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Abstract: The study of the optimally density-regulated recruitment plays a crucial role in the overall management
and determining of fishing efforts of marine fish populations. This paper will develop a Matlab code can deter-
mine what an optimal recruitment density regulation strategy would be for the un-fished population and what it
changes to when fishing efforts are applied. This code can determine threshold values used to avoid fisheries
from collapsing. The code will be applied to the Gulf of California Pacific sardine (Sardinops caeruleus) pop-
ulation. An age structured design with a Shepherd density regulating stock-recruitment function is used in this
study. In this work, the parameter which is varied is captured in the Shepherd recruitment function and is asso-
ciated with behavioral interventions such as selecting different drift routes and clumping on resources that will
increase egg-larvae survival to the recruitment stage. A detailed background study of other models is explored,
then a derivation of the Shepherd recruitment model is developed from the traditional discrete model. A special
MATLAB code is then developed to illustrate the pair-wise invasive plots for the model structures. The code is
for theoretical analysis of fish population models.
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1 Introduction
Darwinian dynamics, as proposed by [1] attributes
the ecological and evolutionary driving forces behind
natural selection (NS) to the inherit traits in popula-
tions which can vary slightly between members of
the same specie. In a restricted resource environ-
ment, where optimal practices matter, a small varia-
tion in trait resulting in a more efficient strategy lead-
ing to increased fitness (increased frequency/density)
will lead to the displacement of the less effective
trait holders. From [2], when consecutive strategy
displacements end in a trait that can’t be improved
upon when practised by an equilibrium population, it
is termed an evolutionary stable strategy (ESS) and
represents an unbeatable set of behavioural interven-
tions securing population persistence regarding that
strategy. When strategy displacement is directional
and converges to the ESS, it is also termed a con-
vergence stable strategy [3], [4], [5], [6]. If a strat-
egy, when practised by a rare population, can dis-
place an equilibrium population practising a differ-
ent strategy, it is referred to as a neighbourhood in-
vader strategy (NIS) property [7], [8], [9], [10]. From
[11], if a strategy is a CSS ending in an ESS and an
NIS it is termed an evolutionary neighbourhood in-
vader strategy (ESNIS) and is the optimal strategy
the code will attempt to find for a population dynam-

ics. A population whose structure allows for an ES-
NIS behavioural set should be able to rebound from a
low-density position and persist (return to itself) even
in the presence of alternative strategies. In the fol-
lowing discussions, strategy replacements are the dis-
placements of a population practising one set of be-
haviours, with a population practising a small vari-
ation on these behaviours, but which leads to an in-
crease in recruitment survival. The term ’a small vari-
ation in behaviour’ is associated with the term ’neigh-
bouring strategies’. The study of ESSs has a potential
of future studies, especially in periodically fluctuating
environments [12],[13].

From [14], [15] and [16] developing an optimiza-
tion mechanism for determining an ESNIS will re-
quire a strategy adaptive dynamics (AD) framework.
AD, which is used to drive the intended code, em-
barks on the increased fitness strategy replacement
quest bymeasuring the density gain of introducing the
current established equilibrium population to a new
set of behaviours (a new strategy) and projecting the
result onto a two-dimensional strategy adaptive land-
scape with the current strategy on the horizontal axes
and the measure of density gain on the vertical axes.
If the new strategy leads to an increase in the current
population’s density, it has positive gain over the cur-
rent strategy, which will lead to the replacement of the
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current strategy by the new strategy and that natural
selection will favour it.

Defining a suitable fitness proxy for measuring
density gain of one strategy over another, the non-age-
structuredmodel will be used as a demonstration, with
results extended to the age-structured model. A two
equation canonical strategy dynamics set (CE) is used
in the non-age structured case where the first gener-
ates the pure equilibrium density vector X̄ of the un-
contested common population X practising strategy
u by recusing the population model

Xn+1 = R(u,Xn)Xn (1)

until an N periodic equilibrium is reached and
Xn+N = Xn. R is the fitness function which was the
Shepherd function in the model used by [17] and re-
lates population densities. The equilibrium is defined
by

