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Abstract: The Lemma of Schwarz is one of the most surprising results in complex analysis in the sense that some
very weak conditions on an analytic function in the unit disk |z| < 1 imply a very strict behavior of that function
in the respective disk. What about the behavior of the function outside the unit disk? This is the question we
deal with in this paper. The theory we presented in some previous publications was about univalent functions, not
necessarily in the unit disk, but in themost general setting, namely in the fundamental domains of arbitrary analytic
functions. Naturally, connections can be expected between the two fields of complex analysis. The purpose of
this paper is to explore these connections and take advantage of the well established theory of univalent functions
in order to advance the theory of fundamental domains.
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1 Introduction
Let f(s) be an analytic function in C with the ex-

ception of isolated singular points, which can be poles
or essential singular points. Let Ω be a fundamental
domain of f(s), i.e., a domain which is conformally
mapped by f onto the whole complex plane with a slit
L. [1],  has  pointed  out  the  importance  of  the
study of these domains in the Riemann surface the-
ory attached to the respective analytic functions. It is
known that for any such function we have

C = ∪n≤∞
k=1 Ωk,

where Ωk are open connected sets, Ωk ∩Ωj = ∅, for
j ̸= k and every Ωk is a fundamental domain of f.

If f is a rational function of a degree n, then f
has exactly n fundamental domains, otherwise f has
infinitely many fundamental domains. Based on the
theorem of boundary correspondence in the confor-
mal mapping, [2] and [3], the function f, which is de-
fined also on the boundary ∂Ωk of every fundamental
domain Ωk, maps ∂Ωk onto a slit Lk. Reciprocally, if
Lk is seen as having two sides, then since this map-
ping is one to one and hence the inverse function f−1

|Ω
exists, it can be extended by continuity to the sides of
Lk.We will continue to denote by f|Ωk

and f−1
|Ωk

these
extended functions.

IfM(z) is aMöbius transformation andΩ is a fun-
damental domain of the analytic function f , then the
function

χM (s) = f−1
|Ω ◦M ◦ f(s),

where it is defined, is a conformal mapping. Indeed,
the function f maps conformally the domain Ω onto
the complex plane with a slit L. The Möbius transfor-
mationM carries L into a slit L′, which is the image
by f of a slit LM of Ω. Also, M−1 carries L into a
slit L′′, which is the image by f of a slit LM−1 of Ω.
We have proved in [4] the following:

Proposition 1. The function χM is a conformal
mapping of Ω\LM−1 onto Ω\LM . The boundaries
∂Ω∪LM and ∂Ω∪LM−1 of the two double connected
domains correspond to each other through χM in the
following way: ∂Ω is carried onto LM and LM−1 is
carried onto ∂Ω.

In what follows, we will choose M to be the fol-
lowing Möbius transformation

M(z) =
z − a

1− az
eiθ, (1)

for |a| < 1, θ ∈ R, which maps the unit disk onto
itself, the exterior of the unit disk onto itself and the
unit circle onto itself.

Proposition 2 (Schwarz lemma). If f(z) is ana-
lytic for |z| < 1 and satisfies the conditions

|f(z)| ≤ 1, f(0) = 0,

then
|f(z)| ≤ |z| and |f ′(0)| ≤ 1.

If |f(z)| = |z| for some z ̸= 0, then

f(z) = eiφz,
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Figure 1: An orthogonal net of circles and rays which
generates orthogonal nets for analytic functions in
their fundamental domains

where φ ∈ R.

It is now obvious that we preferred the Möbius
transformation (1) since it preserves the unit disk, in
which the Schwarz lemma holds.

We will use this property, illustrated in Fig. 1
above, to draw the graphs in the next figures illus-
trating various properties of the univalent functions.

Theorem 1. If z = f(s) satisfies the conditions
of Schwarz lemma andM(z) is the Möbius transfor-
mation (1) then for the function φ(s) =M(f(s)) we
have:

|φ(s)| ≤ |s|+ |a|
1− |as|

and
|φ′(0)| ≤ 1− |a|2.

Moreover,
φ′(0) = 1− |a|2

if and only if f ′(0) = 1.

