
Adjoint Separating Systems

Abstract: Combinatorial group testing is a method that could be used to efficiently test many individuals for
diseases like COVID-19 by pooling and testing their samples. This paper develops ideas concerning separating
systems as an initial theoretical framework for studying combinatorial group testing methods. A system of subsets
of a finite set S is called separating if it enables to separate individual elements of S, i.e., for any two different
aspects of S there is a set in the system containing just one of them. In this paper, we present an easy and flexible
method to construct “small” separating systems on “large” sets from “large” separating systems on “small” sets.
The point is that small systems are practical for saving time and money, while large ones are much easier to
construct.
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1 Introduction
Separating systems were introduced in [1] and, a bit
later, they turned out to be utilizable in non-adaptive
combinatorial group testing (see, e.g., [2], [3] and
[4]). Combinatorial group testing is a method that
could be used for efficiently testing many individu-
als for diseases like COVID-19 by pooling and test-
ing their samples ([5], [6], [7], [8], [9]). The idea
of group testing, based initially on health care needs,
has proven to be applicable in many other fields, such
as computer science (e.g., [10], [11]) and engineering
([12]).

This note presents an easy and flexible method to
construct “small” separating systems on “large” sets
from “large” separating systems on “small” sets. The
point is that small systems are practical for saving
time and money, while large ones are much easier to
construct.

2 Preliminaries
Throughout the paper, let S be a finite set, s = |S| ≥
2. We denote by P(S) the set of all subsets of S and
by P+(S) that of non-empty ones; we have |P(S)| =
2s ≥ 4 and |P+(S)| = 2s − 1 ≥ 3. In the sequel,
a system (on S) will mean any non-empty subset of
P+(S). The number of all systems is 22

s−1 − 1 ≥ 7

(≥ 127 for s ≥ 3). Of course, if S ⊆ T , every system
on S is also a system on T .

Following [1], we will say that a system A (⊆
P+(S)) is separating (on S) if for all a, b ∈ S,
a 6= b, there is at least one set A ∈ A such that
|A ∩ {a, b}| = 1.

In the subsequent text, separating systems will be
called poolscapes, while pools will be the sets in
them. The following assertion is obvious.

Lemma 2.1. Let A be a poolscape (on S). Then:
(i) A \ {S} is a poolscape.
(ii) If B ⊆ P+(S) is a system such that A ⊆ B then
B is a poolscape as well.

LetA be a system. Define amappingR(A) : S →
P(A) by R(A)(A) = {A ∈ A | a ∈ A } for every
a ∈ S. The following assertion is straightforward.

Lemma 2.2. Let A be a system on S and a ∈ S.
Then:
(i)R(A)(A) = ∅ if and only if a ∈ S \

⋃
A.

(ii)R(A)(A) = A if and only if a ∈
⋂

A.
(iii)A is a poolscape if and only if the mappingR(A)
is injective.

Taking into account 2.2(iii), we realize easily that
poolscapes are divided into four basic classes:
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(A) |
⋂

A| = 1 = |S \
⋃

A|;

(B)
⋂

A = ∅, |S \
⋃

A| = 1;

(C) |
⋂

A| = 1, S =
⋃

A;

(D)
⋂

A = ∅, S =
⋃

A.
Clearly, a system A is a poolscape of class (C) or

(D) if and only if for all a, b ∈ S there is at least one
pool A with |A ∩ {a, b}| = 1.

Till the end of the section, let A be a poolscape
(on S) and r be the smallest positive integer satisfy-
ing s ≤ 2r. Using 2.2(iii), we easily come by the
following statements.

Lemma 2.3. 1 ≤ r ≤ |A| ≤ 2s − 1.

Lemma 2.4. If s = 2r and A is not of class (A) then
r + 1 ≤ |A|.

Lemma 2.5. Assume S /∈ A and put A = {S \
A |A ∈ A}. Then:
(i) R(A)(A) = {S \ A |A ∈ A, a /∈ A } for every
a ∈ S.
(ii) A is a poolscape, S /∈ A, |A| = |A| and A = A.

(iii) A is of class (A) ((B),(C),(D), resp.) if and only
if A is of class (A) ((C),(B),(D), resp.).

Lemma 2.6. If
⋃

A = S (i.e., A is of class (C)
or (D)) and if S ⊆ S′, |S′| = |S| + 1, then A is
a poolscape on S′ as well (and A is of class (B) on
S′).

