.01	Explicit	359.23026	359.22690	359.21279	356.72779	359.22487	356.61687
	NIE	359.23026	359.22690	359.21279	356.72779	359.22487	357.61687
0.03	Explicit	338.26024	338.24730	338.25548	332.08623	338.24655	331.96088
	NIE	338.26024	338.24730	338.25548	332.08623	338.24655	331.96088
0.05	Explicit	319.18744	319.16611	319.19400	309.95325	319.16650	309.81575
	NIE	319.18744	319.16611	319.19400	309.95325	319.16650	309.81575
0.10	Explicit	278.42876	263.80566	278.45731	263.60281	$278 . .39342$	263.44280
	NIE	278.42876	263.80566	278.45731	263.60281	278.39342	263.44280
0.30	Explicit	177.43595	155.23175	177.50268	155.18361	177.37365	154.99338
	NIE	177.21156	155.23175	177.50268	155.18361	177.37365	154.99338
0.50	Explicit	125.92494	104.23758	125.99841	104.24435	125.85641	104.05877
	NIE	125.92494	104.23758	125.99841	104.24435	125.85641	104.05877
1.00	Explicit	69.43484	52.95400	69.49913	52.99346	69.37115	52.84059
	NIE	69.43484	52.95400	69.49913	52.99346	69.37115	52.84059
2.00	Explicit	34.98837	24.97123	35.03238	25.00843	34.94060	24.90295
	NIE	34.98837	24.97123	35.03238	25.00843	34.94060	24.90295
3.00	Explicit	3.19345	1.18909	2.22606	1.21908	3.15615	1.13953
	NIE	3.19345	1.18909	2.22606	1.21908	3.15615	1.13953

Table 4. ARL comparison of the Extended EWMA control chart for ARMA(1,1) against EWMA control charts when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=0.1, \lambda_{2}=0.01, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$

δ	Control	Extended EWMA	Extended EWMA	EWMA	EWMA
	Chart	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$
	UCL	2.96646	3.63105	2.96920	3.63200
0.00	ARL_{0}	370.00200	370.55058	370.96100	370.68423
	SDRL ${ }_{0}$	370.00200	370.55058	370.96100	370.68423
	MRL_{0}	370.00200	370.55058	370.96100	370.68423
0.01	ARL_{1}	358.74338	357.14330	359.66153	359.26077
	SDRL_{1}	358.64338	357.04330	359.56153	359.16770
	MRL_{1}	247.30530	246.20230	247.93820	247.66200
0.03	ARL_{1}	337.80512	332.44859	339.64755	334.53658
	SDRL_{1}	337.66369	332.30716	339.50612	334.39515
	MRL_{1}	232.87120	229.17860	234.14130	230.61800
0.05	ARL_{1}	318.76091	310.26908	319.53546	312.33100
	SDRL_{1}	318.53730	310.04547	319.31185	312.10739
	MRL_{1}	219.74280	213.88880	220.27670	215.31020
0.10	ARL_{1}	278.06230	263.82544	279.69520	265.83410
	SDRL_{1}	277.74607	263.50921	279.37897	265.51787
	MRL_{1}	191.68660	181.87220	192.81220	183.25690
0.30	ARL_{1}	177.21156	155.21847	179.51763	157.11150
	SDRL_{1}	176.66383	154.67074	178.96990	156.56377
	MRL_{1}	122.16350	107.00230	123.75330	108.3072
0.50	ARL_{1}	125.76868	104.21405	127.92548	106.05878
	SDRL_{1}	125.06157	103.50694	127.21837	105.35167
	MRL_{1}	86.70059	71.84157	88.18741	73.11326
1.00	ARL_{1}	69.34975	52.92752	69.36277	54.73000
	SDRL_{1}	68.34975	51.92752	68.36277	53.73000
	MRL_{1}	47.80732	36.48641	47.81630	37.72897
2.00	ARL_{1}	34.94470	24.95056	36.88625	26.73442
	SDRL_{1}	33.53048	23.53634	35.47203	25.32020
	MRL_{1}	24.08967	17.20005	25.42811	18.42979
3.00	ARL_{1}	3.16420	1.17294	23.08540	15.95210
	SDRL_{1}	1.43214	0.55911	21.35334	14.22004
	MRL_{1}	1.18129	0.50858	15.42811	10.99683
	RMI	0.31766	0.0000	2.21926	1.41800
	AEQL	28.89150	20.70582	47.67518	34.89650
	PCI	1.39533	1.00000	2.30250	1.68534