Proof: Indeed,

|φ(s)| =
∣∣∣∣ f(s)− a

1− af(s)

∣∣∣∣ ≤ |f(s)|+ |a|
1− |a||f(s)|

≤ |s|+ |a|
1− |as|

.

On the other hand, we have

M ′(z) =
(1− |a|2)eiθ

(1− az)2

hence
φ′(s) =

(1− |a|2)eiθf ′(s)
(1− af(s))2

,

thus,

|φ′(0)| = (1− |a|2)|f ′(0)| ≤ 1− |a|2.

If
φ′(0) = 1− |a|2,

then f ′(0) = 1 and reciprocally, f ′(0) = 1 implies
φ′(0) = 1− |a|2. �

A generalization of Schwarz lemma, [1], can be
formulated as follows:

Proposition 3. If u(z) is analytic for |z| < R and
satisfies the conditions |u(z)| ≤ K , u(z0) = w0 for
|z0| < R, where |w0| < K, then

K|u(z)− w0|
|K2 − w0u(z)|

≤ R|z − z0|
|R2 − z0z|

. (2)

Let a = reiα, where 0 < r < 1 and α ∈ R. With

u(z) = (1− r2)M(z + a) =
(1− r2)z

(1− r2 − re−iαz)
,

we have

u(0) = 0, u′(z) =
(1− r2)2

(1− r2 − re−iαz)2

and
u

′
(0) = (1− r2) < 1.

We can let u(z) be defined in the disk |z|< R, where
R ≥ 1

r . Then, by writing the generalized Schwarz
lemma for u(z) and z0 = w0 = 0, the inequality (2)
becomes:

|u(z)| ≤ K

R
|z|, (3)

which in terms of the functionM(z) is:

|M(z + a)| ≤ K

(1− r2)R
|z|. (4)

We can find a value forK if we plug

z = z(t) = R(cos t+ i sin t),

into
M(z + a) =

zeiθ

(1− |a|2 − az)

and look for the maximum of

|M(z(t) + a)| = R|ei(t+θ)|
|1− r2 − rRei(t−α)|

.
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An elementary computation shows that this value is
reached for t = α and it is

K =
R

|1− r2 − rR|
,

thus
K

(1− r2)R
=

1

(1− r2)(r2 + rR− 1)

and we can state:

Theorem 2. For any analytic function f(s) and
any one of its fundamental domains Ω we have:

|M(f(s) + a)| ≤ |f(s)|
(1− r2)(r2 + rR− 1)

, (5)

for s ∈ Ω and |f(s)| < R, with equality at the point
s0 for which f(s0) = 0. Such a point s0, if it exists, it
is unique. For any other point s with |f(s)| < R, the
inequality (5) is strict.

Proof : Indeed, with the value we have found for
K, replacing z by f(s) in inequality (4), it becomes
(5). SinceM(a) = 0, if f(s0) = 0 we have 0 in both
terms of (5) for s = s0. The existence of s0 is not
guaranteed, as the functions es and Γ(s) show. How-
ever, if it exists, due to the fact that f is injective in
Ω, its uniqueness is granted. On the other hand, if
s0 exists such that f(s0) = 0, we need to show that
the inequality is strict, for any other point s. For any
ρ > 0, the image byM(z) of the circle

Cρ : z(t) = ρeit, t ∈ [0, 2π)

is a circle Γρ. If ρ < R, then, due to the univalence
of M(z), the circle Γρ is strictly interior to the cir-
cle ΓR. By the maximum principle, [1], no value of
|M(f(s) + a)| on Γρ can be equal to K, which is
the maximum value of |M(f(s) + a)| on ΓR. Hence
the inequality (5) is strict for any s with |f(s)| < R,
s ̸= s0, which completely proves the theorem. �

Since

M(f(s) + a) =
f(s)eiθ

(1− r2 − re−iαf(s))

the inequality (5) is equivalent to

|f(s)|
|1− r2 − re−iαf(s)|

≤ |f(s)|
(1− r2)(r2 + rR− 1)

(6)
which is, for s ̸= s0:

|1− r2 − re−iαf(s)| > (1− r2)(r2 + rR− 1) (7)

The inequality (5) reveals a connection between
the image by f of a point s ∈ Ω with |f(s)| ≤ R and
M(f(s)+a). The strict inequalities in (6) and (7) are
satisfied for every such s, if s ̸= s0.

