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Abstract: The interest in Gaussian mixtures has grown significantly in recent years, primarily owing to their
adaptability and widespread applications across various fields of knowledge. A specific category within these
mixtures is Gaussian mixtures with common variance, wherein the assumption is made that the variances of
all subpopulations are equal. This study delves Gaussian location mixtures family, exploring their applications,
characterizations, and the challenges associated with estimation. Following this, we introduce an approximation
to the beta distribution. When addressing scenarios involving two subpopulations, a novel test for equality of
variances is proposed, employing the beta distribution approximation. This paper presents a new test for variance
equality which is a novelty in the Gaussian mixture context. Practical applications for the proposed test are
provided and discussed.
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1 Introduction
The history of Gaussian mixtures models goes as far
as the nineteen century. In 1894, [1, 2] analysed a
sample of crabs to determine the size of their fore-
heads. He concluded that not a single species of crabs,
but a mixture of two crab species, was observed. In
a remarkable work, Pearson used a Gaussian mixture
to fit that data set. In this paper we consider Gaussian
mixtures in Pearson’s sense, that is, a Gaussian mix-
ture is a convexmixture of Gaussian random variables
when its density function is

fX (x) =

N∑
j=1

wj
1√
2πσj

exp

{
−1
2

(
x− µj

σj

)2
}
,

(1)

where σj > 0, wj > 0,
N∑
j=1

wj = 1 and N denotes

the number of Gaussian random variables, each with
mean µj , standard deviation σj and weight wj . Note
that some works from other authors as [3, 4] deal with
a different kind of Gaussian mixture, namely assum-
ing that one of the Gaussian distribution parameters is
a random variable, usually the scale parameter. This
is a type of infinite Gaussian mixture that will not be
tackled in this work. Independently of the type of the
considered mixture, all kind of mixtures are very ef-
fective when fitting real data since they can accom-
modate multimodality and a wide range of density
shapes. For example, [5] uses deep Gaussian mixture
models to describe data in a very flexible way, since
at each layer the variables follow a mixture of Gaus-

sian distributions. In a machine learning approach
for communications, [6] applies Gaussian mixtures
to channel estimation. However, previous examples
have a major counter back: a large number of param-
eters must be estimated. The increase of computa-
tional power throughout the last decades allowed the
software implement of the expectation-maximization
algorithm (EM) [7], used to numerically estimate the
parameters, despite of some convergence constraints
[8].

In this context, variance equality is an important
theme since inference procedures are usually more
simple and accurate under that assumption. More-
over, the previously indicated estimation issues be-
come less relevant since the number of parameters to
estimate diminishes. From a practical point of view,
it is also relevant to decide whenever subpopulations
variances can be considered as equal. Hence, in this
work we deal with Gaussian mixtures with common
variances, presenting some results under that assump-
tion. Furthermore, a variance equality test is devel-
oped.

2 Moments and Miscellaneous for

Gaussian Mixtures

Let us consider that a random variable X is a Gaus-
sian mixture with density as defined in Equation 1.
Therefore, moments can be obtained from cumulant
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generation function,

ln[ϕX (−it)] = κ1it−κ2
t2
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(
t5
)

(2)
with

κ1 = µ′
1; κ2 = µ(2); κ3 = µ(3); κ4 = µ(4)−3µ2

(2),

(3)
where µ(k) stands for the k-th centered moment, µ′

k
denotes the k-th raw moment and ϕX is the charac-
teristic function.

Two standard simplifications can be considered.
One corresponds to mean equality, that is, µj = µ for
j = 1, ..., N. Under mean equality, the mixture can
be approximated to the t-Student distribution. More-
over, t-Student distribution can be used to evaluate
the equality of means, that is, to test [9]

H0 : µ1 = µ2 = ... = µN .

The other standard simplification, that wewill deal
with in this work, is to consider σ2

j = σ2 for j =
1, ..., N.