Xn+N = RN (u, X̄u)Xn (2)

where RN (u, X̄u) =
N−1∏
k=0

R(u,Xn+k)

and X̄(u) = {X(i)}, i = n, .., n + N − 1 is the
equilibrium vector ofX generated at u in the absence
of a new strategy. Since

R(u,Xn) =
Xn+1

Xn
, (3)

the complicated expression forRN can be avoided by
expressing (2) instead as the density ratio combina-
tion

RN (u, X̄u) =
N−1∏
k=0

Xn+k+1

Xn+k
(4)

The second equation in the CE set generates the
gain vector ḠX by introducing the established popu-
lation X̄(u) = X̄u to a new set of behaviours defined
by the strategy v. This is accomplished by evaluating
RN (v, X̄u) which identifies with the G-function and
the s-function in [18]. The gain vector is generated as

GXn+N = RN (v, X̄u)GXu (5)

where RN (v, X̄u) =
N−1∏
k=0

GXn+k+1

GXn+k

Although RN (v, X̄u) can serve as a fitness proxy
where positive gain is defined as values above unity
and negative gain as values below, its mathematical
definition is complicated compromising the applica-
tion of AD in pursuit of an ESNIS especially for large

periods. A more suitable replacement for RN (v, X̄u)
with positive and negative gain rather displaying as
positive and negative values is the invasion exponent
I as defined in [19] which captures the gain over one
period instead as

I(v, X̄u) =
1

N
ln
(
RN (v, X̄(u))

)
=

1

N

N−1∑
k=0

ln

(
GXn+1+k

GXn+k

)
(6)

Since for the pure population at equilibrium,
I(u, X̄u) = 0, v offers improved fitness over u if
I(v, X̄u) is positive and vice versa. The landscape
referred to earlier is the u vs I(v, X̄u) landscape
which terminates on a hilltop if v = w is an ESS
with further adjustment leading to negative gain in
both directions. The ESS strategy w will manifest
as a peak on the landscape. In determining if w is
also an NIS, equilibrium populations evolving from
alternative neighbouring strategy values u ̸= w
are introduced to the behaviour set defined by w
through the fitness proxy I(w, X̄u). Positive gain
in both directions indicates that if the strategy w
was introduced by a small density population, that it
will invade and displace its neighbours. Projecting
I(w, X̄u) (vertical axes) onto the adaptive landscape
for values of u (on the horizontal axes) neighbouring
w, the NIS property will manifest as a valley.

The Shepherd function was chosen as the recruit-
ment function in the age-structured model, as it con-
tains a parameteruwhich can be associatedwith regu-
lating the egg-larvae survival to the recruitment stage
and is suited to optimization. From [20], it is defined
as:

R(u,X(n)) =
r

1 +
(
X(n)
K

)u
The r in the above represents the intrinsic growth
rate, which is the maximum growth rate the popula-
tion can experience when X densities are very low
and are measured in recruits per unit biomass. The
density regulation activates when recruitment densi-
ties exceed the environmental limitation K. The ex-
tent of the regulation is driven by the parameter u
and is linked to varying endogenous processes such
as changing drift routes, predating, cannibalism and
competition for resources ( [21], [22]), used the pa-
rameter u in the Shepherd recruitment age-structured
model as a tuning parameter in fitting the model to
observed data but perceived u instead as an evolving
strategy in the non-age-structured case. Most ecosys-
tem forecasts use ecosystem models instead of age-
structured ones[23],[24]. Population control and den-
sity control play an important role in population mod-
elling, although it’s difficult to show [25],[26]. They
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calculated the ESS by instead using the 2-equation
mutual invasion CE set

Xn+1 = R(u,Xn + yn)Xn

=
r

1 +
(
Xn+yn

K

)uXn

yn+1 = R(v,Xn + yn)yn

=
r

1 +
(
Xn+yn

K

)v yn, (7)

In the above, the population X is the equilibrium
or common population with strategy u competing
against a small mutational population y with strat-
egy v in a shared environment with a density limita-
tion where at first y << X . Wins and losses were
recorded on pair-wise invasive plots (PIP) for con-
secutive matches played by the mutual invasion pairs
over a wide range of u and v values. The PIP plots
could determine the ESS.