In [4], the conformal mapping of the complex
plane by a function (1) with

a =
1

2
(1 + i) =

√
2

2
ei

π

4 and θ = 0

is illustrated. We have r =
√
2
2 , hence forR =

√
2we

obtain K = 2
√
2, thus, with this data the inequality

(5) becomes∣∣∣∣M (
f(s) +

1

2
(1 + i)

)∣∣∣∣ ≤ 4|f(s)| (8)

and the inequality (7) becomes

|1−
√
2(1− i)f(s)| ≥ 8. (9)

For every one of the functions f studied in [4] and
[5] we can indicate the pre-image by f of the disk
centered at the origin of radius

√
2. The inequalities

(8) and (9) take place in all these pre-images.

2 The Conformal Self-Mapping of
the Fundamental Domains of the
Exponential Function
It is known, [4] and [5] that the fundamental do-

mains of the exponential function are strips

Ωk = {s = σ + it|2kπ < t < 2(k + 1)π, σ ∈ R},

for k ∈ Z.
For every Möbius transformationM as that given

in (1) with θ = 0, the function

χ(s) = Log|Ωk
(M(es + a)),

where Log|Ωk
is the branch of the multivalued func-

tion Log corresponding to Ωk, is a conformal self-
mapping of Ωk, as in Proposition 1. The function es
maps conformally this strip onto the complex plane
with a slit L alongside the positive real half axis. Ev-
ery segment s = σ0 + it, 2kπ ≤ t < 2(k + 1)π, is
mapped one to one by es onto the circle centered at
the origin and of radius eσ0 and the half strip corre-
sponding to σ < 0 is mapped conformally onto the
interior of this circle while the half strip correspond-
ing to σ > 0 is mapped conformally onto the exterior
of this circle. Moreover, every line

s = σ + it0, σ ∈ R, t0 ∈ [2kπ, 2(k + 1)π]
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Figure 2: The Steiner net of the Möbius transforma-
tionM(z + a), whereM is given by formula (1) and
a = 1

2(1 + i)

is mapped one to one by es onto the ray arg z = t0.
When t0 = 2kπ and t0 = (2k + 1)π, the ray is the
same, namely the positive real half axis, which is the
slit L.

By the inequality (5) we have

|M(es+a)| < eσ

(1− r2)(r2 + rR− 1)
<

eσ

r2(1− r2)
,

(10)
for every s = σ + it. This is a strict inequality, since
there is no s0 such that es0 = 0. It is known, [4], that
the fixed points of

M(z) =
(z − reiα)

(1− re−iαz)

are ξ1 = eiα and ξ2 = −eiα. To find the fixed points
of

M(z + a) =
z

(1− r2 − re−iαz)
,

we need to solve the equation M(z + a) = z. For
α = π

4 , an easy computation gives z1 = 0 and z2 =

−rei
π

4 . The last point is on the ray through the origin
making an angle 5π

4 with the positive real half axis.
The Steiner net of the Möbius transformation

M(z + rei
π

4 ), Fig. 2, is formed with the Apollonius
circles

|z − c1| = r and |z − c′1| = r

and the orthogonal circles passing through 0 and
−rei

π

4 , which are

|z − c2| = r and |z − c′2| = r,

where

c1 =

√
2

4
(
√

8r2 + 1− 1)ei
π

4 ,

c′1 = −(rei
π

4 + c1),

c2 =
1

4

[
(
√

8r2 − 1− 1)− i(
√

8r2 − 1 + 1)
]
,

c′2 = −
(√

2

4
ei

5π

4 − c2

)
.

The pre-image by es of z2 is located on the line

s = σ + i
(π
4
+ π

)
, σ ∈ R,

and it is s2 = ln r + 5π
4 i, while z1 has no pre-image

since it is a lacunary value for ez . However, it is
obvious that if σ → −∞ on any line σ + it then
eσ+it → 0 = z1.

The Ωk-Steiner net, Fig. 3, corresponding to this
Möbius transformation and to the exponential func-
tion together with the inequality (10) allow for an
accurate description of the conformal self-mapping
χ(s) = Log|Ωk

(M(es + rei
π

4 )).

