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Abstract: - In this paper, we are focused on studying a boundary values problem of the second-order differential 

equation of Euler-type in the classical version of Calculus, given by the following expression: 

                               𝑢𝑥𝑥 = 𝑓 (
𝛼𝑥+𝛽𝑦+𝑎

𝛾𝑥+𝛿𝑦+𝑏
) 𝑢𝑦𝑦, 𝛼, 𝛽, , , 𝑎, 𝑏 ∈ ℝ                                                    (1)                           

and includes the above boundary conditions: 

𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0.                                                                          (2) 

Firstly, we have proposed the construction of a new function 𝑓 with the intention of transforming  the equation 

(1) into an Euler-type equation. Since all of these problems are too difficult to solve in Classical Calculus, this 

study aims to convert them into equations of this type for the ease of study in 𝑞-Calculus. Then, we proposed a 

transformation method for both the equation and the boundary conditions. Thus, the boundary value problem 

consists of a second-order partial differential equation and boundary conditions dependent on the eigenvalues. 

By using the procedure of 𝑞-difference over a time scale 𝕋𝑞, we obtained a second-order Euler 𝑞-difference 

equation with Dirichlet boundary conditions. Also, we have analyzed the exact number of eigenvalues for all 

cases that arise from the study of our problem. Here, we have presented three theorems, two of which show the 

correct number of eigenvalues of two issues with eigenvalues derived from our principal problem. The last one 

shows a relation between two eigenvalues of a problem for 𝕋𝑞
ℕ0 and 𝕋𝑞

−ℕ0. We also have given some examples 

that prove the above conclusions. 
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Eigenfunctions. 
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1  Introduction 
The theory of quantum calculus, or 𝑞 −calculus, has 

been attracting the attention of many researchers, 

and the interest in this subject is still growing for its 

practical applications, especially in the physical 

sciences, specifically within the domain 

of “Quantum Physics.” It is seen as a connection 

between mathematics and physics, operating 

independently of the concept of limits. Jackson was 

the first to present some applications of 𝑞 −calculus 

by introducing 𝑞-analogs of derivatives and 

integrals, 𝑞-derivatives and 𝑞 –integrals. Therefore, 

the physical meaning of 𝑞-deformation can be better 

understood in terms of the Jackson 𝑞-derivative, 

which corresponds to 𝑞 −difference equations, than 

in terms of continuous derivatives and continuous 

differential equations. The basic rules and exciting 

definitions of this calculus in comparison with 

classical Newton-Leibnitz calculus were studied 

among others in [1], [2], [3]. In particular, some 

significant results of 𝑞-calculus, where the 

smoothness of a function is no longer a requirement, 

are presented in [4].  

At [5], the idea of generalizing the concept of 𝑞-

derivative from a real function 𝑓 with one variable 

to a two-variable function is given, and a 𝑞 -

directional derivative of a function is constructed. 

In ordinary classical calculus, we focus on studying 

differential equations, whereas in discrete calculus, 

our concentration is on difference equations. In 

calculus, we explore the concept of 𝑞-derivative or 

𝑞-difference equations (𝑝-derivative or 𝑝 -difference 

equations, ℎ-derivative or ℎ-difference equations), 

which have applications across various 

mathematical areas such as number theory, quantum 

theory, combinatorics, orthogonal polynomials, and 

essential hypergeometric functions. Recently, there 

has been significant interest in applying quantum 

calculus to differential transform methods to obtain 
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analytical approximate solutions for both ordinary 

and partial differential equations. By using 

𝑞 −calculus, solutions can be generated for certain 

differential equations. The reduced 𝑞 −transform 

techniques were presented in the literature to 

approach several different linear or nonlinear 

differential systems, such as ordinary differential 

equations, functional differential equations, 

impulsive differential equations, and partial 

differential equations, among others  [6], [7]. 

Mainly when 𝑞 = 1 the solutions correspond to the 

classical version of the provided initial value 

problem solving partial 𝑞 −differential equations in 

some Euler-type boundary value problems. In [8] 

and  [9] is studied a boundary value problem which 

consists into a second-order 𝑞 −difference equation 

together with Dirichlet boundary conditions reduced 

to an eigenvalue problem for a second-order Euler 

𝑞-difference equation by separation of variables.  

On the other hand, the study of 𝑞-derivatives on 

discrete, continuous, and, more generally, on an 

arbitrary nonempty closed set (i.e., a time scale) is a 

well-known subject under current solid 

development. For an introduction to the theory of 

calculus on time scales, we refer to [10], [11], [12], 

[13], [14] and [15]. As time scale calculus has 

evolved, many authors have focused on integrating 

methodologies from both time-scale 

and 𝑞 −calculus. The most famous examples of 

calculus on time scales are differential calculus 

(𝕋 = ℝ)  difference calculus (𝕋 = ℕ) and quantum 

calculus (𝕋𝑞 = 𝑞ℕ0 = {𝑞𝑘, 𝑘 ∈ ℕ0} where 0 < 𝑞 <

1). This paper includes the fundamental definitions 

and characteristics of delta 𝑞 −calculus (𝕋 = ℝ) 

and delta 𝑞 −calculus on a time scale 𝕋𝑞. 

Due to the importance of this quantum calculus 

on time scales and taking into account that the 

oscillatory or asymptotic properties of the solutions 

of 𝑞-difference equations are essential to 

understanding several physics phenomena better, 

[15], [16], [17] introduced in the literature the 

concept of determining the eigenvalues and their 

count for the resulting eigenvalue problem defined 

on the quantum time scale.  

In order to solve a partial differential equation 

(PDE) of the second order of form 𝑢𝑥𝑥 =
𝑔(𝑥, 𝑦)𝑢𝑦𝑦. The methods of solutions of this 

equation depend on properties of 𝑔 function, as well 

as the given boundary or initial conditions. This 

equation, models a lot of real-life problems and 

describe a lot of PDEs based on the nature of 

𝑔(𝑥, 𝑦), which will have a major effect on the 

solution technique: 

a) The equation reduces to a linear PDE with 

constant coefficients if 𝑔(𝑥, 𝑦) is a constant. 

b) If 𝑔(𝑥, 𝑦) is not constant, in most cases the 

equation can not be solved analiticaly because it 

can require numerical methods.  

Since 𝑓 (
𝛼𝑥+𝛽𝑦+𝑎

𝛾𝑥+𝛿𝑦+𝑏
)is widely used in 

mathematical modeling, especially in complex 

biological models. 

The organization of this paper is as follows: in 

section 2, we introduce some basic definitions and 

preliminary facts used throughout the paper for delta 

𝑞 −calculus and delta 𝑞 −calculus on a time scale 

compared to the classical Newton-Leibniz calculus. 

Section 3 analyzes an equation with partial 

derivatives of the second order according to various 

cases and transforms it case by case into an Euler-

type 𝑞 −difference equation. In the end, in Section 

4, we determine the eigenvalues and their count for 

the resulting eigenvalue problem and provide 

examples to illustrate the effectiveness of the 

proposed theorems. 

 

 

2  Preliminaries 
This section introduces some of the 𝑞 −notations 

used throughout the paper. We use the standard 

notations found in [1], [2], [3] and [4]. 