Theorem 1. Let X be a Gaussian mixture where all
the subpopulations have equal variance σ2. Then

X
d
= V + Y

where V and Y are independent random variables,
V ∼ N (0, σ) and Y is such that P (Y = µj) = wj ,
for j = 1, ..., N .

Proof. Recall that for any independent random vari-
ables V and Y we have ϕ

V +Y
(t) = ϕ

V
(t)ϕ

Y
(t) and

that when V ∼ N (0, σ) then ϕ
V
(t) = exp

(
− t2σ2

2

)
.

Consequently, the characteristic function of the sum
of the independent variables V and Y defined above
is

ϕ
V +Y

(t) = ϕ
V
(t)ϕ

Y
(t) =

= exp

(
− t2σ2
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}
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X
(t) ,

and by the uniqueness of the characteristic function

we obtain X
d
= V + Y .

Thus, when all the Gaussian subpopulations share
the same variance, the mixture can be seen as a con-
volution between a Gaussian noise and a discrete ran-
dom variable [10]. This would take us to deconvo-
lution problems, often study in statistics [11, 12] but

beyond the scope of the present paper. The above con-
volution appears in many known applications. Previ-
ous work under amphibian nervous system [13, 14]
concluded that the junction between primary afferent
fibre and motoneurone provides joint electrical and
chemical transmission. The mixed synapse can be fit-
ted by binomial or Poisson convolutions with a Gaus-
sian noise. In image or signal processing, convolu-
tions between Poisson and zero mean Gaussian are
also used. For example, [15] refers that astronom-
ical images have additive uncorrelated noise. Pois-
son noise, due to photon arrival events, and Gaussian
white noise, due to commonly used digitized photo-
graphic plates.

Unimodality and multimodality are always possi-
ble, according with different combinations of parame-
ters [16]. If the mixture has an unimodal density func-
tion, it can be approximated to the Pearson system,
according to its β1 and β2 values [17], where β1 and
β2

β1 =
µ(3)

µ
3/2
(2)

; β2 =
µ(4)

µ2
(2)

(4)

are the skewness and the kurtosis coefficients. For
Pearson type I distribution (four parameters beta), the
approximation holds when

1.5β2
1 < β2 < 1.5β2

1 + 3. (5)

3 Two Subpopulations
The main goal of this work is to develop a variance
equality test for Gaussian mixtures, considering only
two subpopulations as the starting point. A sufficient
condition for unimodality, independent from the val-
ues of w1 and w2 is given by [18]

|µ1 − µ2| ≤ 2min (σ1, σ2) . (6)

We will now assume that the previous condition
holds. Nevertheless, in practical issues, it is often
complicated to distinguish if multimodality is due to
the model or to a particular sample issue [19]. When
the subpopulations share the same variance, that is
when σ2

1 = σ2
2 = σ2, it is clear that w1 = w and

w2 = 1 − w. Under these circumstances, and for a
wide range of values ofw, the mixture can now be ap-
proximated to a beta distribution [9, 10], using equa-
tion 5.

Theorem 2. Let X be a finite unimodal Gaussian
mixture with two components with equal variance. If

w ∈
[
1

2
±

√
3

6

]
,

then the mixture can be approximated to a beta distri-
bution.
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Note that the situation where µ1 = µ2 (leading to
a single gaussian) corresponds to the case where the
w interval is tighter. In any other scenario we obtain a
wider interval that contains the presented one. For ex-
ample, if |µ1−µ2| = σ we getw ∈ [0.1899; 0.8101] .
As previously stated, Theorem 2 holds for most uni-
modal mixtures with common variance. Mixtures
withw /∈ [0.2113; 0.7887] correspond, roughly, to the
contaminated populations problem, where a popula-
tion has a few elements that do not belong to it [20].
This is also an interesting problem, for example, when
dealing with infected or non infected elements from a
population with some disease.

4 Testing Variance Equality
As previously stated, the mixture can be approxi-
mated by a beta distribution when σ2

1 = σ2
2 , that is

X
◦∼ beta(a, b, p, q) or

Y =
X − a

b− a

◦∼ beta(p, q).