The configuration above changes drastically when
instead ofM(z + a) we take the function

u(z) = (1− r2)M(z + a) =
(1− r2)z

(1− r2 − re−iαz)
.

Indeed, it can be easily seen that u(z) is a parabolic
Möbius transformation with the unique fixed point
z = 0. Then χ(s) = Log|Ωk

(u(es)) has no fixed
point, as it can be seen in Fig. 4.

In the case of Fig. 2, the circles of the Steiner nets
are given by∣∣∣∣z ± √

2

4
(1 + i)

∣∣∣∣ = 1

2
,

∣∣∣∣z ± √
2

4
(1− i)

∣∣∣∣ = 1

2
,∣∣∣∣z ± √

2

2
(1 + i)

∣∣∣∣ = 1,

∣∣∣∣z ± √
2

2
(1− i)

∣∣∣∣ = 1,∣∣∣∣z ± 3
√
2

4
(1 + i)

∣∣∣∣ = 3

2
,

∣∣∣∣z ± 3
√
2

4
(1− i)

∣∣∣∣ = 3

2
.

Although the topic of this section has been tack-
led in [4], here we used different Steiner nets and we
treated a completely different situation where the net
is parabolic.
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Figure 3: An illustration of the conformal self-
mapping of Ωk by the function Log|Ωk

(M(es + a))

Figure 4: An illustration of the conformal self-
mapping of Ωk by the function Log|Ωk

(u(z))

3 Conformal Self-Mappings of the
Fundamental Domains of the
Functions of the Class S
An important chapter of the geometric function

theory, [3], [6], [7] and [8] deals with the class S of
functions f analytic and univalent in the unit disk. In
the following, we will adopt a more global approach
than that of geometric function theory, in the sense
that f will be seen as defined in the whole complex
plane. In fact we can prove:

Theorem 3. Every function f of class S which
can be extended by continuity to the unit circle C and
transforms the unit circle into a circle or a line Γ ad-
mits an analytic continuation f̃ to C with the excep-
tion of some poles located on the unit circle. When Γ
is a line, the unit disk and the exterior of the unit disk
are fundamental domains for f̃ .

Proof: We continue to denote by f the extended
function to the unit circle C. For every z ∈ C, let
z∗ be the symmetric of z with respect to Γ, i.e., [1],
z∗ = z if Γ = R. If the line Γ makes an angle α
with the real axis, then there is a constant c such that
eiαz + c transforms R into Γ and symmetric points
with respect to R into symmetric points with respect
to Γ, hence, in this case, eiαz + c is the symmetric of
eiαz + c with respect to Γ. Then, if w = eiαz + c,
we have w∗ = eiαz + c = eiα(w − c)e−iα + c =
e2iαw + k, where k = c− eiαc.

If Γ is a circle centered in a and of radius R, then
the symmetric of f(z) with respect to Γ is

R2

(f(1/z))− a
+ a

and we have an analytic function in this case as well.
When Γ is a line, there must be a point eiθ0 on the

unit circle such that

lim
θ↗θ0

f(eiθ) = lim
θ↘θ0

f(eiθ) = ∞,

hence eiθ0 is a pole for f̃ . Then an arc of the unit circle
centered at eiθ0 is mapped two to one onto an interval
on Γ ending at∞. Therefore f(z) maps conformally
the unit disk onto the complex plane with a slit and
that interval is part of the slit.

Likewise, the function f̃(z) maps the exterior of
the unit disk onto the complex plane with the same
slit, therefore the unit disk and the exterior of the unit
disk are fundamental domains of f̃(z), and the theo-
rem is completely proved. �

Corollary. Under the conditions of Theorem 3, all
the functions ψ(z) = f(M(z)), whereM(z) is given
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by formula (1), have as fundamental domains the unit
disk and the exterior of the unit disk.

Proof : Indeed, M(z) transforms the unit circle
into itself, therefore, the image by ψ(z) of the unit
circle coincides with the image by f(z) of the same
circle. The only difference is that instead of the pole
eiθ0 of f, we will have a poleM−1(eiθ0) for ψ. �

Theorem 4. Let f be a function of classS which is
analytic in C except for some poles on the unit circle.