Example 2.7. Let S = {1, 2}. The systems
A1 = {{1}}, A2 = {{2}}, A3 = {{1}, {2}},
A4 = {{1}, {1, 2}}, A5 = {{2}, {1, 2}} and A6 =
{{1}, {2}, {1, 2}} are all poolscapes on S. None of
them is of class (B).

3 Large systems are poolscapes
Proposition 3.1. LetA be a system (on S) that is not
a poolscape. Then:
(i) 1 ≤ |A| ≤ 2s−1 − 1.
(ii) |A| = 2s−1−1 if and only if there is a two-element
subset T of the set S such that A = {A |T ⊆ A ⊆
S } ∪ {B | ∅ 6= B ⊆ S \ T }.
Proof. Since A is not a poolscape, there is a two-
element subset T ⊆ S such that |A ∩ T | 6= 1 for
each A ∈ A. Put A1 = {A ∈ A |T ⊆ A },
A2 = {A ∈ A |A ∩ T = ∅, A ∪ T ∈ A},
A3 = {A ∈ A |A∩T = ∅, A∪T /∈ A}. Clearly, the
systemA is the disjoint union of the setsA1,A2,A3.
Furthermore, A2 ∪A3 ⊆ P+(S \ T ), |A2|+ |A3| =
|A2∪A3| ≤ 2s−2−1,A1 ⊆ {B∪T |B ∈ P(S\T ) },
|A1| ≤ 2s−2 and |A| = |A1|+ |A2|+ |A3| ≤ 2s−2+
2s−2 − 1 = 2s−1 − 1. Finally, if |A| = 2s−1 − 1 then
A1 = {B∪T |B ∈ P(S\T ) }, |A2∪A3| = 2s−2−1
and A2 ∪ A3 = P+(S \ T ). The rest is clear.

Theorem 3.2. Let A be a system (on S) such that
|A| ≥ 2s−1. Then:
(i) A is a poolscape of class (C) or (D).
(ii) If |A| > 2s−1 then A is of class (D).
(iii)A is of class (C) if and only if there is an element
a ∈ S such that A = {A | a ∈ A ⊆ S } (then |A| =
2s−1 and a is uniquely determined).

Proof. It follows directly from 3.1(i) that A is a
poolscape. If a ∈ S\

⋃
A thenA ⊆ P+(S\{a}), and

therefore |A| < 2s−1, a contradiction. Thus
⋃

A = S
and A is of one from the classes (C),(D). If a ∈

⋂
A

then |B| = |A|, where B = {A \ {a} |A ∈ A}.
Since B ⊆ P(S \ {a}) and |B| ≥ 2s−1, we get

B = P(S \ {a}). The rest is clear.

Remark 3.3. The number of the systems
(poolscapes) A (on S) with |A| ≥ 2s−1 is precisely
22

s−2 ≥ 4 (≥ 64 for s ≥ 3). Indeed, that number
equals to the sum x =

∑2s−1
k=2s−1

(
2s−1
k

)
. However,

x =
∑2s−1−1

k=0

(
2s−1
k

)
and 2x =

∑2s−1
k=0

(
2s−1
k

)
=

22
s−1.

4 Forming poolscapes from

poolscapes
Construction 4.1. Let S, T be finite sets, |S| = s ≥
2, |T | = t ≥ 2. Let α : S → P(T ) be a mapping. For
every b ∈ T , put Ab = { a ∈ S | b ∈ α(a) } (⊆ S)

and define a mapping β : T → P(S) by β(b) = Ab

for every b ∈ T . Further, for every a ∈ S, put Ba =
{ b ∈ T | a ∈ β(b) }. Finally, put A = β(T ) and
B = α(S).

The following assertion is a mere observation.

Lemma 4.2. (i) A ⊆ P(S) and 1 ≤ |A| ≤ t.
(ii) α(a) = { b ∈ T | a ∈ β(b) } and β(b) = { a ∈
S | b ∈ α(a) } for every a ∈ S, b ∈ T .
(iii) A is a system on S (i.e., ∅ 6= A ⊆ P+(S)) if and
only if T =

⋃
a∈S α(a).

(iv) If b1, b2 ∈ T , b1 6= b2, thenAb1 6= Ab2 if and only
if |α(a) ∩ {b1, b2}| = 1 for at least one a ∈ S.
(v) |A| = t if and only if B \ {∅} is a poolscape (on
T).
(vi)

⋃
A = { a ∈ S |α(a) 6= ∅ }.