Quantum calculus is a non-limits version of 

calculus, where derivatives are differences and anti-

derivatives are sums, with the derivative of a 

function 𝑓(𝑡) being defined as:  

𝑓′(𝑡) =
𝑑

𝑑𝑡
𝑓(𝑡) = 𝑙𝑖𝑚

ℎ→0

𝑓(𝑡 + ℎ) − 𝑓(𝑡)

ℎ
, 

related to the existence of the limit. 

 

The ℎ -derivative is defined as: 

𝑑ℎ𝑓(𝑡) =
𝑓(𝑡 + ℎ) − 𝑓(𝑡)

ℎ
 

where ℎ is a non zero fixed scalar. 

 

The 𝑝 -derivative is defined as: 

𝐷𝑝𝑓(𝑡) =
𝑓(𝑡𝑝) − 𝑓(𝑡)

𝑡𝑝 − 𝑡
 

where 𝑝 is a fixed scalar different from 1.  

 

The delta 𝑞 -derivative is defined by: 

∆𝑞𝑓(𝑡) =
𝑓(𝑞𝑡)  −  𝑓(𝑡)

(𝑞 −  1)𝑡
 

where 𝑞 is a fixed scalar different from 1.  

 

Note that these types of derivatives do not use 

the limit. So, there are different types of quantum 

calculus. In this section, we recall some notations of 
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𝑞-calculus with delta 𝑞-derivative and some basic 

facts and results on 𝑞 −calculus and time scales. 

Studying 𝑞 −calculus on a time scale leads to 

essential facts and results. Some well-known time 

scales presented in other authors' works are as 

follows: 

𝕋𝑞
ℤ = {𝑞𝑡, 𝑡 ∈ ℤ} ⋃{0} ,  0 < 𝑞 < 1.         (3) 

 

This time scale is equivalent to: 

𝕋𝑞
ℤ = 𝕋𝑞

ℕ0 ∪ 𝕋𝑞
−ℕ0 ∪ {0} ,  0 < 𝑞 < 1,            (4) 

 

where, 

𝕋𝑞
ℕ0 = {𝑞𝑡, 𝑡 ∈ ℕ0} , 0 < 𝑞 < 1 

𝕋𝑞
−ℕ0 = {𝑞−𝑡, 𝑡 ∈ ℕ0}, 0 < 𝑞 < 1 

 

or   

                            𝕋𝑞
−ℕ0 = {𝑞𝑡, 𝑡 ∈ ℕ0},   𝑞 > 1.    (5) 

 

As given in [17], the time scale is defined as a 

set with zero Minkowski (or box-counting) 

dimension. Moreover, it is a time scale where 
{𝑎𝑛}𝑛∈ℕ is a monotonically decreasing sequence 

converges to zero and 𝕋 is defined as:  

𝕋 = {𝑎𝑛}𝑛∈ℕ ∪ {0}, 𝑎1 = 1. 
 

Its particular case time scale is defined by:  

𝕋𝑞 = {𝑞𝑡, 𝑡 ∈ ℕ0} ⋃{0}, for 0 < 𝑞 < 1                (6) 

 

The above collections are defined on (4) and (5) 

 are used in our study's other work. For symmetry, 

we will focus on a time scale 𝕋𝑞 as follows. 

Consider an arbitrary function 𝑓: 𝕋𝑞 → ℝ with        

0 < 𝑞 < 1.  The Jackson’s delta 𝑞-difference 

operator ∆𝑞𝑓 of the function 𝑓, is given by: 

{
∆𝑞𝑓(𝑡) =

𝑓(𝑡) −  𝑓(𝑞𝑡)

(1 −  𝑞)𝑡
,               if  𝑡 ≠ 0

∆𝑞𝑓(0) = lim
𝑡→0

∆𝑞𝑓(𝑡) ,                                    
         

(7) 

 

so, this 𝑞-derivative can be applied to functions not 

contained 0 in their domain of definition. If 𝑓(𝑡) is 

differentiable, note that: 

𝑓′(𝑡) =
𝑑

𝑑𝑡
𝑓(𝑡)

= 𝑙𝑖𝑚
𝑞𝑡→𝑡

𝑓(𝑞𝑡) − 𝑓(𝑡) 

𝑞𝑡 − 𝑡
= 𝑙𝑖𝑚
      𝑞→1

∆𝑞𝑓(𝑡), 

 

so, this analog 𝑞 −derivative is reduced to the 

ordinary derivative when 𝑞 → 1. The 𝑞-version of 

the above derivation is the evident and plain ratio in 

contrast with Leibniz's notation 
𝑑

𝑑𝑡
𝑓(𝑡), since it is 

known that the latter is a ratio of two 

"infinitesimals."  

Now, we shortly describe the idea of studying 

Euler-type equations. In particular, Euler-type 

ordinary differential equations are defined by: 

𝑡𝑛𝑓(𝑛)(𝑡) + 𝑎𝑛−1𝑡𝑛−1𝑓(𝑛−1)(𝑡) + ⋯ + 𝑎1𝑡𝑓′(𝑡)
+ 𝑎0𝑓(𝑡) = 𝑔(𝑡),   

 

where 𝑎0, 𝑎1, … , 𝑎𝑛−1 are real numbers. As is 

known, the linear equation remains linear even after 

each variable transformation. In the above equation, 

if transform the independent variable 𝑥 using the 

relation 𝑥 = 𝜑(𝑡),  where 𝜑(𝑡), is an arbitrary 

function defined and 𝑛 times differentiable in an 

interval ]𝑎, 𝑏[ corresponding to the change of 𝑥 in 

the interval ]𝑎, 𝑏[ and such that 𝜑′(𝑡) ≠ 0 for every 

𝑡 ∈]𝑎, 𝑏[. 
It is known that in these equations, the 

substitution of the variable 𝑡 = 𝑒𝑥 turns it into a 

linear equation with constant coefficients, which is 

easier to solve. What motivates us to use 

𝑞 −calculus is the well-known fact that, as with the 

ordinary derivative, the action of taking the 

𝑞 −derivative of a function is a linear operator. In 

other words, for any constants 𝑎 and 𝑏, we have: 

∆𝑞(𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡)) = 𝑎∆𝑞𝑓1(𝑡) + 𝑏∆𝑞𝑓2(𝑡), 
 

and a higher order of delta 𝑞 −derivatives is as 

follows: 

∆𝑞
0𝑓(𝑡) = 𝑓(𝑡),   ∆𝑞

𝑛+1𝑓(𝑡)

= ∆𝑞 (∆𝑞
𝑛𝑓(𝑡))   (𝑛 = 0,1,2,3 … ). 

 

In [8] and [9] is used the separation of variables 

method for an Euler-type, second-order partial 

𝑞 −differential equation with Dirichlet boundary 

conditions to arrive at a particular eigenvalue 

problem. Additionally, by 𝑞-calculus for a function 

𝑢: 𝕋𝑞  × 𝕋𝑞 → ℝ, we define the Jackson derivatives 

of 𝑢 concerning the first and the second variable, 

respectively, by: 

𝐷𝑞,𝑥𝑢(𝑥, 𝑦) = 𝑢̃𝑥(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) − 𝑢(𝑞𝑥, 𝑦) 

(1 −  𝑞)𝑥
  if  𝑥

≠ 0  
and 

𝐷𝑞,𝑦𝑢(𝑥, 𝑦) = 𝑢̃𝑦(𝑥, 𝑦) =
𝑢(𝑥, 𝑦) − 𝑢(𝑥, 𝑞𝑦) 

(1 −  𝑞)𝑦
  if  𝑦

≠ 0. 
 