The 1982 UN convention implemented control of
fishing efforts. This imposed fishing controls all over
the world to facilitate re-growth of the fish popula-
tion [27]. The study by [28] considered probabilis-
tic approach on fishing efforts. This model improved
the understanding of fish population changes in the
seas. Different studies have explored other recruit-
ment functions based on spatial population structures
[29], comparison of integrated fisheries stock assess-
ment and integrated population models [30], inclu-
sion of weather and climatic conditions in harvest-
ing controls [31], and the declining of acidic condi-
tions in seas is leading to improvement of fish popula-
tion [32]. None of these studies considered a special
MATLAB code to understand the Shepherd recruit-
ment function. This work explores the use of a code
that can solve models based on the Shepherd function.

2 The Age-structured Model
2.1 Population Dynamics
Borrowing from the age-structure design in [10]
where density regulation is assumed present only
at the recruitment level, the Shepherd function
is included as the compensatory survival rate
ψ(u,Xn−1) = R

S
(u,Xn−1) of the recruitment pop-

ulation Xn−1 comprising the vulnerable egg-larvae
stages to the first spawning age group x

1
(n) one time

step later as [18, 33, 20]

x
1
(n) = s

o
ψ(u,X(n− 1))X(n− 1) (8)

Besides the compensatory survival rate, the recruit-
ment population is also subjected to a non density reg-
ulated survival rate s

o
in (8). The next age group,

x
2
(n) = s

1
x

1
(n− 1), (9)

is the survivors of x
1
(n− 1) after being subjected to

a non density regulated survival rate s
1
. From (8),

x
1
(n − 1) = s

o
ψ(u,X(n − 2))X(n − 2), allowing

x
2
(n) in (9) to be written in terms of the recruitment

population it generated from as
x

2
(n) = s

1
s

o
ψ(u,X(n− 2))X(n− 2)

In general, each age group in an m age group model
can be expressed in terms of the recruitment popula-
tion it generated from as:

x
i
(n) =

(
i−1∏
k=0

s
k

)
ψ(u,X(n− i))X(n− i)

i = 1, ..,m (10)
where s

k
, k = 0, ..,m − 1 are non density regulated

survival rates. If further each of the x
i
(n) in (10)

contribute constant reproduction proportions b
i
x

i
(n),

i = 1, ..,m towards the next recruitment tally X(n),

X(n) =
m∑
i=1

b
i

(
i−1∏
k=0

s
k

)
ψ(u,X(n− i))X(n− i)

=
m∑
i=1

Aiψ(u,Xn−iXn−i (11)

=
m∑
i=1

Aiψ(u,Xn−i)
Xn−i

Xn−m
Xn−m

= R(u,X(u))X(n−m)

or rather
Xn+m = R(u,Xu)X(n) (12)

where, for i = 1, ..,m, Ai = b
i

(∏i−1
k=0 sk

)
are the

population parameters, Xu = {Xn−i, i = 1, ..,m}
is the recruitment vector overm generations (and not
over one period) and R(u,Xu) = X(n+m)

Xn
is the re-

cruitment fitness function representing the progress
in recruitment densities over m generations (and not
stock densities over one time interval as in the non
age-structured case (2)). X̄u is generated by recurs-
ing (12) until an equilibrium is reached with period
N (note that Xu ⊆ X̄u). From (4) and (6), a simple
expression for I in evaluating the gain of strategy v
over u can be defined by generating the gain popula-
tion vector ḠX(v, X̄u) through recursions of

GXn =
m∑
i=1

Aiψ(v,Xn−i)GXn−i

= R(v,Xu)GXn−m (13)
over N time intervals using the entries of X̄u.
RN (v, X̄u) is then defined as

RN (v, X̄u) =
N−1∏
k=0

GXn+m+k

GXn+k

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.32 Michelle M. Erasmus, Gilbert Makanda

E-ISSN: 2224-2880 290 Volume 23, 2024



and the invasion exponentmeasuring the net gain over
one period as

I(v, X̄u) =
1

N

N−1∑
k=0

ln

(
GXn+m+k

GXn+k

)
(14)