Then f̃(z) = f(z) for |z| ≥ 1. If

f̃(z) = e2iαf(1/z),

then
|f(z)| = |f(1/z)|

If
f̃(z) = e2iαf(1/z) + k

then
|f(z)| ≤ |f(1/z)|+ |k|.

Proof: We have seen that f̃(eiθ) = f(eiθ) for ev-
ery θ ∈ R. By the permanence of functional equa-
tions, [2], we must have f̃(z) = f(z) everywhere. If
f(z) carries the unit circle into a line making the an-
gle αwith the positive real half axis, then by Theorem
3,

f̃(z) = e2iαf(1/z) + k,

hence
f(z) = e2iαf(1/z) + k,

and
|f(z)| = |f(1/z)|

when k = 0 and

|f(z)| ≤ |f(1/z)|+ |k|

when k ̸= 0. We will check the affirmation of this
theorem on some examples which follow. �

The functions in these examples are all defined in
the whole complex plane and belong to the class S.
One of the most studied such functions is Koebe’s
function, [9],

k(z) =
z

(1− z)2
= z(1 + z + z2 + ...)2

= z(1 + 2z + 3z2 + ...)

= z + 2z2 + 3z3 + ...,

(11)

which satisfies the (now proved) Biberbach hypothe-
sis. Moreover, by a theorem of Bieberbach if

f(z) = z + a2z
2 + a3z

3 + ...,

then
|a2| ≤ 2,

with equality if and only if f(z) is Koebe’s function.
As proven in [5], there must exist two Möbius

transformationsM1 andM2 such that

k(z) =M2 ◦ T ◦M1(z) (12)

where T (ζ) = ζ2. Indeed, it can be easily checked,
[9], that the equality (12) is true when

M1(z) =
1 + z

1− z

and
M2(z) =

1

4
(z − 1),

hence

k(z) =
1

4

[(
1 + z

1− z

)2

− 1

]
.

It might seem surprising that k(z) is an univalent
function (in the unit disk!), although it is a second de-
gree rational function. This mystery is solved when
we realize that the unit disk Ω, and the exterior of the
unit disk C\Ω are fundamental domains of k(z). In-
deed,

k(eiθ) =
1

4

{[
1 + eiθ

1− eiθ

]2
− 1

}

=
1

4

{
[(1 + eiθ)(1− e−iθ)]2

|1− eiθ|4
− 1

}
=

1

4

{
[(2i sin θ)]2

|1− eiθ|4
− 1

}
∈ R,

hence k(z)maps the unit circle on the real axis. More-
over,

k

(
1

z

)
=

1
z(

1− 1
z

)2 =
z

(1− z)2
= k(z),

hence

k̃(z) = k

(
1

z

)
= k(z) = k(z).

This last equality is due to the fact that the series ex-
pansion of k(z) has real coefficients. We conclude
that the analytic continuation of the function k(z) de-
fined in the unit disk is the function k(z) defined on
C.

The inequality |k(z)| < |z| for |z| < 1 implies∣∣∣∣k(1

z

)∣∣∣∣ = |k(z)| = |k(z)| <
∣∣∣∣1z

∣∣∣∣ = 1

|z|
,
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Figure 5: k(z)maps conformally the unit disk and the
exterior of the unit disk onto the complex plane with
the slit (−∞,−1

4)

for |z| > 1, i.e.,

|k(z)| < 1

|z|
,

for |z| > 1.

It can be easily checked that the function k(z)
maps conformally the unit disk and the exterior of
the unit disk onto the whole complex plane with a slit
alongside the real axis from −∞ = k(1) to −1/4 =
k(−1).

Fig. 5 above illustrates this property by using the
images by the function k(z) of the net in Fig. 1. It is
visible that the circles symmetric with respect to the
unit circle are mapped by k(z) onto the same curves.
The same thing is true for the parts of the rays inside
the unit circle and outside the unit circle.

Remark. Koebe One-Quarter Theorem, [10] and
[11], states that the range of every function f of class
S contains the disk{

w | |w| < 1

4

}
.

By the result above, this affirmation is trivial for the
function k(z). We can say even more, namely that the
range of k(z) contains the half-plane{

w | ℜw > −1

4

}
.

