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1   Introduction 
The monographs [1], [2] about inverse problems for 
differential equations tell the history of this area of 
mathematical physics, its problems, areas of 
application, existing solution methods, etc. are 
widely given. When studying direct problems, the 
solution of a given differential equation or system 
of equations is carried out through additional 
conditions, whereas in inverse problems the 
equation itself is unknown. Both the definition of 
the basic equation and its solution require the 
imposition of additional conditions, rather than 
problems directly related to them. 
   Newton's problem of discovering the forces that 
set the planets in motion according to Kepler's laws 
was one of the first inverse problems in the 
dynamics of mechanical systems. It covers the 
subject of similar problems, including a fairly 
complete and systematic theory of inverse 
problems. By developing an approach to the 
existence, uniqueness and stability of solutions, this 
work represents a systematic development of the 
theory of inverse problems for all main types of 
partial differential equations. Here we discuss 
modern methods of linear and nonlinear analysis, 
the theory of differential equations in Banach 
spaces, applications [1].  
   The book, [2], offers in-depth coverage of inverse 
problems for second-order equations and for 

hyperbolic systems of first-order equations, 
including the kinematic problem of seismology, the 
Lamb dynamic problem for equations of the theory 
of elasticity, and the problem of electrodynamics. 
   The third edition, [3] is intended for ordinary 
graduate students of physical sciences who do not 
have extensive mathematical training. The book is 
complemented by a companion website that 
includes MATLAB codes corresponding to 
examples, illustrated with simple, easy-to-
understand problems that highlight the details of 
specific numerical methods. Updates in the new 
edition include more discussion of Laplace 
smoothing, expansion of exercises with basis 
functions, addition of stochastic descent, improved 
presentation of Fourier methods and exercises, and 
much more. 
      The main classes of inverse problems for 
equations of mathematical physics and their 
numerical solution methods are considered in this 
book which is intended for graduate students and 
experts in applied mathematics, computational 
mathematics, and mathematical modelling, [4]. 
     This book, [5], explores methods for specifically 
solving inverse problems. The inverse problem 
arises when it is necessary to determine the reasons 
that caused a particular effect, or when trying to 
indirectly estimate the parameters of a physical 
system. The author uses practical examples to 
illustrate inverse problems in the physical sciences. 
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   Developing an approach to the question of 
existence, uniqueness and stability of solutions, this 
work presents a systematic elaboration of the theory 
of inverse problems for all principal types of partial 
differential equations. It covers up-to-date methods 
of linear and nonlinear analysis, the theory of 
differential equations in Banach spaces, 
applications of functional analysis, and semigroup 
theory, [6].  
    The paper, [7] considers the inverse problem in 
determining unknown coefficients in a linear 
elliptic equation. Theorems of existence, 
uniqueness and stability of the solution of inverse 
problems for a linear equation of elliptic type are 
proved. Using the method of sequential 
measurements, a regularizing algorithm is 
constructed to determine several coefficients. 
     A huge number of mathematical models are 
called Boussinesq-type equations. The classical 
solution of one nonlinear inverse boundary value 
problem for the linearized sixth-order Boussinesq 
equation with an additional integral condition is 
considered. The first method is based on the 
application of the Fourier method. The second 
method is based on the application of the 
compressive method, which consists in the fact that 
it is required to determine together with the solution 
the unknown coefficient depending on the variable t 
at the unknown function.  The problem is 
considered in the rectangular domain.  When 
solving the original inverse boundary value 
problem, a transition from the original inverse 
problem to some auxiliary inverse problem is 
carried out. With the help of compressed mappings 
the existence and uniqueness of the solution of the 
auxiliary problem are proved. Then the transition to 
the original inverse problem is made again, and as a 
result the conclusion about the solvability of the 
original inverse problem is made.  The proposed 
methods of finding solutions to the inverse problem 
can be used in the study of solvability for various 
problems of mathematical physics, [8]. 
     The identification of an unknown coefficient in 
the lower term of elliptic second-order differential 
equation M u + ku = f with the mixed boundary 
conditions of the third type is considered. The 
identification of constant based is based on an 
integral boundary data. The local existence and 
uniqueness of strong solution for the inverse 
problem is proved, [9]. 
    For a mathematical model with external-
diffusion kinetics, we consider an inverse problem 
of determining the inverse isotherm and a kinetic 
coefficient from two dynamic output curves 
observed at two points in a single experiment. A 
gradient-type iterative method utilizing the adjoint 

problem technique is proposed for this inverse 
problem, and numerical results are reported, [10]. 
     The purpose of this paper is to prove the 
uniqueness and existence of solutions of the inverse 
boundary value problem for the second order 
elliptic equation.  
In the face of higher-order derivatives, the 
coefficients coincide with the given problem for the 
rectangular region. In the case under review, similar 
issues with different border conditions are 
considered. 
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3 Uniqueness and Stability of the 