The (Matlab) code addressing the model param-
eters required for the recursion model (11) is shown
in Fig.3 (see Appendix B). The code starts with u =
10 and simulates NS by embarking on a systematic
search for the hilltop on the landscape defined by (14).
M = 60000 recursions will ensure an equilibrium
state of which the lastN = 8! captures the most pop-
ular periods but is large enough to include chaotic and
quasi-periodic tendencies. A maximum of T = 200
strategy adaptations may avoid a runaway search for
the CSS. From the chosen initial strategy u = 10,
adaptations u = u + f are made in increments of
the evolution step size f where at first f = 1 until
the CSS is over stepped after which f is reduced to
f
10 and adaptations are made in the opposite direction.
After every over step, f is further reduced, and the di-
rection changed, which simulates NS converging on
an evolutionary attracting strategy. During numerical
calculations, values are less than thresh = 0.0001
are taken as zero. The remainder of the coefficients
are model specific and will be defined in section 3 for
a hypothetical model corresponding to m = 3 and a
real world model corresponding tom = 6.

2.2 Strategy Adaptive Dynamics
Tapping from literature in evolutionary ecology such
as [3], [4], [5], the ESNIS sought after is an unbeat-
able set of behavioural interventions securing popu-
lation persistence in the presence of small mutational
changes in these behaviours and has three properties;
it’s population must be unbeatable when at an equi-
librium/common density (ESS), invasive at low den-
sities (NIS) and, most importantly, must be evolution-
ary possible through directional adaptations (CSS).
In this section the direction of adaptations in u will
be determined for a CSS ending in an ESS optimiza-
tion. From [18], the mutational strategies straddling
u, v = u± h, with gain step size |h| << 1 are on the
CSS convergence path if one of them can invade the
common population X̄(u). The common strategy is
adapted to u = u + f in the direction of the invader,
a process that is repeated until u reaches the ESS w
after which neither of the two v = w ± h are able
to invade X̄w, defining a hilltop. If v = u + h is an
invader, equation (14) will be positive

I(v, X̄u) > 0, X̄u = X̄(u) (15)

A first order Taylor expansion of I(v, X̄u) = I(u +
h, X̄) leads to

I(u+ h, X̄u) = I(u, X̄u) +

(
∂I

∂v

)
v=u

h+O(h2)

≈
(
∂I

∂v

)
v=u

h (16)

since I(u, X̄u) = 0, and the truncation error O(h2)
is taken as negligible on account of |h| << 1. From
[4] and [34], the fitness gradient ∂I

∂v v=u
indicates the

direction of improved strategies in accordance with
Fisher’s fundamental theorem of NS where

un+1 = un + α

(
∂I

∂v

)
v=u

= u(n) + f (17)

Here f = α
(
∂I
∂v

)
v=u

is the strategy evolution step
size. The speed term α in f varies according to pop-
ulation size, structure and genetic possibilities [4].
From (17), when

(
∂I
∂v

)
v=u

> 0, NS will favor strat-
egy adaptations to the right of u and vice versa. Adap-
tations to u in the code is in terms of the evolutionary
step size f (initiated at f = 1) added to u in accor-
dance to the sign of the fitness gradient. The CSS
code in Fig.5 (see Appendix B) approximates the fit-
ness gradient for a given u with equilibrium popula-
tion X̄u(u) by repeating the calculations leading to
(16) for v = u − h which results in a second equa-
tion which, when subtracted from (16), results in the
central difference equation expression(

∂I

∂v

)
v=u

≈ I(u+ h, X̄u)− I(u− h, X̄u)

2h
(18)

With reference to Fig.4 (see Appendix B), for every
pure population X̄u, two gain populations ¯GXR(u+
h, X̄u) and ¯GXL(u − h, X̄u) with h = 0.001 must
be generated by recusing (11) overM time intervals,
firstly for the pure population and then the gain popu-
lations as they require the entries of the already gener-
ated X̄u. Each of the three populations will requirem
initial conditions in in the range

