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Abstract: The complementary join of a graphG is introduced in this paper as the joinG+G ofG and its comple-
ment considering them as vertex-disjoint graphs. The aim of this paper is to study some properties and some graph
invariants of the complementary join of a graph. We find the diameter, the radius and the domination number of
G+G and determine when G+G is self-centered. We obtain a characterization of the Eulerian complementary
joins, and show that the complementary join of a nontrivial graph is  Hamiltonian. We give the clique and inde-
pendence numbers of G+G in terms of the clique and independence numbers of G. We conclude this paper by
determining the chromatic number, the L(2, 1)-labeling number, the locating chromatic number and the partition
dimension of the complementary join of a star.
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1 Introduction
All graphs considered in this paper are finite with no
loops and no multiple edges. For standard undefined
notions the reader is referred to, [1].

The joinH1+H2 of two vertex-disjoint graphsH1

andH2 is the graph obtained from the unionH1∪H2

by adding all edges that have one end vertex in H1

and the other inH2, [1]. IfG andG are considered as
vertex-disjoint graphs, then the complementary prism
GG of G is the graph obtained from the union of G
and G by adding the perfect matching between cor-
responding vertices of G and G, [2]. Comparing the
complementary prism GG and its complement GG it
is obvious that each of them consists of a copy of G
and a copy of G together with a set of edges (say E1

andE2, respectively) joining these copies. Notice that
the joinG+G also consists of a copy ofG and a copy
of G together with the set of edges E joining these
copies where E is just the union of the two disjoint
sets E1 and E2.

The complementary prism gained the attention of
many authors, see for example, [3],[4],[5],[6]. Also
the complement of the complementary prism has been
studied, some of its properties were investigated in
[7]. The aim of this paper is to start studying some
properties and some graph invariants of the comple-
mentary join G + G of a graph G. Notice that the
complementary joinG+G can be viewed as a super-
graph of each of the complementary prism GG and
the complementGG of the complementary prism. In-

deed each ofGG andGG is isomorphic to a spanning
subgraph of G+G.

In this paper, we show that the complementary
join of a nontrivial graph is Hamiltonian, and obtain
a characterization of those complementary joins that
are Eulerian. We determine the diameter and the ra-
dius of the complementary join. We express the clique
and independence numbers of G + G in terms of the
clique and independence numbers of G. In particu-
lar, we determine four graph invariants ( the chro-
matic number, the L(2, 1)-labeling number, the lo-
cating chromatic number and the partition dimension)
for the complementary join of a star.

We give a formal definition in which the adapted
labeling of the vertices ofG+Gwill be used through-
out this paper.
Definition 1 Let G be a graph of order n. The com-
plementary join G + G of G is the graph whose ver-
tex set is the union of the two disjoint sets V (G) =
{a1, a2, · · · , an}, V (G) = {b1, b2, · · · , bn} where bi
is the corresponding vertex of ai , and whose edge set
is the union of the three mutually disjoint sets E(G),
E(G), and E = {aibj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

For example, the complement of the complemen-
tary prism C3C3 is the 3-sun, while the complemen-
tary join C3 + C3 of C3 is the multipartite graph
K1,1,1,3.

The problem of assigning radio frequencies to
transmitters at different locations without causing in-
terference is called the frequency assignment prob-
lem. It was formulated as a vertex coloring problem
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in [8]. A variation of this problem (which is known as
theL(2, 1)-labeling or radio 2-coloring) where closed
transmitters receive different frequencies while very
closed transmitters receive frequencies that differ by
at least 2was introduced in [9]. LetH be a connected
graph of diameter d. Let k be an integer with 1 ≤ k ≤
d. The distance d(u, v) between the two vertices u
and v of H is the number of edges in a shortest u, v-
path in H . A radio k-coloring of H is a function f
from the vertex set ofH to the set of positive integers
such that d(u, v)+ |f(u)− f(v)| ≥ 1+k for any two
distinct vertices u and v ofH , [10]. It is obvious that
the radio 1-coloring is just the standard vertex color-
ing. It is worth to mention that the codomain of the
radio k-coloring function f is assumed by some au-
thors to be the set of positive integers, [10], [11], while
by many others it is assumed to be the set of nonneg-
ative integers, [12],[13],[14],[15],[16],[17].   In this
paper, we will follow the later assumption. Thus for
clarity, we restate explicitly the following definition
of the span of an L(2, 1)-labeling and the λ-number
of a graph.

