The Complementary Join of a Graph

SALAH AL-ADDASI
Department of Mathematics, Faculty of Science
The Hashemite University
P.O. box 330127 , Zarqa 13133
JORDAN

Abstract

The complementary join of a graph G is introduced in this paper as the join $G+\bar{G}$ of G and its complement considering them as vertex-disjoint graphs. The aim of this paper is to study some properties and some graph invariants of the complementary join of a graph. We find the diameter, the radius and the domination number of $G+\bar{G}$ and determine when $G+\bar{G}$ is self-centered. We obtain a characterization of the Eulerian complementary joins, and show that the complementary join of a nontrivial graph is Hamiltonian. We give the clique and independence numbers of $G+\bar{G}$ in terms of the clique and independence numbers of G. We conclude this paper by determining the chromatic number, the $L(2,1)$-labeling number, the locating chromatic number and the partition dimension of the complementary join of a star.

Key-Words: Complementary join Eulerian L (2, 1)-labeling number locating chromatic number partition $\|$ шயШШШШШШ1/dimension.

Received: April 18, 2023. Revised: November 15, 2023. Accepted: December 11, 2023. Published: March 8, 2024.

1 Introduction

All graphs considered in this paper are finite with no loops and no multiple edges. For standard undefined notions the reader is referred to [1$]$.

The join $H_{1}+H_{2}$ of two vertex-disjoint graphs H_{1} and H_{2} is the graph obtained from the union $H_{1} \cup H_{2}$ by adding all edges that have one end vertex in H_{1} and the other in H_{2}, [1$]$. If G and \bar{G} are considered as vertex-disjoint graphs, then the complementary prism $G \bar{G}$ of G is the graph obtained from the union of G and \bar{G} by adding the perfect matching between corresponding vertices of G and \bar{G}, [2]]. Comparing the complementary prism $G \bar{G}$ and its complement $\overline{G \bar{G}}$ it is obvious that each of them consists of a copy of G and a copy of \bar{G} together with a set of edges (say E_{1} and E_{2}, respectively) joining these copies. Notice that the join $G+\bar{G}$ also consists of a copy of G and a copy of \bar{G} together with the set of edges E joining these copies where E is just the union of the two disjoint sets E_{1} and E_{2}.

The complementary prism gained the attention of many authors, see for example, $[3],[4],[5],[6]$. Also the complement of the complementary prism has been studied, some of its properties were investigated in [7]. The aim of this paper is to start studying some properties and some graph invariants of the complementary join $G+\bar{G}$ of a graph G. Notice that the complementary join $G+\bar{G}$ can be viewed as a supergraph of each of the complementary prism $G \bar{G}$ and the complement $\overline{G \bar{G}}$ of the complementary prism. In-
deed each of $G \bar{G}$ and $\overline{G \bar{G}}$ is isomorphic to a spanning subgraph of $G+\bar{G}$.

In this paper, we show that the complementary join of a nontrivial graph is Hamiltonian, and obtain a characterization of those complementary joins that are Eulerian. We determine the diameter and the radius of the complementary join. We express the clique and independence numbers of $G+\bar{G}$ in terms of the clique and independence numbers of G. In particular, we determine four graph invariants (the chromatic number, the $L(2,1)$-labeling number, the locating chromatic number and the partition dimension) for the complementary join of a star.

We give a formal definition in which the adapted labeling of the vertices of $G+\bar{G}$ will be used throughout this paper.
Definition 1 Let G be a graph of order n. The complementary join $G+\bar{G}$ of G is the graph whose vertex set is the union of the two disjoint sets $V(G)=$ $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}, V(\bar{G})=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$ where b_{i} is the corresponding vertex of a_{i}, and whose edge set is the union of the three mutually disjoint sets $E(G)$, $E(\bar{G})$, and $E=\left\{a_{i} b_{j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$.

For example, the complement of the complementary prism $C_{3} \overline{C_{3}}$ is the 3 -sun, while the complementary join $C_{3}+\overline{C_{3}}$ of C_{3} is the multipartite graph $K_{1,1,1,3}$.

The problem of assigning radio frequencies to transmitters at different locations without causing interference is called the frequency assignment problem. It was formulated as a vertex coloring problem
in [8]. A variation of this problem (which is known as the $L(2,1)$-labeling or radio 2 -coloring) where closed transmitters receive different frequencies while very closed transmitters receive frequencies that differ by at least 2 was introduced in [9]. Let H be a connected graph of diameter d. Let k be an integer with $1 \leq k \leq$ d. The distance $d(u, v)$ between the two vertices u and v of H is the number of edges in a shortest u, v path in H. A radio k-coloring of H is a function f from the vertex set of H to the set of positive integers such that $d(u, v)+|f(u)-f(v)| \geq 1+k$ for any two distinct vertices u and v of H, [10]. It is obvious that the radio 1 -coloring is just the standard vertex coloring. It is worth to mention that the codomain of the radio k-coloring function f is assumed by some authors to be the set of positive integers凹[10@-11], while by many others it is assumed to be the set of nonneg-
 paper, we will follow the later assumption. Thus for clarity, we restate explicitly the following definition of the span of an $L(2,1)$-labeling and the λ-number of a graph.

