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1 Introduction

In statistical inference, the maximum likelihood
method is used to estimate the parameters of a
probability distribution. In most cases, the
likelihood function is peaked and this searches for
the peak reasonably simple. A problem occurs when
the likelihood function is configured with a flat
monotone shape, causing difficulties in the search
for the point of maximization. A way around this
problem suggested in the literature (known as Firth
correction) is an adaptation of a method created to
reduce the bias of maximum likelihood estimates.
The method leads to finite estimates using
maximization of the penalized likelihood
procedure. In this case, the penalty might be
interpreted as a Jeffreys type prior widely used in
the Bayesian context, [1]. This problem appeared in
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some distributions as shown by [2]. They presented
the maximization of penalized likelihood estimation

MPLEs in the modified extended Weibull
distribution.
In this article, we study quasi-Lindley

distribution QL(a, 0) and discuss the properties of
this distribution in section 2. We present the
maximization of penalized likelihood estimation for
quasi-Lindley distribution in section 2.1. In section
2.2, real data is introduced to compare the maximum
likelihood estimation with the maximization of
penalized likelihood estimation. In section 2.3, a
simulation study is presented for quasi-Lindley
distribution QL (0,0) by the maximum likelihood
estimation and maximization of penalized likelihood
estimation. In section 3, we introduce the
Nadarajah-Haghighi exponential distribution N-H
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(o, A) and the properties of this distribution. We
present the maximization of penalized likelihood
estimation for the Nadarajah-Haghighi exponential
distribution in section 3.1. In section 3.2, a real data
set is used to compare between the maximum
likelihood estimation and maximization of penalized
likelihood estimation. In section 3.3, a simulation
study is presented for Nadarajah-Haghighi
exponential distribution N-H (o, A) by the
maximum likelihood estimation and maximization
of penalized likelihood estimation

2 Quasi Lindley Distribution

The quasi-Lindley distribution QL (a, 6) was
introduced by [3]. The probability density function
(pdf) of the quasi-Lindley distribution is defined by

f (x,a,0)= 22X D 0

,X>0,0>0,a>0
a+1

(1

Its cumulative distribution function (cdf) is
obtained as:

l+a+0X

FO)=1- a+1

X >0,0>0, >—1
(2)

They obtained the rth moment about the origin of
quasi-Lindley distribution as:

r(r+1)(a+r+1
M, = (Hrz( ) Jir—12
o+
3)
Let xi1, X2, ..., Xa be a random sample of size n from

the quasi Lindley distribution. The log-likelihood

function for the vector of parameters a, 0 is:
n

|(v)=1(a,6)=nlog(6)-n log(oc+l)+iznlllog(oﬁﬁxi )-0) X,

i=1

The maximum likelihood estimator ( & and 6 )
of o and 0 can be obtained by maximizing the log-
likelihood function given in equation (4) concerning
o and 0. This can be done by setting the score
function equal to zero and solving the resulting
system of equations. The components of the score
function are given

n n
a_n. > X vy,
00 0 ‘Ta+6x, 5

)
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(6)

Figure 1 indicates plots of the density function of
quasi-Lindley distribution for some parameter
values a, 6. Figure 2 shows plots of the hazard
function of quasi-Lindley distribution for some
parameter Values a,0

w— (0.3 2]
——{[x02,1]
— {{x0 8,1 5]

Fig. 1: Plots of the density function for some
parameter values o and 6.

¥

h{x0.3,2)
mmm— (02 1]

— h(x0.8,15]

Fig. 2: Plots of the hazard function for some
parameter values o and 6.

2.1 Maximization of Penalized Likelihood
Estimation

In [4], the author proposed to modify the score
function to reduce the bias of the MLE. His
proposal is an alternative to the usual approach of
subtracting from the MLE its estimated bias. The
underlying idea is that since the parameter estimate
may not exist, it is safer to transform the estimating
equations to correct for bias prior toestimation. For
the canonical parameter of the exponential family
model, the rth component of the modified score
equation is given by:

U, (v)=U,(v)+A, (v)
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Where
1(v)B;(v)

A,(v) is the rth component of (v)=
, v =1,..,dim(v). Here, B;(v) is the
first-order term in the bias expansion of the MLE:

B(v)=B,(v)/n+B,(v)/n*+..