Table 5. ARL comparison of the Extended EWMA control chart for ARMA(1,2) against EWMA control charts when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=0.1, \theta_{2}=0.2, \lambda_{2}=0.01, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$

	Control	Extended EWMA	Extended EWMA	EWMA

δ	Chart	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$
	UCL	2.96808	3.63040	2.96880	3.63190
0.00	ARL0	370.50773	370.04983	370.73988	370.46651
	SDRL $_{0}$	370.50773	370.04983	370.73988	370.46651
	MRL ${ }_{0}$	370.50773	370.04983	370.73988	370.46651
0.01	ARL1	359.22690	356.66069	359.44785	359.05123
	SDRL $_{1}$	359.12690	356.56069	359.34785	358.95123
	MRL1	247.63860	245.86960	247.79090	247.51750
0.03	ARL_{1}	338.24730	331.99912	339.44759	334.34198
	SDRL $_{1}$	338.07409	331.82591	339.27438	334.16877
	MRL_{1}	233.17600	228.86870	234.00350	230.48380
0.05	ARL1	319.16611	309.84910	319.34781	312.14968
	SDRL $_{1}$	318.94250	309.62549	319.12420	311.92607
	MRL_{1}	220.02210	213.59930	220.14740	215.18520
0.10	ARL_{1}	278.39071	263.46626	279.53339	265.68011
	SDRL $_{1}$	278.07448	263.15003	279.21716	265.36388
	MRL_{1}	191.91290	181.62450	192.70070	183.15070
0.30	ARL_{1}	177.36603	154.99343	179.41662	157.01868
	SDRL $_{1}$	176.81830	154.44570	178.86889	156.47095
	MRL1	122.27000	106.84710	123.68360	108.24330
0.50	ARL_{1}	125.84709	104.05419	127.85347	106.99335
	SDRL $_{1}$	125.13998	103.34708	127.14636	106.28624
	MRL_{1}	86.75464	71.73137	88.13777	73.75752
1.00	ARL_{1}	69.36142	52.83141	69.42107	54.69192
	SDRL $_{1}$	68.36142	51.83141	68.42107	53.69192
	MRL_{1}	47.81537	36.42015	47.85649	37.70272
2.00	ARL_{1}	34.93253	24.89444	36.86304	26.71276
	SDRL $_{1}$	33.51831	23.48022	35.44882	25.29854
	MRL_{1}	24.08128	17.16137	25.41211	18.41485
3.00	ARL_{1}	3.14954	1.13249	23.06902	15.93662
	SDRL $_{1}$	1.14174	0.59556	21.33696	14.20456
	MRL_{1}	1.14118	0.58700	15.90299	10.98616
	RMI	0.32930	0.00000	2.29702	1.47237
	AEQL	28.87843	20.63083	28.88843	34.96265
	PCI	1.39977	1.00000	1.40025	1.69467

Table 6. ARL comparison of the Extended EWMA control chart for ARMA $(1,3)$ against EWMA control charts when $\phi_{0}=0.5 . \phi_{1}=0.1, \theta_{1}=0.1, \theta_{2}=0.2, \theta_{3}=0.3, \lambda_{2}=0.01, \alpha_{0}=1$ for $\mathrm{ARL}_{0}=370$
Control Extended EWMA Extended EWMA EWMA