[
0,K

]
and will require

the assembly of m previous generations with ampli-
tudes defined by A

i
, i = 1, ..,m. Once a strategy

u = w is calculated for which
(
∂I
∂v

)
v=u=w

≈ thresh,
u is termed an evolutionary singular strategy (ess)
(see [18]) and, as it also represents a hilltop on the
(u, I) adaptive landscape, it is a local ESS. The hilltop
status is determined by calculating the second deriva-
tive using the numerical approximation

∂vv|v=u=w ≈ DI

h2
(19)
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DI = I(u+ h, X̄u)− 2I(u, X̄u) + I(u− h, X̄u)

which must be negative [4]. The evaluation of the
fitness gradient is captured in Fig.5 (see Appendix
B)where

I(u+ h, X̄u) = IXR

I(u− h, X̄u) = IXL

I(u, X̄u) = IX

Each adaptation to u is a distance f from u in the di-
rection determined by the sign ss of (18). If ss is pos-
itive, f is positive and vice versa. If ss at time step n
is oppositely signed from ss at step n− 1, the hilltop
was stepped over and it is time to reduce the step size
to f = f

10 and apply adaptations in the opposite di-
rection until the hilltop is stepped over again, requir-
ing a further reduction f = f

10 which will define the
CSS convergence path [8, 14, 17]. If this converging
process exceeds T adaptations without (18) reaching
thresh and (19) testing negative, the hilltop does not
exist for the chosen model parameters and the process
is terminated with the break command. This part of
the code is shown in Fig.6 (seeAppendix B)withMat-
lab instruction ∼= for ̸=. The code must terminate if
a hilltop u = w is reached, representing optimal be-
haviour from the common population’s point of view
in regulating recruitment densities favoured by NS.
The question now is if w also represents an optimal
strategy from a rare invader’s point of view, the out-
come w of the CSS ending in an ESS code is tested
against the NIS property.

It will be assumed that the CSS u = w belongs
to the rare population x generated at w and the inves-
tigation conducted is to determine under which cir-
cumstances x will be able to invade any equilibrium
population Ȳu if the commonly used (equilibrium) u
is near the rarely used w. If w is a NIS, the gain inva-
sion exponent (14) will show positive growth

I(w, Ȳu) > 0 (20)
for a variety of nearby Ȳ (u) = Ȳu populations. It will
be assumed that one such choice in a local neighbour-
hood of w is u = w+h and that the equilibrium Ȳu is
only slightly different to the equilibrium X̄(w) = Xw

as u and w are near neighbours on the strategy evo-
lution axes. The Taylor expansion of Ȳu will result
in

Ȳ (w + h) = Ȳ (w) +

(
∂Ȳ

∂u

)
u=w

h+O(h2) (21)

OmittingO(h2) terms in (21) and realizing that Ȳw =
X̄w, the expansion of the Invasion exponent (20) sim-
plifies to

I(w, ¯Yw+h) ≈ I(w, Ȳw +

(
∂Ȳ

∂u

)
h)

≈ I(w, X̄w) +

(
∂I

∂Ȳ

)(
∂Ȳ

∂u

)
h

=

(
∂I

∂Ȳ

)(
∂Ȳ

∂u

)
h (22)

=

(
dI

du

)
u=w

Ȳ =X̄

h, (23)

[(
∂I

∂Ȳ

)
=

(
∂I

∂Ȳ

)
Ȳ=X̄

,

(
∂Ȳ

∂u

)
=

(
∂Ȳ

∂u

)
u=w

]
If w is an NIS, equation (23) must be positive for all
u in a local neighbourhood of w which is possible if
both dI

du and h are either positive or negative and in-
creasingly so as h becomes larger with I(w, Ȳu) = 0
at u = w. This defines I(w, Ȳw) as a minimum on
the I vs u adaptive landscape. In formulating a code
friendly expression for dI

du , Ȳu in (22) is evaluated at
u = w − h resulting in the expression

I(w, Ȳw−h) ≈ −
(
dI

du

)
u=w

Ȳ =X̄

h (24)

which enables the calculation of dI
du by subtracting

(24) from (23) as the nested central difference equa-
tion

dI

du
=
I(w, Ȳw+h)− I(w, Ȳw−h)

2h
(25)

with the second derivative defined as,

IY Y | u=w

Ȳ =X̄
≈ DI

h2
> 0 (26)

DI = I(w, Ȳw+h)− 2I(w, Ȳw) + I(w, Ȳw−h)

The code determines w’s NIS status by calculating
(25) and (26) using the pure populations Ȳw−h = Ȳ L
and Ȳw+h = ¯Y R and their respective gain popula-
tions ¯GY L and ¯GY R as shown in Fig.7 and Fig.8 (see
Appendix B).