(vii)
⋃

A = S if and only if α(S) ⊆ P+(T ).
(viii)

⋂
A = { a ∈ S |α(a) = T }.

(ix)
⋂

A = ∅ if and only if α(S) ⊆ P(T ) \ {T}.
(x) If a1, a2 ∈ S, a1 6= a2, then |Ab ∩ {a1, a2}| = 1
for at least one b ∈ T if and only if α(a1) 6= α(a2).
(xi) A \ {∅} is a poolscape (on S) if and only if α is
an injective mapping.
(xii) Ab = S if and only if b ∈

⋂
B.

(xiii) The following conditions are equivalent:

1. |B| = s.
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2. α is injective.

3. A \ {∅} is a poolscape (on S).

(xiv) The following conditions are equivalent:

1. |A| = t.

2. β is injective.

3. B \ {∅} is a poolscape (on T ).

Theorem 4.3. Let S, T be finite sets, |S| = s ≥ 2,
|T | = t ≥ 2. Let B be a poolscape defined on the
set T such that |B| = s and

⋃
B = T (i.e., B is of

one of the classes (C) and (D)). Let α : S → B be a
bijection. Put Ab = { a ∈ S | b ∈ α(a) } for every
b ∈ T . Then:
(i) A = {Ab | b ∈ T } is a poolscape defined on the
set S and |A| = t.
(ii)

⋃
A = S (i.e., A is of one of the classes (C) and

(D)).
(iii)A is of class (C) ((D), resp.) if and only if T ∈ B
(T /∈ B, resp.).
(iv) If T ∈ B then

⋂
A = {α−1(T )}.

(v) S ∈ A (S /∈ A, resp.) if and only if
⋂

B 6= ∅
(
⋂

B = ∅). That is, if and only if B is of class (C)
((D), resp.).
(vi) If

⋂
B = {b} then Ab = S.

(vii) The mapping β : T → A, where β(b) = Ab for
each b ∈ T , is a bijection.
(viii) α(a) = { b ∈ T | a ∈ β(b) } and β(b) = { a ∈
S | b ∈ α(a) } for every a ∈ S, b ∈ T .

Proof. (i) Use 4.2(iii),(iv),(xii),(xiv).
(ii) Use 4.2(viii).
(iii) and (iv). See 4.2(x),(ix).
(v) and (vi). Use 4.2(xii).
(vii) Use 4.2(xiv).
(viii) See 4.2(ii).

5 Adjoint poolscapes
Considering 4.3, we feel fully eligible to formulate
such a definition:

Definition 5.1. Let S and T be finite sets and A and
B be poolscapes defined on S and T , resp., such that
|B| = |S| = s ≥ 2 and |A| = |T | = t ≥ 2. The
poolscapes A and B are said to be adjoint (via α, β)
provided that there exist bijections α : S → B and
β : T → A such that the following two conditions
are true:

(α) α(a) = { b ∈ T | a ∈ β(b) } for every a ∈ S;

(β) β(b) = { a ∈ S | b ∈ α(a) } for every b ∈ T .

(Notice that these conditions are equivalent.)

Observation 5.2. Let A,B be adjoint poolscapes on
the sets S, T . Here, we collect a handful of easy (not
facile, nonetheless) observations:
(i)

⋃
A = S and

⋃
B = T .

(ii)
⋂

A = ∅ if and only if T /∈ B.
(iii)

⋂
B = ∅ if and only if S /∈ A.

(iv) A (B, resp.) is of class (C) if and only if T ∈ B
(S ∈ A, resp.). Otherwise, A (B, resp.) is of class
(D).
(v) s < 2t and t < 2s.
(vi) Assume that S /∈ A and T /∈ B. Then the
poolscapes A,B are of class (D) and the same is true

for poolscapes A,B (see 2.5). Besides, A,B are ad-

joint via bijections α, β, where α(a) = T \ α(a) for
every a ∈ S and β(b) = S \ β(b) for every b ∈ T .

Indeed, (i) follows from 4.2(iii) (and its dual), and
(ii) is an immediate consequence of 4.2(Viii). Fur-
ther, α is a bijection, and hence s = |S| = B| ≤
|P+(T )| = 2t − 1. Similarly, t ≤ 2s − 1 and (v)
follows. The rest is clear.