Definition 2 An $L(2,1)$-labeling of a graph H is a function f from $V(H)$ to the set of nonnegative integers (called colors) such that $|f(u)-f(v)| \geq 1$ if $d(u, v)=2$ and $|f(u)-f(v)| \geq 2$ if u and v are adjacent. The span of f is the difference between the largest and the smallest colors in $f(V(H))$. The $L(2,1)$-labeling number $\lambda(H)$ (also called the λ number of H) is the minimum span over all $L(2,1)$ labelings of H.

Notice that the span of an $L(2,1)$-labeling is defined in [11], to be the difference between the largest and the smallest colors plus 1.

For a subset S of the vertex set of a connected graph H and a vertex u of H, the distance between u and S is $d(u, S)=\min \{d(u, x): x \in S\}$. A k coloring f of a connected graph H is an onto function from the set of vertices of H to the set of colors $\{1,2, \cdots, k\}$ such that adjacent vertices have different colors. The coloring f induces an ordered partition $\pi=\left\{R_{1}, R_{2}, \cdots, R_{k}\right\}$ of the vertex set of H, where for $1 \leq i \leq k$, the color class R_{i} is the set of vertices of H receiving the color i. The color code of a vertex u is the k-tuple $f_{\pi}(u)=$ $\left(d\left(u, R_{1}\right), d\left(u, R_{2}\right), \cdots, d\left(u, R_{k}\right)\right)$. A locating coloring of H is a coloring of H in which every two distinct vertices have different color codes. The locating chromatic number $\chi_{L}(H)$ is the smallest k such that H has a locating k-coloring. The concept of locating chromatic number was introduced in [18]. The locating chromatic number of some classes of graphs was determined by several authors, [18], [19], [20], [21], [22].

Locating chromatic number is related to both coloring and partition dimension of a graph. For an ordered k-partition $\pi=\left\{R_{1}, R_{2}, \cdots, R_{k}\right\}$ of the vertex set of a connected graph H, the representation of a vertex u of H with respect to the partition π is $r(u \mid \pi)=\left(d\left(u, R_{1}\right), d\left(u, R_{2}\right), \cdots, d\left(u, R_{k}\right)\right)$. The partition π is a resolving partition if distinct vertices have different representations. The partition dimension $p d(H)$ of the graph H is the minimum k such that H has a resolving k-partition. Studying partition dimension of graphs starts in [23]. Many authors were interested in determining the partition dimension of some classes of graphs, [23], [24], [25], [26], [27], [28]. The concept of partition dimension was extended also for disconnected graphs, [29],[30].

The following result was obtained in [25], it will be referred to in the proofs of the last two theorems in section 5 of this paper.

Lemma 3 Let π be a resolving partition of the vertex set of a connected graph H. If u and v are distinct vertices of H such that $d(u, x)=d(v, x)$ for all $x \in V(H)-\{u, v\}$, then u and v belong to different partition classes of π.

2 Diameter, $[5$ adius and] omination Number

The complementary join $K_{1}+\overline{K_{1}}$ is isomorphic to K_{2}, which is connected. So assume that $n \geq 2$ and let $i, j \in\{1,2, \cdots, n\}$. The two vertices a_{i} and b_{j} are adjacent in $G+\bar{G}$. On the other hand, when $i \neq j$ we have: The two vertices a_{i} and a_{j} are joint by the path $a_{i} b_{1} a_{j}$, and the two vertices b_{i} and b_{j} are joint by the path $b_{i} a_{1} b_{j}$. This implies that $G+\bar{G}$ is connected.

The diameter of $G+\bar{G}$ is determined in the following result.

Proposition 4 For any graph G of order n, we have

$$
\operatorname{diam}(G+\bar{G})= \begin{cases}1 & \text { if } n=1 \\ 2 & \text { if } n \geq 2\end{cases}
$$

Proof. Obviously, $\operatorname{diam}\left(K_{1}+\overline{K_{1}}\right)=1$. So assume that G is a nontrivial graph and let x and y be two distinct vertices of $G+\bar{G}$. If one of x, y belongs to $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ while the other belongs to $\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, then x and y are adjacent in $G+\bar{G}$. Thus assume that both x and y belong to the same set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ or $\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$. Then $x w y$ is an x, y-path in $G+\bar{G}$ where $w=b_{1}$ or $w=a_{1}$ according to whether x and y belong to $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ or $\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$, respectively. Thus $d_{G+\bar{G}}(x, y) \leq 2$. But since G is not the trivial graph, we have at least one of G and \bar{G} is not complete. Thus $G+\bar{G}$ has two nonadjacent vertices x_{0}, y_{0}
with either $x_{0}, y_{0} \in\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ or $x_{0}, y_{0} \in$ $\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$. This implies that $d_{G+\bar{G}}\left(x_{0}, y_{0}\right)=2$ and therefore $\operatorname{diam}(G+\bar{G})=2$.