3 Model Structure and Plots
The code was executed for the following two models:
Hypothetical model: Anm = 3 population with

s̄ = [0.25 , 0.6 , 0.7]

b̄ = [1.5 , 2 , 4]

K = 1 and in = 0.8

Real world model: Anm = 6 Pacific sardine popula-
tion off the Gulf of Mexico with parameters estimated
from Nevárez-Martínez et al (1999) as

s̄ = [0.25 , A , A , A , A , A]

b̄ = [2.3 , 2.3 , 2.3 , 2.3 , 2.3 , 2.3]

K = 1 and in = 0.1
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where A = e−0.77−F (27)

The F is the fishing mortality factor where F = 0
represents the un-fished population.

As in the non age-structured case in [17], the opti-
mum strategywwas calculated for a range of 1 < r <
2 values resulting in Figure 1 (See Appendix A) for
the hypothetical model which serves as demonstration
for the concepts introduced in this paper and the effect
the choice of r has on model dynamics. These plots
show the adaptive landscape in the first column with
the ESS and NIS properties manifesting as maxima
and minima where they exist. The equilibrium popu-
lation output X̄w is in the second column and the PIP
plot in the third column.

1. Adaptive landscape plots: The Invasion expo-
nents of the gain populations I(v, X̄w) = IX ,
were plotted over the range v = w − 0.5 : 0.01 :
w+0.5. The NIS property was either confirmed
or ruled out by plotting the invasion exponents
of the gain populations I(w, Ȳu) = IY over the
grid u = w− 0.5 : 0.01 : w+0.5. The two plots
share the same axes with the net gain IX and IY
on the vertical axes and the strategy u or v on the
horizontal axes.

2. Population plot: The equilibrium recruitment
population densities X̄w spanning the last 30 time
units of theM recursions are plotted against dis-
crete time n.

3. PIP plot: These plots are similar to the PIP’s
discussed in Diecmann and Ferriere (2004) and
Geritz et al. (1998) and serve as a graphic plat-
form for analysing the local ESS, CSS and NIS
properties ofw as well as other interesting occur-
rences. The mutual invasion CE model, adapted
to the age-structured case was run over a grid
with the vertical axes representing rare popula-
tions practising strategies v = w − 0.5 : 0.01 :
w+0.5 and the horizontal axes representing equi-
librium/common strategies u = w − 0.5 : 0.01 :
w+0.5. The initial values of the rare population
Yn practising v were entered as 0.01 and those
of the common population Xn practising u was
entered as 0.8. The competition ran over 50 000
time units for each pair with the average yav and
Xav populations calculated from the output over
the last 1000 time units. When a population’s av-
erage was less than 0.01, it was regarded as dis-
placed (extinct).

3.1 The PIP Plots
Borrowing from Geritz et al. (1998), the interpreta-
tion of the colour codes in the PIP plots in the third
columns of Figure 1 are listed in Appendix A. The

various degrees of cooperation between populations
ranging from full to none are determined by the
mutual invasion model outcomes Xav and yav.

1. Circle ◦: Full cooperation at 50 : 50 was ob-
served when u = v (competing against itself)
or when strategies were perfectly symmetrical
about w. NS favours both parties when rare,
leading to a possible dimorphic partnership with
an equilibrium showing equal occupation status.
These pairs satisfy ∥Xav − yav∥ < 0.01 and are
situated along the minor diagonal (bottom left to
top right) as well as the major diagonal (top left
to bottom right).