Unfortunately, in some situations when the variances
are different the approximation is still possible, even
theoretically (see example in Figure 1).

Figure 1: Region where condition (5) holds for
(w, µ1, µ2, σ1, σ2) = (0.35, 0, 2, σ1, σ2)

Hence, when testingH0: data follows a beta distri-
bution versus H1: data does not follow a beta distri-
bution, the rejection of H0 implies that σ2

1 6= σ2
2, but

ifH0 is not rejected then the variancesmay ormay not
be equal. Even though, σ2

1 and σ2
2 should be at least

close. Therefore, this test can be used to indirectly test
H0 : σ2

1 = σ2
1 vs H1 : σ2

1 6= σ2
2 or, in a equivalent

way, to test H0 : σ1 = σ1 vs H1 : σ1 6= σ2.
All the four parameters can be simultaneous es-

timated, numerically, by the maximum likelihood
method [21]. This method is already implemented
in some software, like the R package ExDist based

on [22] and [23] work. However, [21] states that
good results can only be achieved for large samples,
since convergence to a global maximum is not guar-
anteed. Alternatively, straightforward estimators for
a and b, based on the sample minimum and maximum
(minXi,maxXi) are

â = minXi −
maxXi −minXi

n

b̂ = maxXi +
maxXi −minXi

n
,

and then themoment estimators can be defined as [23]

p̂ =

(
X−a
b−a

)2 (
1− X−a

b−a

)
S2

(b−a)2
− X − a

b− a

q̂ =

(
X−a
b−a

)(
1− X−a

b−a

)
S2

(b−a)2
− 1− p̂,

where as usual X and S2 represent sample mean and
sample variance, respectively.

5 Applications
In this section we apply the test to three real data sets,
in order to understand if the results can be applied to
practical situations. For all the analysed data sets, the
unknown parameter vector (µ1, µ2, σ1, σ2, w), where
the parameter w corresponds to the first component
weight, was estimated by the EM algorithm using
MatlabR2013b. To compare models with common
and different variances, the Bayesian information cri-
terion (BIC) [24] was also computed. This is an in-
formation criterion that penalizes more severely over
fitting than the most used Akaike information crite-
rion. Smaller values of BIC are obtained for better
fitted models.

5.1 Applications to financial data

There are several applications concerning economical
data linked with Gaussian mixtures. In a very recent
work, [25] uses Gaussian mixture returns for portfo-
lio construction. In this paper we consider the model
of daily log-returns, a well known problem in finance.
Log-returns are defined as xt = ln(Xt) − ln(Xt−1),
where Xt represents the close index value of the t-th
day. Previous works like [26, 27, 28] suggest a wide
set of possible models, but Gaussian mixtures (with a
small number of components, preferably only two, to
avoid over-fitting) are a common choice. Let us con-
sider the daily log-returns from the PSI20 stock in-
dex. The data set comprehends the time gap between
2012/03/16 and 2017/03/17, roughly five years, and a
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Table 1: Estimated Gaussian mixture for the PSI20
data set.

µ̂1 µ̂2 σ̂1 σ̂2 ŵ
0.0011 −0.0024 0.0091 0.0176 0.6417

total of 1278 observations. Parameters estimates are
displayed in Table 1.

When analysing the histogram presented in Figure
2, the data can be considered as unimodal.

Figure 2: Histogram for PSI20 log-returns data.

When testing H0 : σ2
1 = σ2

2 vs H1 : σ2
1 6= σ2

2,
we obtain a p-value = 0.0110 and accordingly (re-
member that the test is quite conservative) we should
reject H0 and conclude for different variances. The
BIC measure, which greatly penalizes over fitting is
BIC = −7515.6568. For a Gaussian mixture with
the same variance we get BIC = −7510.9287 and,
as expected, the model with different variances yields
better results.

Next we present a similar example, for the daily
log-returns from the SP500 stock index. The data set
comprehends the same time gap but with a total of
1259 observations. The estimates are presented in Ta-
ble 2.