For any vertex x of a graph G of order n, we have $0 \leq \operatorname{deg}_{G} x \leq n-1$, we will say that 0 and $n-1$ are the extreme degrees for G. Obviously, extreme degrees for G need not be attained.

Definition 5 A vertex x of a graph G of order n is said to be of extreme degree if $\operatorname{deg}_{G} x \in\{0, n-1\}$. Moreover, we will say that G has an extreme degree whenever it has a vertex of extreme degree.

For example, every vertex of the complete graph K_{n} is of extreme degree, while P_{4} has no vertex of extreme degree.

Theorem 6 Let G be a graph of order n. Then
$\operatorname{rad}(G+\bar{G})=\left\{\begin{array}{ll}1 & \text { if G has an extreme degree } \\ 2 & \text { otherwise }\end{array}\right.$.
Proof. By Proposition 4 , we have $\operatorname{rad}(G+\bar{G}) \leq 2$. Clearly $\operatorname{rad}(G+\bar{G})=1$ if and only if there exists a vertex x that is adjacent to all other vertices of $G+\bar{G}$. Now, if x is of the type a_{i}, then $\operatorname{deg}_{G} x=n-1$, while if x is of the type b_{i}, then the corresponding vertex a_{i} satisfies $\operatorname{deg}_{G} a_{i}=0$.

A self-centered graph is a graph whose radius and diameter are equal, [31]. Using Proposition 4 and Theorem 6 we have the following result.

Corollary 7 Let G be a graph. Then $G+\bar{G}$ is selfcentered if and only if either G is the trivial graph or G has no vertex of extreme degree.

The domination number γ of $G+\bar{G}$ can be computed in view of Theorem 6.
Corollary 8 Let G be a graph of order n. Then

$$
\gamma(G+\bar{G})= \begin{cases}1 & \text { if } G \text { has an extreme degree } \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Obviously, $\gamma(G+\bar{G})=1$ if and only if $\operatorname{rad}(G+\bar{G})=1$. Thus by Theorem 6 we have $\gamma(G+\bar{G})=1$ if and only if G has a vertex of extreme degree. So assume that G has no vertex of extreme degree. Then $\gamma(\underline{G}+\bar{G})>1$. But $\left\{a_{1}, b_{1}\right\}$ is a dominating set of $G+\bar{G}$, therefore $\gamma(G+\bar{G})=2$.

3 When Hamiltonian? And When Eulerian?

The following two results determine precisely when $G+\bar{G}$ is Hamiltonian and when it is Eulerian. Recall that a graph H of order $m \geq 3$ in which every vertex has degree greater than or equal to $\frac{m}{2}$ is Hamiltonian, [1].

Proposition 9 For any nontrivial graph G, the complementary join $G+\bar{G}$ is Hamiltonian.

Proof. Let G be a graph of order $n>1$. Then $G+\bar{G}$ has order $2 n \geq 4$ and for any vertex x in $G+\bar{G}$ we have $\operatorname{deg}_{G+\bar{G}} x \geq n$ because every vertex of the type a_{i} is adjacent to every vertex of the type b_{i}. Therefore $G+\bar{G}$ is Hamiltonian.

It is well known that a nontrivial connected graph is Eulerian if and only if all of its vertices have even degrees.

Theorem 10 Let G be a nontrivial graph of order n. Then $G+\bar{G}$ is Eulerian if and only if n is odd and every vertex of G has odd degree.

Proof. Assume that n is odd and every vertex of G has odd degree. Then for every $i \in\{1,2, \cdots, n\}$ we have $\operatorname{deg}_{G+\bar{G}} a_{i}=\operatorname{deg}_{G} a_{i}+n$ which is even, and we have $\operatorname{deg}_{G+\bar{G}} b_{i}=\operatorname{deg}_{\bar{G}} b_{i}+n=\left(n-1-\operatorname{deg}_{G} a_{i}\right)+n$ which is also even because $\operatorname{deg}_{G} a_{i}$ is odd. Therefore $G+\bar{G}$ is Eulerian.

Conversely, assume that $G+\bar{G}$ is Eulerian and let $i \in\{1,2, \cdots, n\}$. Let $\operatorname{deg}_{G} a_{i}=m$. Then $\operatorname{deg}_{G+\bar{G}} b_{i}=(n-1-m)+n$ is even since $G+\bar{G}$ is Eulerian. Thus m must be odd. So every vertex of G has odd degree. But $\operatorname{deg}_{G+\bar{G}} a_{i}=m+n$ is also even since $G+\bar{G}$ is Eulerian. This implies that n must be odd.