Definition 2 An L(2, 1)-labeling of a graph H is a
function f from V (H) to the set of nonnegative in-
tegers (called colors) such that |f(u)− f(v)| ≥ 1
if d(u, v) = 2 and |f(u)− f(v)| ≥ 2 if u and v
are adjacent. The span of f is the difference be-
tween the largest and the smallest colors in f(V (H)).
TheL(2, 1)-labeling number λ(H) (also called the λ-
number of H) is the minimum span over all L(2, 1)-
labelings of H .

Notice that the span of an L(2, 1)-labeling is de-
fined in [11], to be the difference between the largest
and the smallest colors plus 1.

For a subset S of the vertex set of a connected
graph H and a vertex u of H , the distance between
u and S is d(u, S) = min{d(u, x) : x ∈ S}. A k-
coloring f of a connected graph H is an onto func-
tion from the set of vertices of H to the set of colors
{1, 2, · · · , k} such that adjacent vertices have differ-
ent colors. The coloring f induces an ordered par-
tition π = {R1, R2, · · · , Rk} of the vertex set of
H , where for 1 ≤ i ≤ k, the color class Ri is
the set of vertices of H receiving the color i. The
color code of a vertex u is the k-tuple fπ(u) =
(d(u,R1), d(u,R2), · · · , d(u,Rk)). A locating col-
oring ofH is a coloring ofH in which every two dis-
tinct vertices have different color codes. The locating
chromatic number χL(H) is the smallest k such that
H has a locating k-coloring. The concept of locating
chromatic number was introduced in [18]. The locat-
ing chromatic number of some classes of graphs was
determined by several authors, [18], [19], [20], [21],
[22].

Locating chromatic number is related to both col-
oring and partition dimension of a graph. For an or-
dered k-partition π = {R1, R2, · · · , Rk} of the ver-
tex set of a connected graph H , the representation
of a vertex u of H with respect to the partition π is
r(u | π) = (d(u,R1), d(u,R2), · · · , d(u,Rk)). The
partition π is a resolving partition if distinct vertices
have different representations. The partition dimen-
sion pd(H) of the graph H is the minimum k such
that H has a resolving k-partition. Studying parti-
tion dimension of graphs starts in [23]. Many authors
were interested in determining the partition dimen-
sion of some classes of graphs, [23], [24], [25], [26],
[27], [28]. The concept of partition dimension was
extended also for disconnected graphs, [29],[30].

The following result was obtained in [25], it will
be referred to in the proofs of the last two theorems in
section 5 of this paper.

Lemma 3 Let π be a resolving partition of the ver-
tex set of a connected graph H . If u and v are dis-
tinct vertices of H such that d(u, x) = d(v, x) for all
x ∈ V (H)− {u, v}, then u and v belong to different
partition classes of π.

2 Diameter, Radius and Domination
Number

The complementary join K1 + K1 is isomorphic to
K2, which is connected. So assume that n ≥ 2 and
let i, j ∈ {1, 2, · · · , n}. The two vertices ai and bj
are adjacent inG+G. On the other hand, when i ̸= j
we have: The two vertices ai and aj are joint by the
path aib1aj , and the two vertices bi and bj are joint by
the path bia1bj . This implies thatG+G is connected.

The diameter of G + G is determined in the fol-
lowing result.

Proposition 4 For any graph G of order n, we have

diam(G+G) =

{
1 if n=1
2 if n≥ 2

.

Proof. Obviously, diam(K1 + K1) = 1. So
assume that G is a nontrivial graph and let x and
y be two distinct vertices of G + G. If one of
x, y belongs to {a1, a2, ..., an} while the other be-
longs to {b1, b2, · · · , bn}, then x and y are adjacent
in G + G. Thus assume that both x and y belong
to the same set {a1, a2, ..., an} or {b1, b2, · · · , bn}.
Then xwy is an x, y-path in G + G where w = b1
or w = a1 according to whether x and y belong
to {a1, a2, ..., an} or {b1, b2, · · · , bn}, respectively.
Thus dG+G(x, y) ≤ 2. But since G is not the triv-
ial graph, we have at least one ofG andG is not com-
plete. ThusG+G has two nonadjacent vertices x0, y0
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with either x0, y0 ∈ {a1, a2, · · · , an} or x0, y0 ∈
{b1, b2, · · · , bn}. This implies that dG+G(x0, y0) = 2

and therefore diam(G+G) = 2.
For any vertex x of a graph G of order n, we have

0 ≤ degG x ≤ n − 1, we will say that 0 and n − 1
are the extreme degrees for G. Obviously, extreme
degrees for G need not be attained.