Table 2: Estimated Gaussian mixture for the SP500
data set.

µ̂1 µ̂2 σ̂1 σ̂2 ŵ
0.0007 −0.0001 0.0039 0.0104 0.5263

The data is clearly unimodal, as putted in evidence
by the histogram in Figure 3.

When testing H0 : σ2
1 = σ2

2 vs H1 :
σ2
1 6= σ2

2, we obtain a p-value < 10−4 and there-
fore we should reject H0 and conclude for different
variances. The BIC measure value when σ2

1 6= σ2
2

Figure 3: Histogram for SP500 log-returns data.

is BIC = −8654.4748 and when σ2
1 = σ2

2 we get
BIC = −8545.2453. Again, the model with differ-
ent variances yields better results.

5.2 Application to Biometric Data
Let us consider the Davis dataset, available in the
R package “car”. It contains measured heights and
weights of 200 adults, men (112) and women (88),
engaged in regular exercise. Note that in line 12,
weight and height were switched as they appear to
be reversed in the original dataset. The descriptive
statistics for height (in centimeters) obtained from the
dataset are presented in Table 3.

Table 3: Descriptive statistics for the variable Height
in the “Davis” dataset.

Male Female
Mean 178.0114 164.7143

Standard Deviation 6.4407 5.6591
Proportion 0.44 0.56

Firstly we tested the normality of the variable
Height for both subsets (male and female) with Lil-
liefors normality test [24]. For the male and females
subsets we obtained, respectively, p-value = 0.8720
and p-value = 0.1818.

When testing H0 : σ2
M = σ2

F vs H1 : σ2
M 6=

σ2
F with F test, we obtain p-value = 0.1979. As a

consequence, variances should be considered as equal
for both sex.

For illustrative purpose, we will be considering for
now on that the data is “mixed”, that is, that we do
not know if an individual is male or female. The his-
togram presented in Figure 4 shows an unimodal data
set

If we fit a two component Gaussian mixture to the
dataset, we get as estimates for the model components
(Table 4).
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Figure 4: Histogram for the “Davis” height data.

Table 4: Estimated Gaussian mixture for the “Davis”
height dataset.

µ̂1 µ̂2 σ̂1 σ̂2 ŵ
177.6408 164.7896 6.7108 5.7621 0.4494

When testing H0 : σ2
1 = σ2

2 vs H1 : σ2
1 6= σ2

2,
using theK-S test for the beta distributionwe obtain a
p-value= 0.5638 and consequently we should not re-
jectH0. Therefore, evidence to reject variance equal-
ity was not found, and we can not conclude for un-
equal variances. The BIC statistics is BIC = 1461.1
if σ2

1 6= σ2
2 and BIC = 1457.1 if σ2

1 = σ2
2. Thence,

the model with common variance for both compo-
nents yields better results. This result corroborate the
obtained for the F test, that is, variances should not be
considered as different.

6 Conclusion
Finite Gaussian mixtures with the same variance can
be written has the convolution between a discrete
variable and a zero mean Gaussian variable. It might
be possible to decompose the mixture in this kind of
convolution, if we have an idea about the discrete
variable that is present. As stated, common examples
concern Poisson or binomial data as the discrete vari-
able, added with a Gaussian white noise.

For unimodal mixtures, Theorem 2 allows us to
approximate the mixture to a beta distribution, when
some conditions are fulfilled. This approximation re-
duce the number of unknown parameters from 2N to
four, which can be interesting when working with a
large number of subpopulations. Besides, beta distri-
bution characterizations become available.

Finally, when only two subpopulations are consid-

ered, Theorem 2 can be used to test variance equality
in unimodal mixtures. The test was applied to three
different data sets with good results.

Together with the mean equality test presented in
[9], the variance equality test for Gaussian mixtures
can be very useful to deal with real data sets, since
mean and variance equality are some of themost com-
mon hypothesis in statistics and, as far as we know,
this variance equality test was not yet available for
Gaussian mixtures.
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