For an exponential family in canonical form,

o |1
A (v) ™ {2log‘l (V)‘}

Here, the correction amounts to finding the mode
of the posterior distribution obtained by using the
Jeffreys invariant prior, see [2]. i.e., it amounts to
finding the mode of L*(v) = L(v) x |I(v)|'/?,where
L(v)is the likelihood function. Equivalently,
estimation can be carried out by maximizing

() = 1) + 5 logli )

Notice that the penalization term |I(v)|'/? is
the Jeffreys invariant prior.

[2], introduced maximization of penalized
likelihood estimation in the modified extended
Weibull distribution and they used Jeffrey prior to
find maximization of penalized likelihood
estimation MPLEs. In particular, we consider the
following family of penalized log likelihoods:

rv)y=I1wv)+ %logl](v)l ,NER @)

Numerical maximization of the quasi-Lindley
log-likelihood function can be problematic. A
penalization scheme is used to improve maximum
likelihood point estimation. A penalization scheme
based on the Jeffreys invariant prior.

To estimate the parameters of quasi-Lindley
distribution by maximization of penalized likelihood
estimation, we use equation (7) and let X, Xa,..., Xn
be a random sample of size n from the quasi Lindley
distribution. The elements of Fisher's (expected)

information matrix are obtained as follows
|11 =E (‘]11)
|22 =E (‘]22)
|21 = |12 =E (‘]12)
Using equations (5) and (6), we get
ol n n 1
Ji= 2 7T 2
Jda”  (1+a) T (a+6x;) ®)

E-ISSN: 2224-2880

134

Marwa Mohamed Hamada,
Mahmoud Raid Mahmoud, Rasha Mohamed Mandouh

2l n S X’
nT T 2 PRV
o0~ 60 1T _
1 (a+6x,) ©)
o'l X,
b = ool :Z(a+¢9x )
- i (10)
The information matrix is given by:
o'l 2
2
I (V) -E oo o0l
)
0a0l 00’ (11)

The penalized likelihood function is:

1" (v) =1 (v)+%log‘l (v)

where
I 12 J
I 22

()= U ’
21

Notice that the penalization term |I(v)|*/? is the
Jeftreys prior.

To use the Jeffreys prior for penalizing the log-
likelihood function, we need to compute the
expected values of the quantities given in the
equations from (8) to (10).

To illustrate the use of the proposed modified
penalized likelihood function, we return to the four
samples that gave rise to the log-likelihood
functions presented in Figure 3. This figure
contains plots of the log-likelihood function as a
function of a for four different samples of size 50
obtained from a quasi Lindley distribution with o =
0.15, 6 = 0.35. Notice that the likelihood function is
configured with a flat monotone shape. Table 1
contains the quasi-Lindley maximum likelihood
parameter estimates and the corresponding the log-
likelihood values. One can notice that from Table 1,
the large values of & obtained using samples 3 and
4 are approximately 6882.21 and 49271.9,
respectively. Table 2 contains the quasi-Lindley
maximum penalized likelihood parameter estimates
and one can notice that the values of & obtained
using samples 3 and 4 are approximately 0.9207 and
0.8715, respectively. The parameter estimates
obtained using the log-likelihood function are
presented in Table 1. These results are to be
compared to those in Table 2. Notice that the log-
likelihood functions for samples 3 and 4 contain
large estimates of a.
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We note that there is an improvement in the
results when using maximization of penalized
likelihood estimation (Table 1 and Table 2).

Notice that the values of@ samples 3 and 4 are
reduced in Table 2 when using maximization of
penalized likelihood estimation.

It is possible to compute a confidence interval
for parameters of distribution in the case of the
penalized likelihood estimation. That can be
computed by using the bootstrap method.

The following steps were followed to obtain the
confidence interval:

1. Data: xi,..., X5 are drawn from a distribution F(0)
with unknown parameter 6.

A

2. Compute 0 that estimates .

A

3. Our bootstrap samples are drawn from F( g)
4. For each bootstrap sample

* *

X1 5 eoes Xn

AN
*

We compute 0 and the bootstrap difference

5 =6-6 )
5. Use the bootstrap differences to make a bootstrap
confidence interval for 0, [5].