4 Clique and Independence Numbers

A complete subgraph of a graph H is a clique in H. The clique number ω of H is the order of a largest clique in H. An independent set S of H is a subset of the vertex set of H such that any two elements of S are not adjacent in H. The cardinality of a maximum independent set of H is the independence num$\operatorname{ber} \beta$ of H. It is well known that the clique number of a graph equals the independence number of its complement. This means that for any graph H, we have $\omega(H)=\beta(\bar{H})$ and $\beta(H)=\omega(\bar{H})$. The next result determines the clique and independence numbers of the complementary join $G+\bar{G}$ in terms of the clique and independence numbers of G.

Theorem 11 For any graph G, we have:

$$
\begin{aligned}
\omega(G+\bar{G}) & =\omega(G)+\beta(G) \\
\text { and } \beta(G+\bar{G}) & =\max \{\beta(G), \omega(G)\}
\end{aligned}
$$

Proof. We will compute ω and β of the complementary join $G+\bar{G}$ by computing β and ω of its complement $\overline{G+\bar{G}}$, respectively. The vertex set of $\overline{G+\bar{G}}$ is $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} \cup\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}$. But every vertex
of the type a_{i} is not adjacent in $\overline{G+\bar{G}}$ to any vertex of the type b_{i}. Thus the edge set of $\overline{G+\bar{G}}$ is the union of the two sets $\left\{a_{i} a_{j}: i \neq j, a_{i} a_{j} \notin E(G)\right\}$ and $\left\{b_{i} b_{j}: i \neq j, b_{i} b_{j} \notin E(\bar{G})\right\}$. Therefore, $\overline{G+\bar{G}}$ is isomorphic to $\bar{G} \cup G$. Now it follows that:

$$
\begin{aligned}
\omega(G+\bar{G}) & =\beta(\overline{G+\bar{G}}) \\
& =\beta(\bar{G} \cup G) \\
& =\beta(\bar{G})+\beta(G) \\
& =\omega(G)+\beta(G)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta(G+\bar{G}) & =\omega(\overline{G+\bar{G}}) \\
& =\omega(\bar{G} \cup G) \\
& =\max \{\omega(\bar{G}), \omega(G)\} \\
& =\max \{\beta(G), \omega(G)\}
\end{aligned}
$$

since $\overline{G+\bar{G}} \cong \bar{G} \cup G$ where \bar{G} and G have disjoint vertex sets.

5 Main Results

This section is devoted to determine the chromatic number, the $L(2,1)$-labeling number, the locating chromatic number and the partition dimension of the complementary join of a star $K_{1, m}$.

For $m \geq 2$, throughout this section we will assume that a_{m+1} is the central vertex of the star $K_{1, m}$, and we will denote it simply by a. Thus $V\left(K_{1, m}\right)=\{a\} \cup$ $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ where $\operatorname{deg}_{K_{1, m}} a=m$.

Coloring the subgraph of $G+\bar{G}$ induced by $V(G)$ using $\chi(G)$ colors, and then coloring the subgraph of $G+\bar{G}$ induced by $V(\bar{G})$ using new $\chi(\bar{G})$ colors, we obtain a $(\chi(G)+\chi(\bar{G}))$-coloring of $G+\bar{G}$. But since each vertex in $V(\bar{G})$ is adjacent to every vertex in $V(G)$, we cannot have a common color used in both sets $V(G)$ and $V(\bar{G})$. So we have the following result.

Proposition 12 For any graph G, we have $\chi(G+$ $\bar{G})=\chi(G)+\chi(\bar{G})$. In particular $\chi\left(K_{1, m}+\overline{K_{1, m}}\right)=$ $2+m$.

Now, we compute the $L(2,1)$-labeling number of the complementary join of a star.

Theorem 13 (a) For $m \geq$ 2, we have $\lambda\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)=3 m+1$.
(b) $\lambda\left(K_{1,1}+\overline{K_{1,1}}\right)=5$.

Proof. (a) Let $m \geq 2$ and let f be any $L(2,1)$-labeling of $K_{1, m}+\overline{K_{1, m}}$. Since $\left\{a, a_{1}\right\} \cup$
$\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$ induces in $K_{1, m}+\overline{K_{1, m}}$ a clique B of order $m+2$, the colors assigned by f to any two distinct vertices of B must differ by at least 2 . Thus $\lambda\left(K_{1, m}+\overline{K_{1, m}}\right) \geq \lambda(B) \geq 2 m+2$. But for every i with $2 \leq i \leq m$, we have $d_{K_{1, m}+\overline{K_{1, m}}}\left(a_{i}, a\right)=$ $d_{K_{1, m}+\overline{K_{1, m}}}\left(a_{i}, b_{j}\right)=1$ for any j with $1 \leq j \leq m$, and $d_{K_{1, m}+\overline{K_{1, m}}}\left(a_{i}, a_{1}\right)=2$. This implies that for every i with $2 \leq i \leq m$, $f\left(a_{i}\right)$ must differ than $f\left(a_{1}\right)$, and $f\left(a_{i}\right)$ must differ by at least 2 than each of $f(a)$ and $f\left(b_{j}\right)$ for any j with $1 \leq j \leq m$. Clearly $f\left(a_{i}\right) \neq f\left(a_{j}\right)$ for every distinct $i, j \in\{2,3, \cdots, m\}$ because $d_{K_{1, m}+\overline{K_{1, m}}}\left(a_{i}, a_{j}\right)=2$. Thus the values of $f\left(a_{2}\right), f\left(a_{3}\right), \cdots, f\left(a_{m}\right)$ are different and each of them pushes the lower bound $2 m+2$ of $\lambda\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)$ up by 1 . This implies that $\lambda\left(K_{1, m}+\overline{K_{1, m}}\right) \geq$ $(2 m+2)+(m-1)=3 m+1$.