Definition 5 A vertex x of a graph G of order n is
said to be of extreme degree if degG x ∈ {0, n − 1}.
Moreover, we will say that G has an extreme degree
whenever it has a vertex of extreme degree.

For example, every vertex of the complete graph
Kn is of extreme degree, while P4 has no vertex of
extreme degree.

Theorem 6 Let G be a graph of order n. Then

rad(G+G) =

{
1 if G has an extreme degree
2 otherwise .

Proof. By Proposition 4, we have rad(G + G) ≤ 2.
Clearly rad(G +G) = 1 if and only if there exists a
vertex x that is adjacent to all other vertices ofG+G.
Now, if x is of the type ai, then degG x = n−1, while
if x is of the type bi, then the corresponding vertex ai
satisfies degG ai = 0.

A self-centered graph is a graph whose radius and
diameter are equal, [31]. Using Proposition 4 and
Theorem 6 we have the following result.

Corollary 7 Let G be a graph. Then G + G is self-
centered if and only if either G is the trivial graph or
G has no vertex of extreme degree.

The domination number γ of G + G can be com-
puted in view of Theorem 6.

Corollary 8 Let G be a graph of order n. Then

γ(G+G) =

{
1 if G has an extreme degree
2 otherwise .

Proof. Obviously, γ(G + G) = 1 if and only if
rad(G + G) = 1. Thus by Theorem 6 we have
γ(G + G) = 1 if and only if G has a vertex of ex-
treme degree. So assume that G has no vertex of ex-
treme degree. Then γ(G+G) > 1. But {a1, b1} is a
dominating set ofG+G, therefore γ(G+G) = 2.

3 When Hamiltonian? And When
Eulerian?

The following two results determine precisely when
G+G is Hamiltonian and when it is Eulerian. Recall
that a graph H of orderm ≥ 3 in which every vertex
has degree greater than or equal to m

2 is Hamiltonian,
[1].

Proposition 9 For any nontrivial graph G, the com-
plementary join G+G is Hamiltonian.

Proof. LetG be a graph of order n > 1. ThenG+G
has order 2n ≥ 4 and for any vertex x in G + G we
have degG+G x ≥ n because every vertex of the type
ai is adjacent to every vertex of the type bi. Therefore
G+G is Hamiltonian.

It is well known that a nontrivial connected graph
is Eulerian if and only if all of its vertices have even
degrees.

Theorem 10 Let G be a nontrivial graph of order n.
Then G + G is Eulerian if and only if n is odd and
every vertex of G has odd degree.

Proof. Assume that n is odd and every vertex of G
has odd degree. Then for every i ∈ {1, 2, · · · , n} we
have degG+G ai = degG ai+nwhich is even, and we
have degG+G bi = degG bi+n = (n−1−degG ai)+n
which is also even because degG ai is odd. Therefore
G+G is Eulerian.

Conversely, assume that G + G is Eulerian and
let i ∈ {1, 2, · · · , n}. Let degG ai = m. Then
degG+G bi = (n− 1−m)+n is even sinceG+G is
Eulerian. Thusm must be odd. So every vertex of G
has odd degree. But degG+G ai = m+n is also even
since G+G is Eulerian. This implies that n must be
odd.

4 Clique and Independence Numbers
A complete subgraph of a graph H is a clique in H .
The clique number ω of H is the order of a largest
clique in H . An independent set S of H is a subset
of the vertex set of H such that any two elements of
S are not adjacent in H . The cardinality of a maxi-
mum independent set ofH is the independence num-
ber β ofH . It is well known that the clique number of
a graph equals the independence number of its com-
plement. This means that for any graph H , we have
ω(H) = β(H) and β(H) = ω(H). The next result
determines the clique and independence numbers of
the complementary join G+G in terms of the clique
and independence numbers of G.

Theorem 11 For any graph G, we have:

ω(G+G) = ω(G) + β(G)

and β(G+G) = max{β(G), ω(G)}.