On the other hand, in the proof of Koebe’s Theorem
it is assumed that f has an omitted value in the unit
disk. By Theorem 3, such a value does not exist for
the functions of class S which admit analytic con-
tinuation in the whole plane, except for some poles
located on the unit circle. Therefore, an alternative
proof of Koebe’s Theorem is required for this class of
functions.

Let us look now for the application of the theory
from [5] in this case. We will use (1) with θ = 0 to
define

χM (s) = k−1
|Ω ◦M ◦ k(s).

As stated above, the fixed points of

M(z) =
z − a

1− az
,

with a = reiα, are ξ1 = eiα and ξ2 = −eiα. The
Steiner net corresponding toM(z) is formed with cir-
cles centered at points c1 on the second diagonal and
passing through ξ1 and ξ2 and the orthogonal Apollo-
nius circles centered at points c2 on the first diagonal.
If we denote by r the radii of those circles, then an
easy computation gives

c1 = ±e3i
π

4

√
r2 − 1

and
c2 = ±ei

π

4

√
r2 + 1,

hence these circles have the equations

|z ± e3i
π

4

√
r2 − 1| = r

and
|z ± ei

π

4

√
r2 + 1| = r.

An illustration of the corresponding Steiner net can be
seen in Fig. 6.

On the other hand, it is known, [4], that the fixed
points of χM (s) are those points s for which k(s) =
ξ1 and k(s) = ξ2. These points s satisfy the equations

s2 − (2± e−iα)s+ 1 = 0.

The roots of these equations are

1± 1

2
e−iα(1±

√
1± 4eiα).

Thus, there are two fixed points of χM (s) in Ω, and
two fixed points in C\Ω, as seen in Fig. 7. The com-
puter generated coordinates of these points are

z1 = 0.379621 + 0.137809i,

z2 = 0.386752− 0.526531i,

z3 = 2.32749− 0.844916i,

z4 = 0.906142 + 1.23364i.
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Figure 6: The Steiner net for the Möbius transforma-
tion (1)

Figure 7: The conformal self-mapping of the complex
plane induced by k(z) and the Möbius transformation
(1)

Figure 8: φ(z)maps conformally the unit disk and the
exterior of the unit disk onto the complex plane with
the slit (−∞,−1

2) ∪ (12 ,+∞)

Another function of the class S is:

φ(s) =
is

1− s2
(13)

We have

φ(eiθ) =
ieiθ

1− e2iθ

=
i

e−iθ − eiθ

= −
1
2

eiθ−e−iθ

2i

= − 1

2 sin θ
∈ R

hence φ(z) maps the unit circle on the real axis with
φ(±i) = ∓1

2 and φ(±1) = ∞. Thus, the range of
φ(s) contains the disk centered at the origin and of
radius 1

2 .
Consequently, φ(s) maps conformally the unit

disk and the exterior of the unit disk onto the com-
plex plane with the slit (−∞,−1

2) ∪ (12 ,+∞).

This property is illustrated in Fig. 8 above, ob-
tained by the conformal representation of the net in
Fig. 1.
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We have

φ

(
1

z

)
=

i
z(

1− 1
z2

)
=

iz

z2 − 1
= −φ(z),

hence

φ̃(z) = φ

(
1

z

)
=

iz

z2 − 1

= − iz

z2 − 1

=
iz

1− z2

= φ(z).

Thus, the analytic continuation of the function φ de-
fined in the unit circle is, as expected the function φ
defined on C.

The corresponding conformal self-mapping of the
unit disk and of the exterior of the unit disk induced
by the Möbius transformation (1) is shown in Fig. 9.
We have

χM (s) = φ−1
|Ω ◦M ◦ φ(s),

where Ω is one of the two domains, and every one of
these mappings has, as in the previous example, four
fixed points. These are the points s for which φ(s)
are fixed points forM(z), i.e.,

φ(s) = ±ei
π

4 .

Solving the equations

is

1− s2
= ±ei

π

4 ,

we get:

1− s2 = ±ie−iπ
4 s,

s2 ± ie−iπ
4 s− 1 = 0,

s =
1

2
∓ (±ie−iπ

4 ±
√

4− e−iπ
2 ).