Now define the function g on $V\left(K_{1, m}+\overline{K_{1, m}}\right)$ as follows:

$$
\begin{aligned}
g\left(b_{i}\right) & =2 i-2 \text { for } 1 \leq i \leq m \\
g(a) & =2 m \\
g\left(a_{1}\right) & =2 m+2 \\
g\left(a_{i}\right) & =2 m+i+1 \text { for } 2 \leq i \leq m \\
\text { and } g(b) & =1
\end{aligned}
$$

Notice that since $m \geq 2$, we have $g(x)-g(b) \geq$ $2 m-1 \geq 3$ for every $x \in N(b)=\left\{a_{i}: 1 \leq i \leq\right.$ $m\} \cup\{a\}$. One can easily check that g is an $L(2,1)$ labeling of $K_{1, m}+\overline{K_{1, m}}$ with span $3 m+1$. Therefore $\lambda\left(K_{1, m}+\overline{K_{1, m}}\right) \leq 3 m+1$ and hence $\lambda\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)=3 m+1$.
(b) The function g defined on $V\left(K_{1,1}+\overline{K_{1,1}}\right)$ by $g\left(a_{1}\right)=0, g(a)=2, g\left(b_{1}\right)=4$, and $g(b)=5$ is clearly an $L(2,1)$-labeling of $K_{1,1}+\overline{K_{1,1}}$. Therefore $\lambda\left(K_{1,1}+\overline{K_{1,1}}\right) \leq 5$. Suppose to the contrary that f is an $L(2,1)$-labeling of $K_{1,1}+\overline{K_{1,1}}$ having span less than 5 . But since $\left\{a, a_{1}, b_{1}\right\}$ induces in $K_{1,1}+$ $\overline{K_{1,1}}$ a clique, we must have $\left\{f(a), f\left(a_{1}\right), f\left(b_{1}\right)\right\}=$ $\{0,2,4\}$. Now $f(b) \in\{1,3\}$ because $d(b, x) \leq 2$ for any $x \in\left\{a, a_{1}, b_{1}\right\}$. This contradicts the fact that both $|f(b)-f(a)|$ and $\left|f(b)-f\left(a_{1}\right)\right|$ must be at least 2 since b is adjacent to both a and a_{1}. Therefore $\lambda\left(K_{1,1}+\overline{K_{1,1}}\right)=5$.

Next, we determine the locating chromatic number of the complementary join of a star.

Theorem 14 (a) For $m \geq 2$, we have $\chi_{L}\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)=2 m+1$.
(b) $\chi_{L}\left(K_{1,1}+\overline{K_{1,1}}\right)=4$.

Proof. (a) Let $m \geq 2$. First, we will show that the locating chromatic number of $K_{1, m}+\overline{K_{1, m}}$ is greater than or equal to $2 m+1$. Let f be any locating
coloring of $K_{1, m}+\overline{K_{1, m}}$. Observe that $E\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)$ contains all edges of the form $x y$ where $x \in$ $V\left(K_{1, m}\right)=\{a\} \cup\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and $y \in$ $V\left(\overline{K_{1, m}}\right)=\{b\} \cup\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$. Thus the ordered partition of $V\left(K_{1, m}+\overline{K_{1, m}}\right)$ induced by f must be of the form $\pi=\left\{R_{1}, R_{2}, \cdots, R_{k}, S_{1}, S_{2}, \cdots, S_{p}\right\}$ for some positive integers k and p, where $\cup_{i=1}^{k} R_{i}=$ $V\left(K_{1, m}\right)$ and $\cup_{i=1}^{p} S_{i}=V\left(\overline{K_{1, m}}\right)$. Clearly $\{a\}$ is one of the color classes $R_{1}, R_{2}, \cdots, R_{k}$ since a is adjacent to a_{i} for each $1 \leq i \leq m$, say $\{a\}=R_{1}$. But $\left\{a, a_{1}\right\} \cup\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$ induces in $K_{1, m}+\overline{K_{1, m}}$ a clique B of order $m+2$, so f must use different $m+2$ colors $1,2, \cdots, m+2$ to color the vertices of B. Without loss of generality we can assume that $f\left(b_{i}\right)=i$ for $1 \leq i \leq m, f(a)=m+1$ and $f\left(a_{1}\right)=m+2$. Then for every i with $2 \leq$ $i \leq m$, we have $f\left(a_{i}\right)>m+1$ because a_{i} is adjacent to each vertex in $\{a\} \cup\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$. But π is a resolving partition since f is a locating coloring of $K_{1, m}+\overline{K_{1, m}}$, thus for every distinct $i, j \in$ $\{1,2, \cdots, m\}$, we must have $f\left(a_{i}\right) \neq f\left(a_{j}\right)$ according to Lemma 3. Therefore f must use new $m-1$ colors, say $m+3, m+4, \cdots, m+(m+1)$, to color the vertices $a_{2}, a_{3}, \cdots, a_{m}$, respectively. Thus $\chi_{L}\left(K_{1, m}+\overline{K_{1, m}}\right) \geq(m+2)+(m-1)=2 m+1$.