2. Grey along the major diagonal: Almost full co-
operation at 65 : 35was observed when both par-
ties were almost symmetrical about w but one
party was slightly closer to w leading to NS
favouring both when rare but the closer party had
the advantaged with approximately a 65% occu-
pation status. This outcome remains unchanged
whether the closer party is initiated as rare or
common. Two cases were observed:

• Case 1: The dark grey regions along the ma-
jor diagonal, the commonly used strategy
u is marginally closer to w with outcome
Xav > yav.

• Case 2: The light grey regions along thema-
jor diagonal are regions where the rare strat-
egy v is closer to w and yav > Xav.

3. Grey along the minor diagonal: There was low
cooperation at 95 : 5 when both parties are near
neighbours (almost identical) but the rare party
v is slightly closer to w. This outcome was
detected in two cases:

• Case 3: When strategies u and v were ap-
proximately 0.01 units apart, NS could not
distinguish between them and the status quo
remained, with the rare population occupy-
ing approximately 5% of the environment.
These pairs, corresponding with Xav >>
yav, are indicated in dark grey along the mi-
nor diagonal.

• Case 4: When the strategy difference be-
tween u and v was more significant at ap-
proximately 0.1 units, NS detected the rare
strategy as an improvement, which lead
to the rare population becoming common
while the common population became rare.
These pairs, corresponding with yav >>
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Xav, are indicated in light grey along themi-
nor diagonal.

4. Black and white: There was no cooperation at
100 : 0 when NS strongly favours only one strat-
egy to the point of a 100% occupation status, dis-
placing the other party. Two cases arose:

• Case 5: The black regions are combinations
where the common strategists u displace the
rare strategists vwith no cooperation. These
strategies are at least 0.15 units apart with
the common strategists closer to w. Fitting
a vertical line through a chosen u on the hor-
izontal axes starting and ending in a black
region will straddle regions of cooperation
(white, gray, and dark gray). The u value
for which the vertical interruption is mini-
mal defines an optimum and is by definition
a local ESS as this u value will displace all
rare strategists in its neighbourhood.

• Case 6: The white regions are combina-
tions where the common u strategists are
displaced by the rare v strategists with no
cooperation. These strategies are at least 0.2
units apart with the rare strategists closer to
w. Fitting horizontal lines through v val-
ues starting and ending in a white region
also straddle regions of cooperation, as the
distances between strategies are not distinct
enough for NS to have a clear preference.
The horizontal line with the least amount of
interruption is by definition a NIS as this v
strategy can displace all common strategists
in its neighbourhood to a larger extent.

5. Identifying the CSS: w must be an ESS, NIS and
CSS to be a likely outcome of evolution. From
the above discussion, the ESS and NIS status of
w can be determined on the PIP plots by draw-
ing horizontal and vertical lines through (w,w)
but the manifestation of the CSS condition on
the PIP plot must still be demonstrated. For w
to be a CSS, the strategy path leading to w must
be defined by small strategy adaptation where a
rare population v = u

i+1
closer to w must be

detectable to NS to the extent of no cooperation
with the common strategist u = u

i
which de-

scribes strategy pairs in the white regions border-
ing theminor diagonal. After displacing the com-
mon strategists, the new population must first
reach an equilibrium (the black edge of the mi-
nor diagonal) before a next rare invasive strategy
v = u

i+2
even closer to w is introduced. Con-

necting coordinates (u = u
i
, v = u

i+1
) in a white

region to the equilibrium are (u = u
i+1
, v =

u
i+1

) in the black region to the next invasion are

(u = u
i+1
, v = u

i+2
) in the white region, an-

imates a stair climbing process along the minor
diagonal towards w. In each of these near neigh-
bour cases along the minor diagonal (including
the light and dark grey regions described by cases
3 and 4), if v is entered as common and u as rare,
the closer v strategists displace the rare strate-
gists (black region), proving that evolution won’t
change direction but will keep climbing the stair-
case towards w. This one-way stairway defines
the CSS path and ensures that Darwinian dynam-
ics returns strategies back to the ESS should there
be slight perturbation in the strategy or rather the
behaviour it represents.