Now, we introduce real data for quasi-Lindley
distribution in the next section.

Tablel. MLEs of a and 0 for 4 Samples of size n =
50; from quasi Lindley (0.15,0.35) distribution.

Maximum Likelihood Estimation MLEs

Sample A A log-

a 0 likelihood
1 0.02524 0.38891 -127.58500
2 0.30688 0.41098 -119.95500
3 6882.21 0.18832 -133.48700
4 4492719 | 0.21510 -126.8330

Table 2. MPLEs of a and 0 for 4 Samples of size n =
50; from quasi Lindley (0.15,0.35) distribution.

Maximum Penalized Likelihood Estimation MPLEs

Sample A A log-

a 0 likelihood
1 0.00625 0.38856 -122.46100
2 0.25714 0.41201 -115.20600
3 0.92077 0.28230 -130.40300
4 0.87156 0.32239 -123.15000

2.2 Application for Real Data

The following data from [6], is used to compare
parameter estimation in quasi-Lindley distribution
between maximum likelihood estimation and
penalized likelihood approach.
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Data Set:
Complete data: All 50 items are put into use at t =0
and failure times are in weeks

0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426,
0.535, 0.684, 0.747, 0.997, 1.284,1.304,1.647,1.829,
2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789,
4.849, 5.202, 5.291, 5.349, 5911, 6.018, 6.427,
6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596,
9.388, 10.261, 10.713, 11.658, 13.006, 13.388,
13.842, 17.152, 17.283, 19.418, 23.471, 24.777,
32.795, 48.105

Parameters of quasi
estimated by maximum

Lindley distribution are
likelihood estimation

follows @ = 748979, 0¢=0.127862,

A

The estimate & of & seems unreasonably large.

Figure 4 indicates plots of empirical and fitted
cumulative distribution function (cdf) for quasi-
Lindley distribution QL(a, 0) at two values of
parameters F(x,74897.9,0.127862) and
F(x,2.16711,0.162343), it appears that the fitted
distributions both from maximum likelihood and
penalized likelihood estimation fit the data
reasonably well, but the extreme value of the
maximum likelihood estimate seems strange and the
penalized likelihood would be preferable.

Now, the Confidence interval (CI) for alpha and
theta parameters of the quasi-Lindley distribution is
given by:
CI for a =[59074, 149791]
CI for 8 =[0.0707601, 0.155148]

Using the same real data set for the same
distribution, the penalized likelihood estimation of
the parameter is:

a=216711; 9 =0.162343

The confidence intervals for parameters of the quasi
Lindley distribution in the case of penalized
likelihood estimation are given by:
CI for a =[1.56153, 3.12993]
ClI for 8 =[0.105837, 0.197349]

2.3 Simulation Study

We used a simulation study to assess the
performance of the penalized likelihood estimation
of the point estimate, of which estimates two
parameters of QL(a, 0) form=1000, the sample size
n is 50,75,100, and different parameter values. The
following steps were followed to obtain the results:
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1. Select initial values for parameters a, and 0 to be
used for generating data.

2. Specify the sample size n to be used for the study.
3. Generate pseudo-random samples with size n
from QL(a, 0) for selected value of o and 6

4. Obtain the maximum likelihood estimates and
maximization of penalized likelihood estimates for
o and 0 for different sample sizes.

5. For each sample size, obtain the mean, bias,
relative bias, variance and mean squared error
(MSE) for each estimator of quasi Lindley (a, 0) for

different values of 7 by using maximization of
penalized likelihood, see equation (7).

6. Choose the value of (77) with the smallest mean
square error and obtain the mean, bias and relative
bias, variance and mean squared error for each
estimator for different sample sizes.

Table 3 is shown the mean, bias, relative bias, and
MSE for a and 6; by sample size from quasi Lindley

(0.15,0.35) distribution using the maximum
likelihood esttimation.

Data generation was carried out using the
computational  software =~ Mathematica  [10].

Simulation results are shown in Table 4, Table 5,
Table 6 and Table 7 in Appendix.

0Los o.10 0L15

(a) sample 1

13340 |

135 |

L L
o1 0.z 0.3 0.4 0.5 0.5

(b) sample 2
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:I' 3‘2 l:-j&
{c) sample 3

soa f

.