Second, we will show that the locating chromatic number of $K_{1, m}+\overline{K_{1, m}}$ is less than or equal to $2 m+1$ by providing a locating coloring g that uses exactly $2 m+1$ colors. Define the function g on $V\left(K_{1, m}+\right.$ $\left.\overline{K_{1, m}}\right)$ as follows:

$$
\begin{aligned}
g\left(b_{i}\right) & =i \text { for } 1 \leq i \leq m \\
g(a) & =m+1 \\
g\left(a_{i}\right) & =i+m+1 \text { for } 1 \leq i \leq m \\
\text { and } g(b) & =1
\end{aligned}
$$

Then $\left\{b, b_{1}\right\}$ is the only color class induced by g that contains more than one element. Observe that since $m \geq 2$, the vertices b and b_{1} have different color codes because $d(b, S)=2$ while $d\left(b_{1}, S\right)=1$ where $S=\left\{b_{2}\right\}$ is the color class having the color 2. Thus g is a locating coloring of $K_{1, m}+\overline{K_{1, m}}$ and hence $\chi_{L}\left(K_{1, m}+\overline{K_{1, m}}\right) \leq 2 m+1$. Therefore $\chi_{L}\left(K_{1, m}+\overline{K_{1, m}}\right)=2 m+1$.
(b) The set $\left\{a, a_{1}, b_{1}\right\}$ induces in $K_{1,1}+\overline{K_{1,1}}$ a clique B, so any locating coloring of $K_{1,1}+\overline{K_{1,1}}$ must use three colors $1,2,3$ to color the vertices of B. It is obvious that the color of b must be different from the colors of its neighbors a and a_{1}. But also b cannot be assigned the color of b_{1}, for otherwise b_{1} and b would have the same color code. Thus b must have a new fourth color and hence $\chi_{L}\left(K_{1,1}+\overline{K_{1,1}}\right)=4$.

Finally, we determine the partition dimension of the complementary join of a star.

Theorem $15 \operatorname{pd}\left(K_{1, m}+\overline{K_{1, m}}\right)=m+2$.
Proof. Consider the partition $\delta=$ $\left\{R_{1}, R_{2}, \cdots, R_{m+2}\right\}$ where $R_{i}=\left\{a_{i}, b_{i}\right\}$ for $1 \leq i \leq m, R_{m+1}=\{a\}$, and $R_{m+2}=\{b\}$. Then for every $i \in\{1,2, \cdots, m\}$ we have $d_{K_{1, m}+\overline{K_{1, m}}}\left(a_{i}, R_{m+2}\right)=1$ while $d_{K_{1, m}+\overline{K_{1, m}}}\left(b_{i}, R_{m+2}\right)=2$. This implies that δ is a resolving partition, and hence $p d\left(K_{1, m}+\overline{K_{1, m}}\right) \leq m+2$. On the other hand, by Lemma 3, for every distinct $i, j \in\{1,2, \cdots, m\}$ the two vertices a_{i} and a_{j} belong to different color classes in any resolving partition. Thus we have $p d\left(K_{1, m}+\overline{K_{1, m}}\right) \geq m$. Now assume to the contrary that $p d\left(K_{1, m}+\overline{K_{1, m}}\right) \neq m+2$ and distinguish the following two cases:

Case 1. $p d\left(K_{1, m}+\overline{K_{1, m}}\right)=m$.
Assume that $\theta=\left\{R_{1}, R_{2}, \cdots, R_{m}\right\}$ is a resolving partition of $K_{1, m}+\overline{K_{1, m}}$. But by Lemma 3, for every distinct $i, j \in\{1,2, \cdots, m\}$ the two vertices b_{i} and b_{j} belong to different color classes (and the same holds for distinct a_{i}, a_{j}), thus for each i with $1 \leq i \leq m$, we have $R_{i} \supseteq\left\{a_{s_{i}}, b_{w_{i}}\right\}$ for some $s_{i}, w_{i} \in\{1,2, \cdots, m\}$. Now $a \in R_{k}$ for some $k \in\{1,2, \cdots, m\}$, which implies that $a_{s_{k}}$ and a have the same representation $\left(h_{1}, h_{2}, \cdots, h_{m}\right)$ with $h_{k}=0$ while $h_{i}=1$ for any $i \in\{1,2, \cdots, m\}-\{k\}$. This contradicts the assumption that θ is a resolving partition.