For convenience, in this paper, we will use symbols, 

𝑢̃𝑥 , 𝑢̃𝑥𝑥, 𝑢̃𝑦, 𝑢̃𝑦𝑦, 𝑢̃𝑥𝑦, 𝑢̃𝑦𝑥 . 

𝐷𝑞,𝑥
2 =  

𝑢̃𝑥(𝑥, 𝑦) − 𝑢̃𝑥(𝑞𝑥, 𝑦) 

(1 −  𝑞)𝑥
   if  𝑥 ≠ 0 .                
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When we expand the above equation, we obtain for 

𝑥 ≠ 0 

𝐷𝑞,𝑥
2 =

𝑢(𝑥,𝑦)−𝑢(𝑞𝑥,𝑦) 

(1 − 𝑞)𝑥
−  

𝑢(𝑞𝑥,𝑦)−𝑢(𝑞2𝑥,𝑦) 

𝑞(1 − 𝑞)𝑥

(1 −  𝑞)𝑥
, 

𝐷𝑞,𝑥
2 = 𝑢̃𝑥𝑥(𝑥, 𝑦)

=
𝑢(𝑞2𝑥, 𝑦) −  (𝑞 + 1)𝑢(𝑞𝑥, 𝑦) + 𝑞𝑢(𝑥, 𝑦)

(1 −  𝑞)2𝑞𝑥2
. 

(8) 

 

Similarly, we can compute the partial derivative 𝑢̃𝑦𝑦 

for 𝑦 ≠ 0 

𝐷𝑞,𝑦
2 = 𝑢̃𝑦𝑦(𝑥, 𝑦)

=
𝑢(𝑥, 𝑞2𝑦) −  (𝑞 + 1)𝑢(𝑥, 𝑞𝑦) + 𝑞𝑢(𝑥, 𝑦)

(1 −  𝑞)2𝑞𝑦2
.  

(9) 

 

Note that,  

 𝑢𝑥𝑥 = 𝑙𝑖𝑚
      𝑞→1

𝑢̃𝑥𝑥,   𝑢𝑦𝑦 = 𝑙𝑖𝑚
      𝑞→1

𝑢̃𝑦𝑦. 

We start with an analysis according to the cases of 

an equation with partial derivatives of the second 

order and, case by case, transform it into the 

following Euler-type:  

 𝑥2𝑢̃𝑥𝑥 = 𝑦2𝑢̃𝑦𝑦,     𝑢(1, 𝑦) = 𝑢(𝑞𝑁, 𝑦) = 0,     
 

which is a second-order difference equation 

combined with Dirichlet boundary conditions. 

 

 

3  Main Results 
 

3.1 Boundary Value Problem 
Let 𝑁 ∈ ℕ0 and consider the boundary value 

problem in ordinary calculus as follows: 

𝑢𝑥𝑥 = 𝑓 (
𝛼𝑥+𝛽𝑦+𝑎

𝛾𝑥+𝛿𝑦+𝑏
) 𝑢𝑦𝑦,   𝛼, 𝛽, , , 𝑎, 𝑏 ∈ ℝ      (10) 

 

with boundary conditions: 

𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0.                    (11) 

 

Its associated second-order 𝑞-difference 

equation, together with Dirichlet boundary 

conditions, is: 

𝑢̃𝑥𝑥 = 𝑓 (
𝛼𝑥+𝛽𝑦+𝑎

𝛾𝑥+𝛿𝑦+𝑏
) 𝑢̃𝑦𝑦,    𝑢(𝑞0, 𝑦) = 𝑢(𝑞𝑁, 𝑦) = 0,

𝛼, 𝛽, , , 𝑎, 𝑏 ∈ ℝ.                                             (12) 

 

A generalized solution of the problem (12) is a 

function 𝑢(𝑥, 𝑦) that satisfies the equation and 

Dirichlet boundary conditions. 

First, let us solve the problem of constructing 

the function 𝑓 such that equation (10) is of the Euler 

type. 

 

We define 𝑓 as follows: 

𝑓(𝑡) = {
(

𝛾𝑡−𝛼

𝛿𝑡−𝛽
)

2
,       𝛽2 + 𝛿2 > 0         

𝑐2             𝛼 = 𝛽 = 𝛾 = 𝛿 = 0
        (13) 

 

and depending on the constants 𝛼, 𝛽, , , 𝑎, 𝑏, we 

divide the problem into three cases: 

Case 1. 

If 𝑎 = 𝑏 = 0, then function 𝑓 (
𝛼𝑥+𝛽𝑦+𝑎

𝛾𝑥+𝛿𝑦+𝑏
) is written 

differently 

𝑓 (
𝛼𝑥 + 𝛽𝑦

𝛾𝑥 + 𝛿𝑦
) = (

𝛾 (
𝛼𝑥+𝛽𝑦

𝛾𝑥+𝛿𝑦
) − 𝛼

𝛿 (
𝛼𝑥+𝛽𝑦

𝛾𝑥+𝛿𝑦
) − 𝛽

)

2

= (
𝛾(𝛼𝑥 + 𝛽𝑦) − 𝛼(𝛾𝑥 + 𝛿𝑦)

𝛿(𝛼𝑥 + 𝛽𝑦) − 𝛽(𝛾𝑥 + 𝛿𝑦)
)

2

= (
−(𝛼𝛿 − 𝛽𝛾)𝑦

(𝛼𝛿 − 𝛽𝛾)𝑥
)

2

= (
𝑦

𝑥
)

2

. 

 

The equation (12) is now written in the form: 

𝑢̃𝑥𝑥 = (
𝑦

𝑥
)

2
𝑢̃𝑦𝑦,     𝑢(1, 𝑦) = 𝑢(𝑞𝑁, 𝑦) = 0.      (14) 

 

Case 2. 

If 𝑎2 + 𝑏2 > 0, then we first consider the case 

|
𝛼 𝛽
𝛾 𝛿

| ≠ 0 , (𝛼𝛿 − 𝛽𝛾 ≠ 0).          (15) 

 

From this condition, we generate the algebraic 

system 

{
𝛼𝑥 + 𝛽𝑦 + 𝑎 = 0
𝛾𝑥 + 𝛿𝑦 + 𝑏 = 0

 

 

which has a unique solution (𝜗, 𝜇) ≠ (0,0). We 

apply the following transformation: 

𝑥 = 𝑠 + 𝜗,   𝑦 = 𝑡 + 𝜇                      (16) 

 

where   

{
𝛼𝜗 + 𝛽𝜇 + 𝑎 = 0
𝛾𝜗 + 𝛿𝜇 + 𝑏 = 0

 

 

and obtain in the same way as in Case 1: 

𝑓 (
𝛼𝑥 + 𝛽𝑦 + 𝑎

𝛾𝑥 + 𝛿𝑦 + 𝑏
) = 𝑓 (

𝛼(𝑠 + 𝜗) + 𝛽(𝑡 + 𝜇) + 𝑎

𝛾(𝑠 + 𝜗) + 𝛿(𝑡 + 𝜇) + 𝑏
)

= 𝑓 (
𝛼𝑠 + 𝛽𝑡

𝛾𝑠 + 𝛿𝑡
) = (

𝑡

𝑠
)

2

.              