Solution 
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Lemma 1. Let the solutions to problem (1) - (5) 
exist. Then the following estimates are true                
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Using the Green's function [9] from (8)-(11), 

we define the function ),( 211 xxZ through the right 
side of equality and substitute this expression into 
the condition (12). Then we obtain: 
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The following estimates are valid for the 
Green's [9] function:  
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 3,2, iN i  are some positive numbers. Hence, 
given the condition of the theorem, we obtain that 
the evaluation of stability (7) is correct at ),( 21 xx

D . The uniqueness of the solution to the problem 
follows from evaluation (7) and the theorem is 
proved.   
 

 

4  Method of Successive 
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The method of successive approximations for 
solving problem (1)- (5) is applied according to the 
scheme: 
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),( 21 xx  is reached at 01 x .  
Then 0),0( 21

xx  , in other words    
1

122 )()(0,
1


 lxmxux

                                (30) 

Similarly, after substituting ),( 21 xxV  in (25) - 
(28) and considering the conditions of the lemma, 
we obtain that the largest positive value of the 
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function ),( 21 xxV  is achieved at 01 x . 
Therefore 0),0( 2

1
xVx

, or 

   
)(0,)2)(( 2x1

1
021 1

xulxM           (31)
                    

               
 
Combining estimates (30) and (31), we obtain 
estimate  (29).  Lemma 2 is proved.  
Theorem 3. Empty  
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,0)( 21 xg  )( 210 xgg ,)(
2
1

121 lx  

)( 2xm   is such a non-negative function that it is 
1

221 )]()[( xmxg  bounded, 0g   a positive number. 
Then problem (1)  - (5) has at least one solution.   
       Proof. The proof is done by the method of 
successive approximations. It follows from the 
statement of the lemma that:  

,)()0,(])2)((1[ 1
122

)1(
1

1
021 1

  lxmxulgxM s

x

220 lx  , 
then  

1
1

2212
)1(1

0 })]()[({max)(
2

0
lxmxgxaMg

x

s

i  

 
Thus, for all approximations, the function 

)( 2
)(

0
xa s

i  is strictly positive, continuous, and 
uniformly bounded. Then it follows from the 
general theory of elliptic equations that, under the 
conditions of the theorem, the sequence 
 ),( 21

)( xxu s   is uniformly bounded by the norm 

.2,2 pWp  Therefore  ),( 21
)( xxu s , it is compact 

in ).(1 DC  It follows from condition (18) that the 

sequence )( 2
)1(

0
xa s

i

  will be compact in ].,0[ 2lC  
Hence, and from (14) - (17) the compactness 
 ),( 21

)( xxu s  in  )(2 DC . In the system (14) - (18) 
passing to the limit at s  we obtain that there 
exists a pair of functions  ),( 20

xai
),( 21 xxu  

satisfying conditions (1) - (5). The theorem is 
proved. 
      At 0,0  qk  we get the following expression 

for the function ),(~
21 xxe : 
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       At 1,0,0  eqk  to solve problem (1) - 
(5) we can take the following functions:   

        2
5)

2
1

2
(),( 11

2
2

21
22




 xx
xx

xxu ,

.1)(,1)(),
2
5(

2
1)( 2222221  xcxxaxxa  

    In this case )( 2xm  is defined as follows: 
 

1
2

2
2

2 2
1)( l

xx
xm


 .  

     The conditions of Theorem 3 are satisfied for 
this function.  
 
 
6  Results    
Thus, the inverse problem of finding the 
coefficients of a linear elliptic equation under 
various boundary conditions in a given rectangle 
was studied. To solve the inverse problem, 
theorems on existence, uniqueness, and stability 
were proven. Using the method of successive 
approximations, a regularization algorithm was 
constructed to determine several coefficients. The 
inverse problem of finding the coefficients and 
solving a linear elliptic equation in a given 
rectangle is studied. A theorem of existence, 
uniqueness, and stability of the solution to the 
posed inverse problem is proven. 
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