Proof. We will compute ω and β of the complemen-
tary joinG+G by computing β and ω of its comple-
mentG+G, respectively. The vertex set ofG+G is
{a1, a2, · · · , an}∪{b1, b2, · · · , bn}. But every vertex
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of the type ai is not adjacent inG+G to any vertex of
the type bi. Thus the edge set of G+G is the union
of the two sets {aiaj : i ̸= j, aiaj /∈ E(G)} and
{bibj : i ̸= j, bibj /∈ E(G)}. Therefore, G+G is
isomorphic to G ∪G. Now it follows that:

ω(G+G) = β(G+G)

= β(G ∪G)

= β(G) + β(G)

= ω(G) + β(G)

and

β(G+G) = ω(G+G)

= ω(G ∪G)

= max{ω(G), ω(G)}
= max{β(G), ω(G)}

since G+G ∼= G ∪ G where G and G have disjoint
vertex sets.

5 Main Results
This section is devoted to determine the chromatic
number, the L(2, 1)-labeling number, the locating
chromatic number and the partition dimension of the
complementary join of a starK1,m.

Form ≥ 2, throughout this section wewill assume
that am+1 is the central vertex of the star K1,m, and
wewill denote it simply by a. ThusV (K1,m) = {a}∪
{a1, a2, · · · , am} where degK1,m

a = m.
Coloring the subgraph ofG+G induced by V (G)

using χ(G) colors, and then coloring the subgraph of
G+G induced by V (G) using new χ(G) colors, we
obtain a (χ(G)+χ(G))-coloring ofG+G. But since
each vertex in V (G) is adjacent to every vertex in
V (G), we cannot have a common color used in both
sets V (G) and V (G). So we have the following re-
sult.

Proposition 12 For any graph G, we have χ(G +
G) = χ(G)+χ(G). In particularχ(K1,m+K1,m) =
2 +m.

Now, we compute the L(2, 1)-labeling number of
the complementary join of a star.

Theorem 13 (a) For m ≥ 2, we have λ(K1,m +

K1,m) = 3m+ 1.
(b) λ(K1,1 +K1,1) = 5.

Proof. (a) Let m ≥ 2 and let f be any
L(2, 1)-labeling of K1,m + K1,m. Since {a, a1} ∪

{b1, b2, · · · , bm} induces inK1,m +K1,m a clique B
of order m + 2, the colors assigned by f to any two
distinct vertices of B must differ by at least 2. Thus
λ(K1,m + K1,m) ≥ λ(B) ≥ 2m + 2. But for ev-
ery i with 2 ≤ i ≤ m, we have dK1,m+K1,m

(ai, a) =

dK1,m+K1,m
(ai, bj) = 1 for any j with 1 ≤ j ≤ m,

and dK1,m+K1,m
(ai, a1) = 2. This implies that for

every i with 2 ≤ i ≤ m, f(ai) must differ than
f(a1), and f(ai) must differ by at least 2 than each
of f(a) and f(bj) for any j with 1 ≤ j ≤ m. Clearly
f(ai) ̸= f(aj) for every distinct i, j ∈ {2, 3, · · · ,m}
because dK1,m+K1,m

(ai, aj) = 2. Thus the values
of f(a2), f(a3), · · · , f(am) are different and each of
them pushes the lower bound 2m + 2 of λ(K1,m +

K1,m) up by 1. This implies that λ(K1,m +K1,m) ≥
(2m+ 2) + (m− 1) = 3m+ 1.

Now define the function g on V (K1,m+K1,m) as
follows:

g(bi) = 2i− 2 for 1 ≤ i ≤ m,
g(a) = 2m,
g(a1) = 2m+ 2,
g(ai) = 2m+ i+ 1 for 2 ≤ i ≤ m,

and g(b) = 1.

Notice that since m ≥ 2, we have g(x) − g(b) ≥
2m − 1 ≥ 3 for every x ∈ N(b) = {ai : 1 ≤ i ≤
m} ∪ {a}. One can easily check that g is an L(2, 1)-
labeling ofK1,m+K1,m with span 3m+1. Therefore
λ(K1,m + K1,m) ≤ 3m + 1 and hence λ(K1,m +

K1,m) = 3m+ 1.
(b) The function g defined on V (K1,1 +K1,1) by

g(a1) = 0, g(a) = 2, g(b1) = 4, and g(b) = 5 is
clearly an L(2, 1)-labeling ofK1,1+K1,1. Therefore
λ(K1,1 + K1,1) ≤ 5. Suppose to the contrary that
f is an L(2, 1)-labeling of K1,1 + K1,1 having span
less than 5. But since {a, a1, b1} induces in K1,1 +

K1,1 a clique, we must have {f(a), f(a1), f(b1)} =
{0, 2, 4}. Now f(b) ∈ {1, 3} because d(b, x) ≤ 2
for any x ∈ {a, a1, b1}. This contradicts the fact
that both |f(b) − f(a)| and |f(b) − f(a1)| must be
at least 2 since b is adjacent to both a and a1. There-
fore λ(K1,1 +K1,1) = 5.