 

Let us recall a relation between the derivatives from 

classic calculus, 

𝑢𝑥𝑥 = 𝑢𝑠𝑠,    𝑢𝑦𝑦 = 𝑢𝑡𝑡,  

 

moreover, we take the boundary value problem in 

ordinary calculus as follows: 
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𝑢𝑠𝑠 = (
𝑡

𝑠
)

2
𝑢𝑡𝑡, 𝑢(−𝜗, 𝑡 + 𝜇) = 𝑢(𝑁 − 𝜗, 𝑡 + 𝜇) =

0, 𝜗, 𝜇 ∈ ℝ.                 (17) 

 

Let us construct its associated equation in 𝑞-calculus 

𝑢̃𝑠𝑠 = (
𝑡

𝑠
)

2
𝑢̃𝑡𝑡, 𝑢(𝑞−𝜗, 𝑡 + 𝜇) = 𝑢(𝑞𝑁−𝜗, 𝑡 + 𝜇) =

0, 𝜗, 𝜇 ∈ ℝ.                (18) 

 

Case 3. 

If 𝑎2 + 𝑏2 > 0, then we consider the case 

|
𝛼 𝛽
𝛾 𝛿

| = 0.                          (19) 

    
Let us now assume that 𝛼𝛿 − 𝛽𝛾 = 0, so there 

exists   𝜆 ∈ 𝑅, such that 𝛾 = 𝜆𝛼, 𝛿 = 𝜆𝛽. 

Since, 

𝑓(𝑡) = (
𝛾𝑡 − 𝛼

𝛿𝑡 − 𝛽
)

2

= (
𝜆𝛼𝑡 − 𝛼

𝜆𝛽𝑡 − 𝛽
)

2

= (
𝛼

𝛽
)

2

, 

 

the problem (10)-(11) is now written in the form: 

𝑢𝑥𝑥 = (
𝛼

𝛽
)

2
𝑢𝑦𝑦,      𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0,       (20) 

 

which is a wave-problem, and its solutions are known. 

This last case, Case 3, also includes the subcases when     

𝛼 = 𝛽 = 0 or 𝛾 = 𝛿 = 0.  

We are assuming that 𝛾 = 𝛿 = 0, while 𝑎2 + 𝑏2 > 0, 

so  equation (10) has the form: 

𝑢𝑥𝑥 = 𝑓 (
𝛼𝑥 + 𝛽𝑦 + 𝑎

𝑏
) 𝑢𝑦𝑦. 

 

Then for the function 𝑓 we have:  

𝑓(𝑡) = (
𝛾𝑡 − 𝛼

𝛿𝑡 − 𝛽
)

2

= (
𝛼

𝛽
)

2

, 

then  

𝑢𝑥𝑥 = (
𝛼

𝛽
)

2
𝑢𝑦𝑦,     𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0.        (21) 

 

We are assuming that 𝛼 = 𝛽 = 0, while 𝑎2 + 𝑏2 > 0, 

equation (10) has the form 

𝑢𝑥𝑥 = 𝑓 (
𝑎

𝛾𝑥 + 𝛿𝑦 + 𝑏
) 𝑢𝑦𝑦, 

where, 

𝑓(𝑡) = (
𝛾𝑡 − 0

𝛿𝑡 − 0
)

2

= (
𝛾

𝛿
)

2

, 

then  

𝑢𝑥𝑥 = (
𝛾

𝛿
)

2
𝑢𝑦𝑦,     𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0.        (22) 

 

We are assuming that 𝛼 = 𝛽 = 𝛾 = 𝛿 = 0, while             

𝑎2 + 𝑏2 > 0; equation (10) has the form: 

𝑢𝑥𝑥 = 𝑐2𝑢𝑦𝑦, 

then  

𝑢𝑥𝑥 = 𝑐2𝑢𝑦𝑦 ,      𝑢(0, 𝑦) = 𝑢(𝑁, 𝑦) = 0.         (23) 

Our work is based on these two problems (14) and 

(18) respectively 

𝑢̃𝑥𝑥 = (
𝑦

𝑥
)

2

𝑢̃𝑦𝑦,     𝑢(1, 𝑦) = 𝑢(𝑞𝑁, 𝑦) = 0 

𝑢̃𝑠𝑠 = (
𝑡

𝑠
)

2

𝑢̃𝑡𝑡,     𝑢(𝑞−𝜗, 𝑡 + 𝜇) = 𝑢(𝑞𝑁−𝜗, 𝑡 + 𝜇)

= 0, (𝜗, 𝜇) ∈ ℝ2\(0,0). 
 

3.2 Separation of Variables for Equation 

 (14) 
In this section, we will look for a generalized 

function 𝑢(𝑥, 𝑦) that satisfies the second-order 𝑞-

difference equation in the problem (14):  

𝑥2𝑢̃𝑥𝑥 = 𝑦2𝑢̃𝑦𝑦, 

 

which is equivalent to a second-order 𝑞-recursion 

relation 

𝑥2(𝑢(𝑞2𝑥, 𝑦) −  (𝑞 + 1)𝑢(𝑞𝑥, 𝑦) + 𝑞𝑢(𝑥, 𝑦))

(1 − 𝑞)2𝑞𝑥2

=
𝑦2(𝑢(𝑥, 𝑞2𝑦) − (𝑞 + 1)𝑢(𝑥, 𝑞𝑦) + 𝑞𝑢(𝑥, 𝑦))

(1 − 𝑞)2𝑞𝑦2
 

i.e., 

𝑢(𝑞2𝑥, 𝑦) −  (𝑞 + 1)𝑢(𝑞𝑥, 𝑦) + 𝑞𝑢(𝑥, 𝑦) =
𝑢(𝑥, 𝑞2𝑦) −  (𝑞 + 1)𝑢(𝑥, 𝑞𝑦) + 𝑞𝑢(𝑥, 𝑦).                     

(24) 

 

Using the separation of variables, we derive a 

specific eigenvalue problem with boundary 

conditions. 

So, let's have 𝑢(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦) so that 

𝑢(𝑞𝑥, 𝑦) = 𝑓(𝑞𝑥)𝑔(𝑦) and 𝑢(𝑞2𝑥, 𝑦) =
𝑓(𝑞2𝑥)𝑔(𝑦). This is also applied to terms 𝑢(𝑥, 𝑞𝑦) 

and 𝑢(𝑥,  𝑞2𝑦). We obtain that when we substitute 

these values into the  𝑞-difference equation (24), we 

obtain that: 

𝑓(𝑞2𝑥)𝑔(𝑦) −  (𝑞 + 1)𝑓(𝑞𝑥)𝑔(𝑦) + 𝑞𝑓(𝑥)𝑔(𝑦) =
𝑓(𝑥)𝑔(𝑞2𝑦) −  (𝑞 + 1)𝑓(𝑥)𝑔(𝑞𝑦) + 𝑞𝑓(𝑥)𝑔(𝑦)    

(25) 

 

Now we divide each side of (25) by 𝑓(𝑥)𝑔(𝑦) 

and then set both sides equal to a constant −𝜆 to 

obtain: 

𝑓(𝑞2𝑥) −  (𝑞 + 1)𝑓(𝑞𝑥) + 𝑞𝑓(𝑥)

𝑓(𝑥)

=
𝑔( 𝑞2𝑦) − (𝑞 + 1)𝑔(𝑞𝑦) + 𝑞𝑔(𝑦)

𝑔(𝑦)
= −𝜆,   

(26) 

 

and from boundary conditions of the problem (14): 
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𝑓(1)𝑔(𝑦) = 𝑓(𝑞𝑁)𝑔(𝑦) = 0.           (27) 

 

Hence, from (26) and (27), the eigenvalue problem 

for the function 𝑓 is: 

𝑓(𝑞2𝑥) − (𝑞 + 1)𝑓(𝑞𝑥) + (𝑞 + 𝜆)𝑓(𝑥) = 0,   
𝑓(1) = 𝑓(𝑞𝑁) = 0.                      (28) 

 

We will use a similar substitution technique as 

the one we use to convert the ordinary Euler-type 

differential equation into an equation with constant 

coefficients. 