The computer generated coordinates of the fixed
points of the function χM (s) = φ−1

|Ω ◦M ◦φ(s), are:

z1 = −1.36122− 0.477603i,

z2 = −0.654111 + 0.229504i,

z3 = 0.654111− 0.229504i,

z4 = 1.36122 + 0.477603i.

Figure 9: The conformal self-mapping of the complex
plane with slits induced by the function φ(z) and the
Möbius transformation (1)

As stated in [8], the function

g(z) =
f(M(z))− f(a)

(1− |a|2)f ′(a)
(14)

belongs to the class S if f(s) is in the class S and
M(z) = (z + a)/(1 + az). Indeed, g(z) is an an-
alytic function in the unit disk, since both f and M
are analytic. Moreover, M(0) = a, which implies
g(0) = 0 . Finally,

g′(z) =
1

(1− |a|2)f ′(a)
1− |a|2

(1 + az)2
f ′

(
z + a

1 + az

)
and then g′(0) = 1. Therefore, g(z) belongs indeed
to the class S. Moreover, if f(s) can be extended by
continuity to the unit circle, then g(z) enjoys the same
property and if f(s) maps the unit circle on a line, so
does g(z), which means that both functions admit an-
alytic continuations to the whole complex plane and
the fundamental domains of both of them are the unit
disk and the exterior of the unit disk.

Fig. 10 below illustrates the conformal self-
mapping of the complex plane generated by the
function k(z) and the Möbius transformation, M(z)
above.

The formula (14) allows us to generate families of
functions of class S starting with a known one. The
study of normality and compactness of these families
of functions exceeds the purpose of this work.

The computer generated coordinates of the fixed
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Figure 10: The conformal self-mapping of the com-
plex plane generated by the function (14) where f(z)
is the Koebe function andM(z) is given by formula
(1)

points of the function χM (s) = g−1
|Ω ◦M ◦ g(s) are

z1 = 0.840256− 0.292871i,

z2 = −0.103106− 0.475103i,

z3 = −0.362298− 0.944422i,

z4 = −0.48444− 1.24651i.

Theorem 5. If f(w) is a function of class S which
admits analytic continuation to the whole complex
plane, with the exception of some poles on the unit
circle, then the function g(z) given by the formula
(14) where w = M(z), admits also analytic continu-
ation to the whole complex plane, with the exception
of some poles on the unit circle.

Proof: Let f̃(w) be the the analytic continuation
of f(w) to the whole complex plane, except for some
poles wk on the unit circle and let

g̃(z) =
f̃(M(z))− f(a)

(1− |a|2)f ′(a)
for |z| ≥ 1.

Obviously, g̃(z) is an analytic function in the com-
plex plane, except for zk = M−1(wk), which are
poles for g̃(z). Since |w|= 1 if and only if |z| = 1 and
f̃(w) = f(w) for |w| = 1, we have g̃(z) = g(z) for
|z| = 1. By the permanence of functional equations,
g̃(z) = g(z) everywhere. �

4 Growth and Distortion Theorems
Outside the Unit Disk

The growth and distortion theorems provide dif-
ferent inequalities valid in the unit disk, [9], for uni-
valent functions of class S. If those univalent func-
tions admit analytic continuations in the whole com-
plex plane, except for some poles, then, those inequal-
ities have analogue formulations outside the unit disk.
Following [9], we can state:

Proposition 4. For any function f(z) of class S
we have: ∣∣∣∣zf ′′(z)f ′(z)

− 2r2

1− r2

∣∣∣∣ ≤ 4r

1− r2
, (15)

where |z| = r < 1.

Let us notice that the inequality (15) implies∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤ 2(r + 2)

1− r2
. (16)

Theorem 6. If f(z) is an analytic function in the
complex plane, except for some poles on the unit cir-
cle, belongs to the class S in the unit disk, and carries
the unit circle onto a line, then we have:∣∣∣∣f ′′(w)f ′(w)

+ 2

∣∣∣∣ ≤ 2(2R+ 1)

R2 − 1
, (17)

for every w with |w| = R > 1.

Proof: Let us use the change of variable z = 1
w .

Then, for g(w) = f
(
1
z

)
we have g(0) = f(∞) = 0

and since

f

(
1

z

)
=

1

z
+
a2
z2

+ ... with f ′(0) = 1,

we have

g(w) = w + a2w
2 + ... with g′(0) = 1.