Next, we determine the locating chromatic number
of the complementary join of a star.

Theorem 14 (a) For m ≥ 2, we have χL(K1,m +

K1,m) = 2m+ 1.
(b) χL(K1,1 +K1,1) = 4.

Proof. (a) Let m ≥ 2. First, we will show that
the locating chromatic number of K1,m + K1,m is
greater than or equal to 2m+1. Let f be any locating
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coloring of K1,m + K1,m. Observe that E(K1,m +

K1,m) contains all edges of the form xy where x ∈
V (K1,m) = {a} ∪ {a1, a2, · · · , am} and y ∈
V (K1,m) = {b}∪{b1, b2, · · · , bm}. Thus the ordered
partition of V (K1,m + K1,m) induced by f must be
of the form π = {R1, R2, · · · , Rk, S1, S2, · · · , Sp}
for some positive integers k and p, where ∪k

i=1Ri =

V (K1,m) and ∪p
i=1Si = V (K1,m). Clearly {a} is

one of the color classesR1, R2, · · · , Rk since a is ad-
jacent to ai for each 1 ≤ i ≤ m, say {a} = R1. But
{a, a1} ∪ {b1, b2, · · · , bm} induces in K1,m + K1,m

a clique B of order m + 2, so f must use differ-
ent m + 2 colors 1, 2, · · · ,m + 2 to color the ver-
tices of B. Without loss of generality we can assume
that f(bi) = i for 1 ≤ i ≤ m, f(a) = m + 1
and f(a1) = m + 2. Then for every i with 2 ≤
i ≤ m, we have f(ai) > m + 1 because ai is ad-
jacent to each vertex in {a} ∪ {b1, b2, · · · , bm}. But
π is a resolving partition since f is a locating color-
ing of K1,m + K1,m, thus for every distinct i, j ∈
{1, 2, · · · ,m}, we must have f(ai) ̸= f(aj) accord-
ing to Lemma 3. Therefore f must use new m − 1
colors, say m + 3,m + 4, · · · ,m + (m + 1), to
color the vertices a2, a3, · · · , am, respectively. Thus
χL(K1,m +K1,m) ≥ (m+ 2) + (m− 1) = 2m+ 1.

Second, we will show that the locating chromatic
number ofK1,m+K1,m is less than or equal to 2m+1
by providing a locating coloring g that uses exactly
2m + 1 colors. Define the function g on V (K1,m +

K1,m) as follows:

g(bi) = i for 1 ≤ i ≤ m,
g(a) = m+ 1,
g(ai) = i+m+ 1 for 1 ≤ i ≤ m,

and g(b) = 1.

Then {b, b1} is the only color class induced by g
that contains more than one element. Observe that
since m ≥ 2, the vertices b and b1 have different
color codes because d(b, S) = 2 while d(b1, S) = 1
where S = {b2} is the color class having the color
2. Thus g is a locating coloring of K1,m + K1,m

and hence χL(K1,m + K1,m) ≤ 2m + 1. Therefore
χL(K1,m +K1,m) = 2m+ 1.

(b) The set {a, a1, b1} induces in K1,1 + K1,1 a
cliqueB, so any locating coloring ofK1,1+K1,1 must
use three colors 1, 2, 3 to color the vertices of B. It is
obvious that the color of b must be different from the
colors of its neighbors a and a1. But also b cannot be
assigned the color of b1, for otherwise b1 and b would
have the same color code. Thus b must have a new
fourth color and hence χL(K1,1 +K1,1) = 4.

Finally, we determine the partition dimension of
the complementary join of a star.

Theorem 15 pd(K1,m +K1,m) = m+ 2.