6 Construction of poolscapes of

minimum size
Throughout this section, let S be a set with |S| = s ≥
2. Clearly (see 2.8), if s = 2 and S = {x, y} then
poolscapes of minimum size on S are A1 = {{x}},
A2 = {{y}} (these poolscapes are of class (A)).

Construction 6.1. Let s ≥ 3, s not a power of 2, and
let t be the smallest positive integer satisfying s ≤
2t. Clearly, 2 ≤ t and 3 ≤ 2t−2 + 1 ≤ s ≤ 2t −
1. Furthermore, put T = {1, 2, . . . , t} and choose
any system B ⊆ P+(T ) such that |B| = s. (Exactly(
2t−1
s

)
such systems are at our disposal.) By 3.2, B is

a poolscape of class (D) on the set T .
Now, choose a bijection α : S → B (there are

s! (≥ 6) possibilities for choosing α) and denote by
A the poolscape from 4.3 (the poolscapes A,B are
adjoint). Then A = {Ai | 1 ≤ i ≤ t }, where Ai =
{ a ∈ S | i ∈ α(a) } for every i = 1, 2, . . . , t, the
poolscape A is of class (C) ((D), resp.) iff T ∈ B
(T /∈ B, resp.), the mapping β : T → A, where
β(i) = Ai for every i = 1, 2, . . . , t, is a bijection,
α(a) = { i | 1 ≤ i ≤ t, a ∈ Ai } and B = {α(a) | a ∈
S}.

It follows from 2.3 that |A| = t ≤ |A1| for any
poolscape A1 defined on the set S.

If t = 2 then s = 3, B = {{1}, {2}, {1, 2}} =
P+(T ) and A is of class (C). If, moreover, S =
{x, y, z}, α(x) = {1}, α(y) = {2} and α(z) =
{1, 2} then A1 = {x, z} and A2 = {y, z}.

Now, assume that t ≥ 3 and (5 ≤) 2t−1+1 ≤ s ≤
2t − 2. Then we always can choose B in such a way
that either T ∈ B or T /∈ B (so thatA will be of class
(C) or (D), resp.).
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Finally, if t ≥ 3 and (7 ≤) s = 2t − 1 then B =
P+(T ) and A is of class (C).

Construction 6.2. Let s = 2t, t ≥ 2. Take a ∈ S
and put S1 = S \ {a}. We have |S1| = 2t − 1 and.
Denote byA a poolscape on the set S1 constructed by
Construction 6.1. Then |A| = t andA is of class (C).
Lemma 2.6 implies that A is a poolscape on S (and
A is of class (B) this time). Finally, 2.3 implies that
|A| = t ≤ |A1| for each poolscape A1 defined on S.

Construction 6.3. Let t ≥ 1, s = 2t and T =
{1, . . . , t, t + 1}. Put B = {B ⊆ T | 1 ∈ B }. Then
B is a poolscape of class (C) on T and |B| = 2t = s
(cf. 3.2(iii)). Now, choose a bijection α : S → B
and use Construction 4.1 to construct A0 (thus A0

and B are adjoint poolscapes by 4.3). Then A =
{Ai | 1 ≤ i ≤ t + 1 }, where Ai = { a ∈ S | i ∈
α(a) }, the poolscape A0 is of class (C) by 5.2(iv)
and |A0| = t + 1. Apparently, A1 = S, and hence
A = A0 \ {A1} = A0 \ {S} is a poolscape by
2.1(i). Of course, |A| = t ≤ |A1| for any poolscape
A1 defined on S and A is of class (A); we have⋂

A = {α−1(T )} and
⋃

A = S \ {α−1(1)}.

7 Conclusion
This paper develops ideas concerning separating sys-
tems that form the initial theoretical framework for
studying combinatorial group testing methods. It
gathers basic knowledge for working with separating
systems and introduces basic constructs to create sep-
arating systems. Using combinatorial methods and
set theory to develop separating systems is a suitable
theoretical framework that could contribute to creat-
ing new testing methods and as an essential theoreti-
cal starting point for proofs in separating systems op-
timization.

The notion of adjoint poolscapes yields a corre-
spondence between classes defined on sets S and T so
that a large poolscape on a small set S corresponds to
a small poolscape on a large set T and vice versa. This
correspondence can be used in the design of group
tests, which have applications in statistics, computer
science, medicine, andmany other fields. In future re-
search, similar correspondence could be investigated
in more general settings.
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