Moreover, since g(w) is a univalent function in the
unit disk, it is a function of class S. Consequently,∣∣∣∣g′′(w)g′(w)

∣∣∣∣ ≤ 2(r + 2)

1− r2
,

where |w| = r < 1.
We have

g′(w) = − 1

z2
f ′

(
1

z

)
= −w2f ′(w),

g′′(w) =
1

z4
f ′′

(
1

z

)
+

2

z3
f ′

(
1

z

)
= w4f ′′(w) + 2w3f ′(w),
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hence
g′′(w)

g′(w)
= −w2 f

′′(w)

f ′(w)
− 2w,

thus the inequality (16) becomes inequality (17) and
our theorem is proved. �

Proposition 5. (Distortion Theorem, [9]). For ev-
ery function f of class S we have

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
, (18)

where 0 < |z| = r < 1.
Equality occurs if and only if f(z) = eiθk(z), for

θ ∈ R and k(z) is Koebe’s function.

Theorem 7. If f(z) is an analytic function in the
complex plane except for some poles on the unit cir-
cle, belongs to the class S in the unit disk, and carries
the unit circle into a line, then for every z, such that
|z| = R > 1, we have:

R4(R− 1)

(R+ 1)3
≤ |f ′(z)| ≤ R4(R+ 1)

(R− 1)3
(19)

Equality occurs if and only if f(z) = eiθk(z), for
θ ∈ R, where k(z) is Koebe’s function.

Proof: Indeed, if we make the change of variable
z(w) = 1

w , then for g(w) = f(z(w)) and for |w| =
r < 1, the inequalities (18) become

1− r

(1 + r)3
≤

∣∣∣∣ 1

w2
f ′(z(w))

∣∣∣∣ ≤ 1 + r

(1− r)3
. (20)

Replacing r by 1
R and |z| = R these inequalities

become (19). We have equality in (19) if and only
if there is equality in (18) and this happens if and
only if f(z) = eiθk(z) and the theorem is completely
proved. �

Proposition 6. (Growth Theorem, [9]). For every
function f(z) of class S we have:

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, (21)

for |z| = r < 1.
Equality occurs if and only if f(z) is a rotation of

Koebe’s function.

Theorem 8. If f(z) is an analytic function in the
complex plane with the exception of some poles on
the unit circle, and carries the unit circle into a line,
then for |z| = R > 1, we have

R

(R+ 1)2
≤ |f(z)| ≤ R

(R− 1)2
. (22)

Equality occurs if and only if f(z) is a rotation of
Koebe’s function.

Proof: Indeed, if we make in (21) the change of
variable z(w) = 1

w , then for g(w) = f(z(w)) and for
|w| = r < 1 the inequalities (21) become:

r

(1 + r)2
≤ |f(z(w))| ≤ r

(1− r)2
, (23)

for |w| = r < 1.
Replacing here w by 1

z , where |z| = R = 1
r > 1,

the inequalities (23) become (22). Equality in (22) oc-
curs if and only if there is equality in (21) and there-
fore f(z) is a rotation of Koebe’s function. Conse-
quently, our result is proved. �

5 Conclusions
Most of the known univalent functions in the unit

disk have analytic continuations in the whole com-
plex plane with the exception of some poles on the
unit circle. It was expected that these functions ex-
hibit similar behavior outside of the unit disk. We
dealt in previous works with univalent functions in
the most general setting, namely in the fundamental
domains of arbitrary analytic functions. The purpose
of this paper was to build a bridge between the two
fields.

We succeeded to prove some non trivial facts in
this respect by using the theory of fundamental do-
mains. Our findings have been illustrated by com-
puter generated graphics.

Many open questions remain and it is expected that
they will attract the attention of the researchers work-
ing in the field of univalent functions.

For example, as it is well-known, even if an an-
alytic function f(z) is not univalent in the unit disk,
the disk can be partitioned into sub-domains where
the function is univalent. What are the properties of
the functions univalent in the unit disk, as growth and
distortion etc., which hold for this type of functions?
What can be said about their analytic continuation
across the unit circle?

For potential applications in science, of the theory
we have presented in this paper, see [12], [13] and
[14].
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