Suppose that 𝑓(𝑥) = 𝛼log𝑞 𝑥 and  𝑔(𝑦) =

𝛽log𝑞 𝑦.  It is obvious that 

𝑓(𝑞𝑥) = 𝛼𝑙𝑜𝑔𝑞 𝑞𝑥 = 𝛼𝑙𝑜𝑔𝑞 𝑞+𝑙𝑜𝑔𝑞 𝑥 = 𝛼𝛼𝑙𝑜𝑔𝑞 𝑥

= 𝛼𝑓(𝑥) 
 

and 

𝑓(𝑞2𝑥) = 𝑓(𝑞(𝑞(𝑥)) = 𝛼𝑓(𝑞𝑥) = 𝛼2𝑓(𝑥). 
 

Now, we will make the following substitutions 

into the Euler-type equation in (28), and we will get 

𝛼2𝑓(𝑥) − (𝑞 + 1)𝛼𝑓(𝑥) + (𝑞 + 𝜆)𝑓(𝑥) = 0.  
with characteristic equation  

𝛼2 −  (𝑞 + 1)𝛼 + (𝑞 + 𝜆) = 0.          (29) 

 

We solve (29) as below: 

𝛼 =
𝑞 + 1 ± √(𝑞 + 1)2 − 4(𝑞 + 𝜆)

2

=
𝑞 + 1

2
± √(

𝑞 − 1

2
)

2

− 𝜆. 

 

Hence, we let: 

𝛼1 =
𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆   and   𝛼2 =

𝑞+1

2
−

√(
𝑞−1

2
)

2
− 𝜆. 

 

From the sign of ∆= (
𝑞−1

2
)

2
− 𝜆 we have the 

following three cases: 

Case I.   ∆> 0; 
Case II.   ∆= 0; 
Case III.   ∆< 0. 
 

The eigenvalues and general solutions of the Euler-

type equation in problem (28) for each of these 

cases are as follows: 

Case I.  𝜆 < (
𝑞−1

2
)

2
  𝛼1 ≠ 𝛼2, 𝛼1, 𝛼2 ∈ ℝ 

𝑓(𝑥) = 𝑐1𝑓1(𝑥) + 𝑐2𝑓2(𝑥) where 𝑓1(𝑥) and 𝑓2(𝑥) 

are linearly independent, so 

 𝑓(𝑥) = 𝑐1𝛼1
𝑙𝑜𝑔𝑞 𝑥 + 𝑐2𝛼2

𝑙𝑜𝑔𝑞 𝑥 .             (30) 

 

Our next step is to find the eigenvalues of (29). 

We apply the first Dirichlet condition 𝑓(1) = 0 to 

(30), and we obtain that:  

𝑓(1) = 𝑐1𝛼1
𝑙𝑜𝑔𝑞 1 + 𝑐2𝛼2

𝑙𝑜𝑔𝑞 1 = 𝑐1 + 𝑐2 = 0, 
 

so that  

𝑐 = 𝑐1 = −𝑐2. 
 

Now we will use the relationship between 𝑐1 

and 𝑐2 and apply it to the general solution (30), and 

then we will use the other Dirichlet condition 

𝑓(𝑞𝑁) = 0  

𝑓(𝑞𝑁) = 𝑐 (𝛼1
𝑙𝑜𝑔𝑞 𝑞𝑁

− 𝛼2
𝑙𝑜𝑔𝑞 𝑞𝑁

)

= 𝑐(𝛼1
𝑁 − 𝛼2

𝑁) = 0. 
 

Since for 𝑐 = 0 we obtain the trivial solution, 

we shall discuss the following conditions for 𝑁 ∈ ℕ  

𝛼1
𝑁 = 𝛼2

𝑁. 
 

This can occur for 𝛼1 = 𝛼2 or for even 𝑁, 𝛼1 =
−𝛼2.  

For 𝛼1 = 𝛼2 we have that 

𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆 =

𝑞+1

2
− √(

𝑞−1

2
)

2
− 𝜆    

i.e., 

√(
𝑞−1

2
)

2
− 𝜆 = 0  

so that: 

 𝜆 = (
𝑞−1

2
)

2
, 

 

which is not a valid value for 𝜆 in Case I.  

 

Next, for even 𝑁, 𝛼1 = −𝛼2 we have that 

𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆 = −

𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆.    

 

which leads us to 𝑞 = −1, contradicting the 

fact, 0 < 𝑞 < 1. Thus, there are no eigenvalues in 

this case.  

Case II.  𝜆 = (
𝑞−1

2
)

2
  𝛼1 = 𝛼2, 𝛼1, 𝛼2 ∈ ℝ 

𝑓(𝑥) = 𝑐1 𝑙𝑜𝑔𝑞 𝑥 𝑓1(𝑥) + 𝑐2𝑓1(𝑥) where 𝑓1(𝑥) and 

𝑙𝑜𝑔𝑞 𝑥 𝑓1(𝑥) are linearly independent. 

𝑓(𝑥) = (𝑐1 𝑙𝑜𝑔𝑞 𝑥 + 𝑐2) (
𝑞+1

2
)

𝑙𝑜𝑔𝑞 𝑥
.           (31) 

 

Now we look at the first Dirichlet condition in (31) 

to find 

𝑓(1) = (𝑐1 𝑙𝑜𝑔𝑞 1 + 𝑐2) (
𝑞 + 1

2
)

𝑙𝑜𝑔𝑞 1

= 0, 

so 𝑐2 = 0. 
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Let 𝑐 = 𝑐1, and then apply the second Dirichlet 

condition, which gives us the following equality 

0 = 𝑓(𝑞𝑁) = 𝑐 𝑙𝑜𝑔𝑞 𝑞𝑁 (
𝑞 + 1

2
)

𝑙𝑜𝑔𝑞 𝑞𝑁

= 𝑐𝑁 (
𝑞 + 1

2
)

𝑁

. 

 

For this to be true either 𝑐 = 0, 𝑁 = 0 or 𝑞 = −1, 

from which we do not obtain any eigenvalues. 

Hence, there are no eigenvalues. 