3.2 Model Discussion
In the hypothetical case it was observed in the
outcome of the ESNIS search that the closer r is to
its bottom boundary r = 1, the higher the value of
w is and the higher the period is of the population
output. This can be ascribed to a low intrinsic growth
rate, which will necessitate abrupt behavioural inter-
ventions to promote population stability. The closer
r is to the upper limit r = 2 however, less drastic
interventions are required for population densities to
return to normal. Specifically pertaining to Figure.1
(See Appendix A),

Row i) r = 1.36 andw = 17.33: All three proper-
ties are observed. The population output has a period
4.
Row ii) r = 1.47 and two w outputs, one at w = 12
(when the code was initiated at u = 10) and the
other at w = 11.04 (when the code was initiated
at u = 10.5): The optimal strategy w = 12 is an
ESS as the vertical line passing through u = 12 de-
fines a minimum cooperation situation compared to
its immediate neighbours. It is however, not a CSS
as, from the PIP plot, there is no stairway leading to-
wards it. In [8] this configuration was referred to as a
‘Garden-of-Eden’ in 1989 and an unlikely outcome to
NS. When the strategy search was instead initiated at
u = 10.5,the code terminated inw = 11.04 but, as the
stairway only exists to the left of this ESS,it is not a
CSS. Neither of these two ESS’s have the NIS prop-
erty, which is confirmed by the adaptive landscape
plots for both outcomes. The population output when
w = 11.04 has a period 4.
Row iii) r = 1.65 and w = 8.05: All three properties
are observed. The population output has period 2.

The sardine population was run with a constant
r = 1.65 for different fishing mortality rates to deter-
mine when the population can no longer support an
ESNIS. Specifically pertaining to Figure 2 (See Ap-
pendix A),
Row i)With no fishing, the population shows a period
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two abundance with an ESNIS strategy ofw = 7.794.
Row ii) When a fishing mortality of F = 0.22 is ap-
plied, the population could maintain a period two ES-
NIS of w = 9.462 which shows that a change in be-
haviour was required to accommodate lower age spe-
cific survival rates. The peaks and troughs are more
exaggerated when compared to the unfished popula-
tion.
Row iii) Moving fishing mortality up to F = 0.42
lead to a quasi periodic outcome with population
abundance estimated at every 4 to 5 years. The pop-
ulation is no longer capable of an ESNIS but only an
ESS with w = 13.758 (See Figure 2 (See Appendix
A). This population is more likely to run the risk of
collapse if this rate of fishing continues, as its dynam-
ics no longer allow for behavioural intervention that
can rebound densities to maintain the population.

4 Conclusion and Future Research
The code developed in this paper simulated the be-
havioural changes population dynamics allow when
circumstances change. It is therefore suitable to
an extent for the investigation of fishing mortality
rates provided model parameters can be estimated to
match observed abundance rates. The code and pa-
per is intended for experimentation for persons new to
the field of ecological optimization. Future research
will include more real-world data analyses and ob-
served changes in strategy over time. The paper made
derivation of the Shepherd recruitment function from
the traditional discrete model and showed a detailed
analysis of the function and a unique MATLAB code
that is included in the appendices (See Appendix B).
The paper shares the code, in other studies no code has
been included. The method can be used as an alterna-
tive method to solve models similar to the Shepherd
recruitment function. Also, developments from the
code can easily be made to include other factors, such
as stochastic effects and other environmental factors.
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Appendix A
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Fig. 1: Form = 3: i) For r = 1.36, w = 17.33 is an ESS. ii) For r = 1.47, w = 12 is a ‘Garden of Eden’ ESS
but w = 11.04 is a CSS and ESS. iii) For r = 1.65, w = 8.05 is a ESNIS
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Appendix B
In this appendix, all codes used in the text of this paper are shown.

Fig. 3: Matlab code addressing model parameter entries and Ai calculations
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Fig. 4: Matlab code addressing the calculation of the next generation recruitment population as well as the gain
populations.
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Fig. 5: Matlab code for calculating the gain of v over u.

Fig. 6: Matlab code for determining evolution step size f and direction of improved fitness
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Fig. 7: Matlab code for generating the gain populations either side of the CSS population X̄w
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Fig. 8: Matlab code for determining if the CSS, w, is also a NIS
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