Case 2. $p d\left(K_{1, m}+\overline{K_{1, m}}\right)=m+1$.
Assume that $\theta=\left\{R_{1}, R_{2}, \cdots, R_{m+1}\right\}$ is a resolving partition of $K_{1, m}+\overline{K_{1, m}}$. Again by applying Lemma 3 on distinct vertices in $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and on distinct vertices in $\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$, we must have at least $m-1$ color classes of θ containing simultaneously a vertex from $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and a vertex from $\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$. But by the symmetry between any two vertices in $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ and also between any two vertices in $\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$ with respect to distances to other vertices, we can assume without loss of generality that $R_{i} \supseteq\left\{a_{i}, b_{i}\right\}$ for $1 \leq i \leq m-1$. We distinguish two subcases.

Subcase 2.1. Both a_{m} and b_{m} belong to the same color class, say R_{m}.

Then the vertex a cannot belong to any R_{i} for $1 \leq i \leq m$, because otherwise if $a \in R_{k}$ for some $k \in\{1,2, \cdots, m\}$, then $R_{m+1}=\{b\}$ and the two vertices a and a_{k} would have the same representation $\left(h_{1}, h_{2}, \cdots, h_{m+1}\right)$ with $h_{k}=0$ while $h_{i}=1$ for any $i \in\{1,2, \cdots, m+1\}-\{k\}$, a contradiction. Thus we have $R_{m+1} \supseteq\{a\}$. But now, the two vertices a_{1} and b_{1} have the same representation $(0,1, \cdots, 1)$, a contradiction.

Subcase 2.2. The two vertices a_{m} and b_{m} belong to different color classes, say that $R_{m} \supseteq\left\{a_{m}\right\}$ and
$R_{m+1} \supseteq\left\{b_{m}\right\}$. But now we have either $a \in R_{m}, a \in$ R_{m+1} or $a \in R_{k}$ for some $k \leq m-1$. This implies that either $r(a \mid \theta)=r\left(a_{m} \mid \theta\right)=(1,1, \cdots, 1,0,1)$, $r(a \mid \theta)=r\left(b_{m} \mid \theta\right)=(1,1, \cdots, 1,0)$ or $r(a \mid$ $\theta)=r\left(b_{k} \mid \theta\right)=\left(h_{1}, h_{2}, \cdots, h_{m+1}\right)$ with $h_{k}=0$ while $h_{i}=1$ for any $i \in\{1,2, \cdots, m+1\}-\{k\}$, respectively. A contradiction in any case.

Therefore $p d\left(K_{1, m}+\overline{K_{1, m}}\right)=m+2$.

6 Conclusion

This paper introduces the concept of the complementary join $G+\bar{G}$ of a graph G and investigates some of its properties. Two related previously studied concepts are the complementary prism $G \bar{G}$ and its complement $\overline{G \bar{G}}$. These three graphs $H_{1}=G \bar{G}, H_{2}=$ $\overline{G \bar{G}}$ and $H=G+\bar{G}$ have in common that each of them consists of a copy of G and a disjoint copy of \bar{G} together with a set of edges joining G and \bar{G}. The three sets of edges are $E_{1}=\left\{a_{i} b_{i}: 1 \leq i \leq n\right\}$ for $H_{1}, E_{2}=\left\{a_{i} b_{j}: 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\right\}$ for H_{2} and $E=\left\{a_{i} b_{j}: 1 \leq i \leq n, 1 \leq j \leq\right.$ $n\}=E_{1} \cup E_{2}$ for H. One can consider the more general case H_{g} in which the edge set E_{g} is taken to be any specific subset of E. Notice that E_{1} is a matching in the complementary prism H_{1} consisting of those edges joining a vertex from G with its copy in \bar{G}. It seems to be interesting to study the special case $H_{\text {skew }}$ (let us call it the skewed complementary prism) of H_{g} that generalizes the complementary prism H_{1} in which $E_{\text {skew }}$ is taken to be an arbitrary perfect matching whose elements join the vertices of G with the vertices of \bar{G}. Clearly, $E_{\text {skew }}$ corresponds to a permutation of $V(G)$ while E_{1} of the complementary prism corresponds to the identity permutation of $V(G)$.

Acknowledgment:

The author would like to thank the anonymous reviewers for their valuable comments that improve the paper.