Case III.  𝜆 > (
𝑞−1

2
)

2
, 𝛼1,2 = |𝛼|(cos𝜃 ±𝑖𝑠𝑖𝑛𝜃),

𝛼1, 𝛼2 ∈ ℂ 
So, we have 

𝑓(𝑥) = 𝑐1𝛼1
𝑙𝑜𝑔𝑞 𝑥 + 𝑐2𝛼2

𝑙𝑜𝑔𝑞 𝑥

= 𝑐1(|𝛼|(cos𝜃 +𝑖𝑠𝑖𝑛𝜃))
𝑙𝑜𝑔𝑞 𝑥

+ 𝑐2(|𝛼|(cos𝜃 −𝑖𝑠𝑖𝑛𝜃))
𝑙𝑜𝑔𝑞 𝑥

 

𝑓(𝑥) = |𝛼|𝑙𝑜𝑔𝑞 𝑥[𝑐1(cos𝜃 +𝑖𝑠𝑖𝑛𝜃)𝑙𝑜𝑔𝑞 𝑥

+ 𝑐2(cos𝜃 −𝑖𝑠𝑖𝑛𝜃)𝑙𝑜𝑔𝑞 𝑥],   

𝑓(𝑥)

= |𝛼|𝑙𝑜𝑔𝑞 𝑥[𝑐1 cos(𝜃 𝑙𝑜𝑔𝑞 𝑥) +𝑖𝑐1𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑥)

+ 𝑐2 cos(𝜃 𝑙𝑜𝑔𝑞 𝑥) −𝑖𝑐2𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑥)] 

𝑓(𝑥) = |𝛼|𝑙𝑜𝑔𝑞 𝑥[(𝑐1 + 𝑐2) cos(𝜃 𝑙𝑜𝑔𝑞 𝑥) +𝑖(𝑐1

− 𝑐2)𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑥)]. 

From substitutions  𝑐1 + 𝑐2 = 𝑐3, 𝑖(𝑐1 − 𝑐2) = 𝑐4, 

this leads to the subsequent result 

𝑓(𝑥) = |𝛼|𝑙𝑜𝑔𝑞 𝑥[𝑐3𝑐𝑜𝑠(𝜃 𝑙𝑜𝑔𝑞 𝑥)

+ 𝑐4𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑥)],   
(32) 

 

where |𝛼| = √(𝑅𝑒𝛼)2 + (𝐼𝑚𝛼)2  and                                

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑅𝑒𝛼

|𝛼|
),  𝑐3, 𝑐4 ∈ ℝ. 

At the end, we will look at the case where 𝜆 >

(
𝑞−1

2
)

2
, we will use the equation (32) with the first 

Dirichlet condition to find 

𝑓(1) = |𝛼|𝑙𝑜𝑔𝑞 1[𝑐3𝑐𝑜𝑠(𝜃 𝑙𝑜𝑔𝑞 1)

+ 𝑐4𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 1)] = 𝑐3 = 0. 

We let 𝑐 = 𝑐4, and apply the other Dirichlet 

condition to obtain: 

0 = 𝑓(𝑞𝑁) = |𝛼|𝑙𝑜𝑔𝑞 𝑞𝑁
(𝑐𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑞𝑁)) =

𝑐|𝛼|𝑁𝑠𝑖𝑛(𝜃𝑁).                    (33) 

 

Note that 

|𝛼| = √(
𝑞+1

2
)

2
− (

𝑞−1

2
)

2
+ 𝜆 = √𝑞 + 𝜆 and                               

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑅𝑒𝛼

|𝛼|
) = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑞+1

2√𝑞+𝜆
). 

 

Therefore, we obtain from (33) that: 

0 = 𝑓(𝑞𝑁) = 𝑐(√𝑞 + 𝜆)
𝑁

𝑠𝑖𝑛(𝜃𝑁).            (34) 

 

If we look at the conditions at (34),  𝑐 = 0, 𝜆 = −𝑞 

it may be suitable because −𝑞 > (
𝑞−1

2
)

2
 is a 

contradiction. So, we consider only that 𝑠𝑖𝑛(𝜃𝑁) =
0. This leads us to 𝜃𝑘𝑁 = 𝑘𝜋, which gives us the 

values 𝜆𝑘 , 𝑘 ∈ ℕ0 where  

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑞+1

2√𝑞+𝜆𝑘
) =

𝑘𝜋

𝑁
.                  (35) 

 

Since the cosine function is an even function, 

we do not lose anything if we continue to take 𝑁 ∈
ℕ . Solving (35) for 𝜆𝑘 we have that: 

𝜆𝑘 = (
𝑞+1

2𝑐𝑜𝑠(
𝑘𝜋

𝑁
)
)

2

− 𝑞,                    (36) 

 

for 𝑘 = 0, . . . , (𝑁 −  2)/2 if 𝑁 is an even integer 

and 𝑘 = 0, . . . , (𝑁 −  1)/2 if 𝑁 is an odd one. 

Hence, we obtain the following main result. 

 

Theorem 3.1 

Let 𝑁 ∈ ℕ. The problem (14) has 

exactly [
𝑁+ 1

2
]  where [·] denotes the greatest integer 

function, eigenvalues, and they can be calculated 

from the formula (36). The corresponding 

eigenfunctions are given by 

𝑓𝑘(𝑥) = (√𝑞 + 𝜆𝑘)
𝑙𝑜𝑔𝑞 𝑥

𝑠𝑖𝑛 (
𝑘𝜋

𝑁
𝑙𝑜𝑔𝑞 𝑥).          (37) 

 

Example 3.1  

Let 𝑁 = 6. By (36), for 𝑘 = 0 and 𝑘 = 1, the 

eigenvalue and corresponding eigenfunctions are: 

𝜆0 = 𝜆6 = (
𝑞 − 1

2
)

2

 and  𝑓0(𝑥) = 0, 

𝜆1 =
𝑞2−𝑞+1

3
  and 𝑓1(𝑥) = (

𝑞+1

√3
)

𝑙𝑜𝑔𝑞 𝑥
𝑠𝑖𝑛 (

𝜋𝑙𝑜𝑔𝑞 𝑥

6
). 

 

For 𝑘 = 2, the eigenvalue and its corresponding 

eigenfunction are: 

𝜆2 = 𝑞2 + 𝑞 + 1 and 𝑓2(𝑥) = (𝑞 +

1)𝑙𝑜𝑔𝑞 𝑥𝑠𝑖𝑛 (
𝜋𝑙𝑜𝑔𝑞 𝑥

3
) 

𝜆2 = 𝜆4 = (
𝑞+1

−1
)

2
− 𝑞 and 𝑓4(𝑥) = [−(𝑞 +

1)]𝑙𝑜𝑔𝑞 𝑥𝑠𝑖𝑛 (
2𝜋𝑙𝑜𝑔𝑞 𝑥

3
), 

𝜆1 = 𝜆5 = (
𝑞+1

−√3
)

2
− 𝑞  and 𝑓5(𝑥) =

[− (
𝑞+1

√3
)]

𝑙𝑜𝑔𝑞 𝑥
𝑠𝑖𝑛 (

5𝜋𝑙𝑜𝑔𝑞 𝑥

6
). 

 

Next, for 𝑘 = 3 from (36), we will have that               

𝑞 = −1 which does not lead us to an eigenvalue. 

Similarly, we have that for 𝑘 = 4 and 𝑘 = 5 we 
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conclude that 𝑞 < −1.  We will obtain the same 

result as the above argument when the values of 

𝑘 grow. Hence, there are only two eigenvalues as 

given above. In particular, if 𝑞 =
1

2
, the eigenvalues 

are 
1

16
,

1

4
 and 

7

4
. 