Proof. Consider the partition δ =
{R1, R2, · · · , Rm+2} where Ri = {ai, bi}
for 1 ≤ i ≤ m, Rm+1 = {a}, and
Rm+2 = {b}. Then for every i ∈ {1, 2, · · · ,m}
we have dK1,m+K1,m

(ai, Rm+2) = 1 while
dK1,m+K1,m

(bi, Rm+2) = 2. This implies
that δ is a resolving partition, and hence
pd(K1,m + K1,m) ≤ m + 2. On the other hand, by
Lemma 3, for every distinct i, j ∈ {1, 2, · · · ,m}
the two vertices ai and aj belong to different color
classes in any resolving partition. Thus we have
pd(K1,m +K1,m) ≥ m. Now assume to the contrary
that pd(K1,m + K1,m) ̸= m + 2 and distinguish the
following two cases:

Case 1. pd(K1,m +K1,m) = m.
Assume that θ = {R1, R2, · · · , Rm} is a resolv-

ing partition of K1,m + K1,m. But by Lemma 3,
for every distinct i, j ∈ {1, 2, · · · ,m} the two ver-
tices bi and bj belong to different color classes (and
the same holds for distinct ai, aj), thus for each i
with 1 ≤ i ≤ m, we have Ri ⊇ {asi , bwi

} for
some si, wi ∈ {1, 2, · · · ,m}. Now a ∈ Rk for some
k ∈ {1, 2, · · · ,m}, which implies that ask and a
have the same representation (h1, h2, · · · , hm) with
hk = 0while hi = 1 for any i∈ {1, 2, · · · ,m}−{k}.
This contradicts the assumption that θ is a resolving
partition.

Case 2. pd(K1,m +K1,m) = m+ 1.
Assume that θ = {R1, R2, · · · , Rm+1} is a re-

solving partition of K1,m + K1,m. Again by apply-
ing Lemma 3 on distinct vertices in {a1, a2, · · · , am}
and on distinct vertices in {b1, b2, · · · , bm}, we must
have at leastm−1 color classes of θ containing simul-
taneously a vertex from {a1, a2, · · · , am} and a ver-
tex from {b1, b2, · · · , bm}. But by the symmetry be-
tween any two vertices in {a1, a2, · · · , am} and also
between any two vertices in {b1, b2, · · · , bm}with re-
spect to distances to other vertices, we can assume
without loss of generality that Ri ⊇ {ai, bi} for
1 ≤ i ≤ m− 1. We distinguish two subcases.

Subcase 2.1. Both am and bm belong to the same
color class, say Rm.

Then the vertex a cannot belong to any Ri for
1 ≤ i ≤ m, because otherwise if a ∈ Rk for some
k ∈ {1, 2, · · · ,m}, then Rm+1 = {b} and the two
vertices a and ak would have the same representation
(h1, h2, · · · , hm+1)with hk = 0while hi = 1 for any
i ∈ {1, 2, · · · ,m + 1} − {k}, a contradiction. Thus
we have Rm+1 ⊇ {a}. But now, the two vertices a1
and b1 have the same representation (0, 1, · · · , 1), a
contradiction.

Subcase 2.2. The two vertices am and bm belong
to different color classes, say that Rm ⊇ {am} and
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Rm+1 ⊇ {bm}. But now we have either a ∈ Rm, a ∈
Rm+1 or a ∈ Rk for some k ≤ m − 1. This implies
that either r(a | θ) = r(am | θ) = (1, 1, · · · , 1, 0, 1),
r(a | θ) = r(bm | θ) = (1, 1, · · · , 1, 0) or r(a |
θ) = r(bk | θ) = (h1, h2, · · · , hm+1) with hk = 0
while hi = 1 for any i ∈ {1, 2, · · · ,m + 1} − {k},
respectively. A contradiction in any case.

Therefore pd(K1,m +K1,m) = m+ 2.

6 Conclusion
This paper introduces the concept of the complemen-
tary join G + G of a graph G and investigates some
of its properties. Two related previously studied con-
cepts are the complementary prism GG and its com-
plement GG. These three graphs H1 = GG, H2 =

GG and H = G + G have in common that each of
them consists of a copy of G and a disjoint copy of
G together with a set of edges joining G and G. The
three sets of edges are E1 = {aibi : 1 ≤ i ≤ n} for
H1, E2 = {aibj : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j}
for H2 and E = {aibj : 1 ≤ i ≤ n, 1 ≤ j ≤
n} = E1 ∪ E2 for H . One can consider the more
general case Hg in which the edge set Eg is taken
to be any specific subset of E. Notice that E1 is a
matching in the complementary prism H1 consisting
of those edges joining a vertex fromGwith its copy in
G. It seems to be interesting to study the special case
Hskew (let us call it the skewed complementary prism)
ofHg that generalizes the complementary prismH1 in
whichEskew is taken to be an arbitrary perfect match-
ingwhose elements join the vertices ofGwith the ver-
tices of G. Clearly, Eskew corresponds to a permuta-
tion of V (G) while E1 of the complementary prism
corresponds to the identity permutation of V (G).
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