References:

[1] F. Buckley, M. Lewinter, A Friendly Introduction to Graph Theory, Prentice Hall, New Jersey, 2003.
[2] T. W. Haynes, M. A. Henning, P. J. Slater, L. C. van der Merwe, The complimentary product of two graphs, Bull. Inst. Combin. Appl., 51, 2007, 21-30.
[3] Marko Orel, The core of a complimentary prism, J. Algebraic Combin., 58, 2023, 589-609.
[4] Marko Orel, The core of a vertex-transitive complimentary prism, Ars Math. Contemp., 23,

2023, no. P4.07. doi:
10.26493/1855-3974.3072.3ec
[5] P. K. Neethu, S. V. Ullas Chandran, Manoj Changat, Sandi Klavzar, On the general position number of complimentary prism, Fund. Inform., 178, 3, 2021, 267-281. doi: 10.3233/FI-2021-2006
[6] D. Castonguay, E. M. M. Coelho, H. Coelho, J. R. Nascimento, On the geodetic hull number for complimentary prisms II, RAIRO Oper. Res., 55, 2021, S2403-S2415. doi: 10.1051/ro/2020089
[7] S. Al-Addasi, The complement of the complementary prism, Int. J. Math. Comput. Sci., 17, 3, 2022, 985-994.
[8] W. K. Hael, Frequency Assignment: Theory and Applications, Prc. IEEE, 68, 1980, 1497-1514.
[9] J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance two, SIAM J. Discrete Math., 5, 1992, 586-595.
[10] G. Chartrand, L. Nebeský, P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory, 24, 2004, 5-21.
[11] F. Havet, B. Reed, J-S Sereni, $L(2,1)$-labelling of graphs, Proc. 19th Annual ACM-SIAM Symposium on Discrete algorithms, SODA19, 2008, 621-630.
[12] T. Calamoneri, R. Petreschi, The $L(2,1)$-labeling of unigraphs, Discrete Appl. Math., 159, 2011, 1196-1206.
[13] M. Murugan, Distance two labeling on special family of graphs, Le Matemaiche, LXX-Fasc., II, 2015, 35-48.
[14] S. Paul, M. Pal, A. Pal, $L(2,1)$-labeling of circular arc graph, Annals of Pure and Applied Mathematics, 5, 2, 2014, 208-219.
[15] S. Paul, M. Pal, A. Pal, $L(2,1)$-labeling of permutation and bipartite permutation graphs, Math. Comput. Sci., 9, 2015, 113-123.
[16] Z. Shao, A. Vesel, $L(2,1)$-labeling of the strong product of paths and cycles, The Scientific World Journal, (2014), 2014: 741932. doi: 10.1155/2014/741932/.
[17] S. K. Vaidya, P. L. Vihol, N. A. Dani, D. D. Bantva, $L(2,1)$-labeling in the context of some graph operations, Journal of Mathematics Research, 2, 3, 2010, 109-119.
[18] G. Chartrand, D. Erwin, M. A. Henning, P. J. Salter, P. Zhang, The locating chromatic number of a graph, Bull. Inst. Combin. Appl., 36, 2002, 89-101.
[19] A. Asmiati, H. Assiyatun, E. Baskoro, Locating-chromatic of amalgamation of stars, ITB J. Sci., 43A, 1, 2011, 1-8.
[20] Asmiati, E. T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa, Locating-chromatic number of firecracker graphs, Far East J. Math. Sci., 63, 1, 2012, 11-13.
[21] M. Ghanem, H. Al-Ezeh, A. Dabbour, Locating chromatic number of powers of paths and cycles, Symmetry, 11, 3, 2019, doi:10.3390/sym11030389.
[22] D. K. Syofyan, E.T. Baskoro, H. Assiyatun, On locating-chromatic number of homogeneous lobster, AKCE Int. J. Graphs Comb., 10, 3, 2013, 245-252.
[23] G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer., 131, 1998, 55-66.
[24] E. T. Boskoro, Darmaji, The partition dimension of corona product of two graphs, Far East J. Math. Sci., 66, 2012, 181-196.
[25] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequ. Math., 59, 2000, 45-54.
[26] C. Grigorious, S. Stephen, B. Rajan, M. Miller, On the partition dimension of a class of circulant graphs, Inf. Process. Lett., 114, 2014, 353-356.
[27] J. A. Rodrígues-Velázquez, I. G. Yero, D. Kuziak, The partition dimension of corona product graphs, Ars Combin., 127, 2016, 387-399.
[28] I. J. Yero, M. Jakovac, D. Kuziak, A. Taranenko, The partition dimension of strong product graphs and Cartesian product graphs, Discrete Math., 331, 2014, 43-52.
[29] D. O. Haryeni, E. T. Baskoro, S. W. Saputro, Partition dimension of disconnected graphs, J. Math. Fund. Sci., 49, 2017, 18-32.
[30] D. O. Haryeni, E. T. Baskoro, S. W. Saputro, M. Bača, A. Semaničová-Fenovčíkováň, On the partition dimension of two-component graphs, Proc. Math. Sci., 127, 5, 2017, 755-767.
[31] F. Buckley, Self-centered graphs with a given radius, Congr. Numer., 23, 1979, 211-215.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflicts of Interest

The author has no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License 4.0

 (Attribution 4.0 International, CC BY 4.0)This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en US