 

Theorem 3.2 

Let 𝕋 be the set {𝑞𝑛}𝑛𝜖ℕ0
⋃{0}, where 0 < 𝑞 < 1, 

and let {𝜆𝑚}𝑚𝜖ℕ0
 be the sequence of eigenvalues of 

problem (14). Let 𝕋∗ be the set {𝑞−𝑛}𝑛𝜖ℕ0
, 

where 0 < 𝑞 < 1, and let {𝜇𝑚}𝑚𝜖ℕ0
 be the sequence 

of eigenvalues of problem (14). Then, 𝑞2𝜇𝑚 = 𝜆𝑚,
𝑚𝜖ℕ0. 
 

Proof:  

For 𝑞 = 2,  the eigenvalues are 
1

4
, 1 and 7, (see 

Bohner 2007). For 𝑞 =
1

2
, the eigenvalues are 

1

16
,

1

4
 

and 
7

4
.  

 

𝜆0 = (
𝑞 − 1

2
)

2

, 𝜆1 =
𝑞2 − 𝑞 + 1

3
,    𝜆2

= 𝑞2 + 𝑞 + 1 , . . .,

 𝜆𝑚 = (
𝑞 + 1

2𝑐𝑜𝑠 (
𝑚𝜋

𝑁
)

)

2

− 𝑞 

𝜇0 =
(

1

𝑞
− 1)

2

4
=

1 − 2𝑞 + 𝑞2

4𝑞2
=

𝜆0

𝑞2
 

  𝜇1 =

1

𝑞2 −
1

𝑞
+ 1

3
=

𝑞2 − 𝑞 + 1

3𝑞2
=

𝜆1

𝑞2
 

𝜇2 =
1

𝑞2
+

1

𝑞
+ 1 =

𝑞2 + 𝑞 + 1

𝑞2
=

𝜆2

𝑞2
. 

. 

. 

. 

𝜇𝑚 = (

1

𝑞
+ 1

2𝑐𝑜𝑠 (
𝑚𝜋

𝑁
)

)

2

−
1

𝑞
=

(
𝑞+1

2𝑐𝑜𝑠(
𝑚𝜋

𝑁
)
)

2

− 𝑞

𝑞2

=
𝜆𝑚

𝑞2
. 

 

3.3  Separation of Variables for equation 

 (18) 

𝑢̃𝑠𝑠 = (
𝑡

𝑠
)

2

𝑢̃𝑡𝑡,     𝑢(𝑞−𝜗, 𝑡 + 𝜇) = 𝑢(𝑞𝑁−𝜗, 𝑡 + 𝜇)

= 0, (𝜗, 𝜇) ∈ ℝ2\(0,0).  
 

We use the separation of variables to arrive at a 

specific eigenvalue problem. So, let (𝑠, 𝑡) =
𝑓(𝑠)𝑔(𝑡) and proceed as above, and by sign of 

[(
𝑞−1

2
)

2
− 𝜆], we have the following three cases: 

Case I. 

𝜆 < (
𝑞−1

2
)

2
 and     𝑓(𝑠) = 𝑐1𝛼1

𝑙𝑜𝑔𝑞 𝑠 + 𝑐2𝛼2
𝑙𝑜𝑔𝑞 𝑠,                                                                  

(38)  

 

Case II.  

𝜆 = (
𝑞−1

2
)

2
and 𝑓(𝑠) = (𝑐1 + 𝑐2 𝑙𝑜𝑔𝑞 𝑠) (

𝑞+1

2
)

𝑙𝑜𝑔𝑞 𝑠
 

(39) 

 

Case III.  

𝜆 > (
𝑞−1

2
)

2
and 𝑓(𝑠) =

|𝛼|𝑙𝑜𝑔𝑞 𝑠 (𝑐3𝑐𝑜𝑠(𝜃 𝑙𝑜𝑔𝑞 𝑠) + 𝑐4𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑠)), 

(40) 

 

where 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑅𝑒𝛼

|𝛼|
) dhe 𝑐3, 𝑐4 ∈ ℝ. 

The eigenvalues and general solutions of the Euler-

type equation in problem (18) with Dirichlet 

conditions:  

𝑓(𝑞−𝜗) = 𝑓(𝑞𝑁−𝜗) = 0 

 

for each case are as follows: 

Case I.  𝜆 < (
𝑞−1

2
)

2
  𝛼1 ≠ 𝛼2, 𝛼1, 𝛼2 ∈ ℝ. 

We apply the first Dirichlet condition 𝑓(𝑞−𝜗) = 0 

to (38) and obtain that: 

𝑓(𝑞−𝜗) = 𝑐1𝛼1
𝑙𝑜𝑔𝑞 𝑞−𝜗

+ 𝑐2𝛼2
𝑙𝑜𝑔𝑞 𝑞−𝜗

= 𝑐1𝛼1
−𝜗 +

𝑐2𝛼2
−𝜗 = 0 so, we have that 𝑐1 = −𝑐2 (

𝛼1

𝛼2
)

𝜗
. 

 

Now we use the relationship between 𝑐1 and 𝑐2 

and apply it to the general solution (30), and after 

that, we use the other Dirichlet condition 

𝑓(𝑞𝑁−𝜗) = 0.  

𝑓(𝑞𝑁−𝜗) = 𝑐1𝛼1
𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗

+ 𝑐2𝛼2
𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗

= 0, 

𝑐1𝛼1
𝑁−𝜗 + 𝑐2𝛼2

𝑁−𝜗 = 0 

−𝑐2𝛼2
−𝜗𝛼1

𝑁 + 𝑐2𝛼2
−𝜗𝛼2

𝑁 = 0 

𝑐2𝛼2
−𝜗(𝛼2

𝑁 − 𝛼1
𝑁) = 0 

 

Since for 𝑐2 = 0, 𝛼2
−𝜗 = 0 we have obtained a 

trivial solution, we shall discuss the following 

condition for 𝑁 ∈ ℕ  

𝛼1
𝑁 = 𝛼2

𝑁. 
 

This can occur for 𝛼1 = 𝛼2 or 𝛼1 = −𝛼2 for even 

𝑁.  

For 𝛼1 = 𝛼2 we have that: 
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𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆 =

𝑞+1

2
− √(

𝑞−1

2
)

2
− 𝜆    

i.e., 

√(
𝑞−1

2
)

2
− 𝜆 = 0 so that 𝜆 = (

𝑞−1

2
)

2
, 

 

which is not a valid value for 𝜆 in Case I.  

 

Next, for 𝛼1 = −𝛼2 we have that: 

𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆 = −

𝑞+1

2
+ √(

𝑞−1

2
)

2
− 𝜆.    

 

where we obtain that, 𝑞 = −1, contradicting the fact 

that 0 < 𝑞 < 1. Thus, there are no eigenvalues in 

this case.  