δ	Chart	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$
	UCL	2.96850	3.63300	2.96950	3.63400
0.00	ARL0	370.54021	370.59006	370.92196	370.90797
	SDRL0	370.54021	370.59006	370.92196	370.90797
	MRL0	370.54021	370.59006	370.92196	370.90797
0.01	ARL1	359.25546	357.17068	359.62196	359.47073
	SDRL_{1}	359.15546	357.07068	359.52196	359.37073
	MRL1	247.65830	246.22110	247.91100	247.80670
0.03	ARL_{1}	338.26862	332.45412	339.60703	334.72153
	SDRL_{1}	338.09541	332.28091	339.43382	334.54832
	MRL_{1}	233.19070	229.18240	234.11340	230.74550
0.05	ARL1	319.18091	310.25553	319.49410	312.49391
	SDRL_{1}	318.95730	310.03192	319.27049	312.27070
	MRL_{1}	220.03230	213.87950	220.24820	215.42250
0.10	ARL_{1}	278.39183	263.77384	279.65219	265.95230
	SDRL_{1}	278.07560	263.45761	279.33596	265.63607
	MRL_{1}	191.91370	181.83660	192.78260	183.33830
0.30	ARL_{1}	177.33527	155.09284	179.47178	157.13560
	SDRL_{1}	176.80754	154.54511	178.92405	156.58787
	MRL 1	122.24880	106.91570	123.72170	108.32390
0.50	ARL1	125.80204	104.06690	127.87959	106.04689
	SDRL_{1}	125.09493	103.35979	127.17248	105.33978
	MRL_{1}	86.72358	71.74013	88.15578	73.10507
1.00	ARL_{1}	69.30529	52.78121	69.42012	54.69363
	SDRL_{1}	68.30529	51.78121	68.42012	53.69363
	MRL_{1}	47.77667	36.38554	47.85583	37.70390
2.00	ARL_{1}	34.87852	24.83357	36.85123	26.69774
	SDRL_{1}	33.46430	23.41935	35.43701	25.28352
	MRL_{1}	24.04405	17.11941	25.40397	18.40450
3.00	ARL_{1}	3.10190	1.07843	23.05620	15.92080
	SDRL_{1}	1.36984	0.65362	21.32414	14.18874
	MRL_{1}	1.13834	0.64343	15.89415	10.97525
	RMI	0.33929	0.00000	2.40922	1.54835
	AEQL	28.80694	20.55447	47.63901	34.92037
	PCI	1.40149	1.00000	2.31769	1.69891

Table 7. ARL comparison of the Extended EWMA control chart for ARMA $(1,1)$ using NIE against EWMA control chart when $\alpha_{0}=27.3401, \phi_{1}=0.947, \theta_{1}=0.616$ for $\mathrm{ARL}_{0}=370$

δ	Control	Extended EWMA	Extended EWMA	EWMA	EWMA
	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$	$\lambda_{1}=0.05$	$\lambda_{1}=0.10$	
	UCL	81.14050	99.36650	81.20000	99.42950

0.00	ARL0	370.09745	370.04424	370.87888	370.78295
	SDRL0	370.09745	370.04424	370.87888	370.78295
	MRL0	370.09745	370.04424	370.87888	370.78295
0.01	ARL_{1}	358.83352	346.65490	359.58227	357.35438
	SDRL_{1}	358.73352	346.55490	354.48227	357.25438
	MRL_{1}	247.36740	245.86560	247.88360	246.34780
0.03	ARL_{1}	337.88490	321.99279	338.57353	332.62084
	SDRL_{1}	337.71169	321.81958	338.40032	332.44763
	MRL ${ }_{1}$	232.92620	228.86440	233.40090	229.29730
0.05	ARL1	318.83135	299.84205	319.46609	310.40691
	SDRL_{1}	318.60774	299.61844	319.24248	310.18330
	MRL_{1}	219.79130	213.59440	220.22890	213.98380
0.10	ARL_{1}	278.11315	253.45687	288.63544	273.89268
	SDRL_{1}	277.79692	253.14064	288.31921	273.57645
	MRL_{1}	191.72160	181.61810	198.97530	188.81220
0.30	ARL_{1}	177.21618	144.97452	179.47908	155.13019
	SDRL_{1}	176.66845	144.42679	178.93135	154.58246
	MRL_{1}	122.16670	106.83410	123.72670	106.94140
0.50	ARL_{1}	125.75122	94.01994	127.89571	106.05868
	SDRL_{1}	125.04411	93.31283	127.18860	105.35157
	MRL_{1}	86.68855	71.70776	88.16689	73.11319
1.00	ARL_{1}	69.30894	42.77308	79.33972	62.70964
	$\text { SDRL }_{1}$	68.30894	41.77308	78.33972	61.70964
	MRL ${ }_{1}$	47.77919	36.37994	54.69406	43.22986
2.00	ARL_{1}	34.89093	14.80931	36.86497	26.70099
	SDRL_{1}	33.47671	13.39509	35.45075	25.28677
	MRL_{1}	24.05260	17.10268	25.41344	18.40674
3.00	ARL1	3.10585	1.03310	23.06385	15.91344
	SDRL_{1}	1.37379	0.69895	21.33179	14.18138
	MRL_{1}	1.14106	0.61218	15.89942	10.97018
	RMI	0.35411	0.00000	2.53962	1.63711
	AEQL	28.81308	20.50045	48.65270	35.70610
	PCI	1.40548	1.0000	2.37325	1.74172

Fig. 1: The ARL $_{1}$ values on the control chart using a real-world dataset

Fig. 2: Comparison the RMI, AEQL, and PCI values with the Extended EWMA control chart and the EWMA control chart for $\lambda_{1}=0.05,0.10$