Case II.  𝜆 = (
𝑞−1

2
)

2
  𝛼1 = 𝛼2, 𝛼1, 𝛼2 ∈ ℝ 

Now we look at the first Dirichlet condition in (39) 

to find: 

𝑓(𝑞−𝜗) = (𝑐1 𝑙𝑜𝑔𝑞 𝑞−𝜗 + 𝑐2) (
𝑞 + 1

2
)

𝑙𝑜𝑔𝑞 𝑞−𝜗

= 0 

(−𝑐1𝜗 + 𝑐2) (
𝑞 + 1

2
)

−𝜗

= 0, 

 

which leads us to 𝑞 = −1, and again contradict the 

fact that 0 < 𝑞 < 1. Let’s have 𝑐2 = 𝑐1𝜗 and then 

apply the second Dirichlet condition, which gives 

the following equality: 

0 = 𝑓(𝑞𝑁−𝜗) = 𝑐1(𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗

+ 𝜗) (
𝑞 + 1

2
)

𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗

= 𝑐1𝑁 (
𝑞 + 1

2
)

𝑁−𝜗

. 

 

For this to be true, either 𝑐1 = 0, 𝑁 = 0 or 𝑞 = −1, 

from which we do not obtain any eigenvalues. 

Hence, also, in this case there are no eigenvalues. 

Case III.  𝜆 > (
𝑞−1

2
)

2
, 𝛼1,2 = |𝛼|(cos𝜃 ±𝑖𝑠𝑖𝑛𝜃),

𝛼1, 𝛼2 ∈ ℂ 

Now, we will use the equation (40) with the first 

Dirichlet condition to find: 

𝑓(𝑞−𝜗) = |𝛼|𝑙𝑜𝑔𝑞 𝑞−𝜗
(𝑐3𝑐𝑜𝑠(𝜃 𝑙𝑜𝑔𝑞 𝑞−𝜗)

+ 𝑐4𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑞−𝜗)) = 0  

𝑓(𝑞−𝜗) = |𝛼|−𝜗(𝑐3𝑐𝑜𝑠(−𝜗𝜃) + 𝑐4𝑠𝑖𝑛(−𝜗𝜃)) = 0 

 

Let 𝑐3𝑐𝑜𝑠(𝜗𝜃) = 𝑐4𝑠𝑖𝑛(𝜗𝜃) and apply the other 

Dirichlet condition to obtain: 

𝑓(𝑞𝑁−𝜗) = |𝛼|𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗
(𝑐3𝑐𝑜𝑠(𝜃 𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗) +

𝑐4𝑠𝑖𝑛(𝜃 𝑙𝑜𝑔𝑞 𝑞𝑁−𝜗)) = 0                (41) 

 

|𝛼|𝑁−𝜗 (𝑐3𝑐𝑜𝑠(𝜃(𝑁 − 𝜗)) + 𝑐4𝑠𝑖𝑛(𝜃(𝑁 − 𝜗)))

= 0 

|𝛼|𝑁−𝜗[𝑐3[𝑐𝑜𝑠(𝜃𝑁)𝑐𝑜𝑠(𝜃𝜗) + 𝑠𝑖𝑛(𝜃𝑁)𝑠𝑖𝑛(𝜃𝜗)]

+ 𝑐4[𝑠𝑖𝑛(𝜃𝑁)𝑐𝑜𝑠(𝜃𝜗)

− 𝑐𝑜𝑠(𝜃𝑁)𝑠𝑖𝑛(𝜃𝜗)]] = 0 

|𝛼|𝑁−𝜗[[𝑐4𝑐𝑜𝑠(𝜃𝑁)𝑠𝑖𝑛(𝜃𝜗) + 𝑐3𝑠𝑖𝑛(𝜃𝑁)𝑠𝑖𝑛(𝜃𝜗)]

+ [𝑐4𝑠𝑖𝑛(𝜃𝑁)𝑐𝑜𝑠(𝜃𝜗)

− 𝑐4𝑐𝑜𝑠(𝜃𝑁)𝑠𝑖𝑛(𝜃𝜗)]] = 0 

𝑠𝑖𝑛(𝜃𝑁)[𝑐3𝑠𝑖𝑛(𝜃𝜗) + 𝑐4𝑐𝑜𝑠(𝜃𝜗)] = 0 
 

From the last equality, we have that 𝑐3𝑠𝑖𝑛(𝜃𝜗) +
𝑐4𝑐𝑜𝑠(𝜃𝜗) = 0, or 𝑠𝑖𝑛(𝜃𝑁) = 0. If the first equality 

is true, we have that: 
𝑐3

𝑐4
𝑐3𝑐𝑜𝑠(𝜗𝜃) + 𝑐4𝑐𝑜𝑠(𝜃𝜗) = 0 

𝑐𝑜𝑠(𝜃𝜗) (
𝑐3

2 + 𝑐4
2

𝑐4
) = 0. 

Then, |𝛼| = 0,  𝑐3 =  𝑐4 = 0 or 𝑐𝑜𝑠(𝜃𝜗) = 0.  
 

So, we will consider only the other possible 

solution, which is 𝑠𝑖𝑛(𝜃𝑁) = 0. This leads us to 

𝜃𝑘𝑁 = 𝑘𝜋, which gives us the values 𝜆𝑘, 𝑘 ∈ 𝑁0, 

where 

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑞+1

2√𝑞+𝜆𝑘
) =

𝑘𝜋

𝑁
.                (42) 

 

Since the cosine function is an even function, we do 

not lose anything if we continue to take 𝑁 ∈ ℕ0. 

Solving for 𝜆𝑘 , we find that 

𝜆𝑘 = (
𝑞+1

2𝑐𝑜𝑠(
𝑘𝜋

𝑁
)
)

2

− 𝑞               (43) 

 

for 𝑘 = 0, . . . , (𝑁 −  2)/2 if 𝑁 is an even integer 

and    𝑘 = 0, . . . , (𝑁 −  1)/2 if 𝑁 is an odd integer. 

Hence, we determine the following main result. 

 

Theorem 3.3 

Let 𝑁 ∈ ℕ. The problem (18) has exactly ⌊(𝑁 −
 1)/2⌋  where ⌊·⌋ denotes the greatest integer 

function, eigenvalues, and they can be calculated 

from the formula (43). The corresponding eigen 

functions are given by 

𝑓(𝑠) = (√𝑞 + 𝜆𝑘)
𝑙𝑜𝑔𝑞 𝑠

𝑠𝑖𝑛 (
𝑘𝜋

𝑁
𝑙𝑜𝑔𝑞 𝑠)            (44) 

where, 

𝜆𝑘 = (
𝑞 + 1

2𝑐𝑜𝑠 (
𝑘𝜋

𝑁
)

)

2

− 𝑞. 
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4  Conclusion 
In this article, we have introducesd some basic 

properties of delta 𝑞-calculus and delta 𝑞-calculus 

on a time scale 𝕋𝑞 compared to the classical 

Newton-Leibniz calculus. We have analyzed a non 

classical 𝑞-difference equation, by using a 

transformation for the function which is involved in 

it. To continue, we have determined and combined 

some explicit formulas for eigenvalues 𝜆𝑘 and their 

count for the resulting eigenvalue problem and we 

have provided examples to illustrate the 

effectiveness of the proposed theorems. The 

obtained result will help us inour further study to 

find a lower and upper bound for the 𝑛-

𝑡ℎ eigenvalue to analyze the asymptotic behavior of 

eigenvalues on a Time Scale 𝕋𝑞 . These results will 

be combined with some well-known properties of 

oscillation theory to study the countability of these 

eigenvalues. 
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