13

13 |

(d) sample 4

Fig. 3: Log-likelihood function for a. For each
sample n = 50 from quasi Lindley distribution
(0.15; 0.35)

— F[x74897.9,0.127862)
s — F[x2.2,0.16]

— empirical cdf

10 20 30 40

Fig. 4: Plots of empirical and fitted cumulative
distribution function (cdf) for  quasi-Lindley
distribution QL(a, 0)

136 Volume 23, 2024



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.16

Table 3. Mean, bias, relative bias, and MSE of
MLE:s of a and 0; by sample size from quasi Lindley
(0.15,0.35) distribution

aximum Likelihood Estimation MLEs

n para Mean Bias Relative Variance | MSE
meter bias
25 o 911.274 | -911.124 -607416 7.9515% 8.034*
E07 E07
0 0.37190 | -0.02195 -6.2738 0.0032 0.003
50 o 252.221 -252.071 -168047 2.12176 2.121E07
E07
0 0.36579 | -0.01579 -4.51319 0.0016 0.001
100 o 17.8852 | -17.7352 -11823.5 31361 313929
0
0 0.36069 | -0.01069 -3.05490 0.0006 0.00071

For each estimator considered, the following
quantities: the mean, bias, relative bias, variance,
and Mean square error were computed.

Table 5 (Appendix) shows the Mean, bias,
relative bias, and MSEs of a and 6 using the Jeffreys
prior penalization with n =0.1,..., 0.9, 2; samples of
size n = 100 drawn from quasi Lindley(0.15,0.35)
distribution.

Table 8 and Table 9 in Appendix show that the
smallest MSE of "a and "0 correspond to n = 2.4.
Figure 5 indicates MSE of "o and "0 and the selected
value n for QL distribution.

From Table 10 (Appendix), We found the mean,
bias, relative bias, and variance for "o and "0 using
maximization of penalized likelihood estimation
with n = 2.4 and samples of size n = 50, 75, 100
from quasi Lindley distribution for different values
of parameters a, 0.

The results of the simulation study show that the
bias for any estimator decreases when the sample
size increases. Also, the relative bias decreases
when the sample size increases. The mean square
error (MSE) decreases when the sample size
increases.

In the next section, we introduce the
maximization of penalized likelihood estimation in
another distribution called the Nadarajah-Haghighi
exponential distribution.
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mse

0.15

mseda

0.10

0.05

|

25 3.0

Fig. 5: MSE of "o and "0 and selected values n for
QL distribution

3 Nadarajah-Haghighi
Distribution
Nadarajah-Haghighi exponential distribution N-H
(a, A) was introduced in [7]. The cumulative
distribution function (cdf), probability density
function (pdf), and the quantile function are follows:

Exponential

F(x)=1-exp(1-(1+x)"),

(12)
f(x)=aa(1+ax)" exp(1-(1+x)") "
and

1 Ve
Q(p)—z((l—log(l—p)) ~1).0<p <1 "

Respectively.

fx.02,1]
f[x.03.2)
1[x.08,1,5]

Fig. 6: Plots of the density function for some
parameter values o and A
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Fig. 7: Plots of the hazard function for some
parameter values o and A

Now consider estimation by the method of
maximum likelihood. The log-likelihood function
(LL) of the two parameters is as follows:

| (a,4)=logL (a,A)=n+nlog(ad)+(a—1)+

inleog(lJrlxi)“—Z(Hﬂx )

i~ (15)

It follows that the maximum-likelihood
estimators (MLEs) are the simultaneous solutions of
the equations:

n

(1+Ax; )a log(1+2x; ) =
(16)

E+Zn:log(l+ﬂuxi )-
a

i=l1 i=1
and

n

(1A% ) —aZx (1+4x;)” -0

n
—+(a-1
ﬂ/ ( )i=1 i=l
(17)

For interval estimation of (a, A), one requires
the Fisher information matrix. The elements of this
matrix in equation (15) can be worked out as
follows:

0" logLL . :
E[ — }:%mE[(lmx) (1og(1+2% ) |
(13)

6/12 2
na(a—1)E | X (14X )|

E (azlogL)=%+n(a+1)E X2 (14X )7 |+

(19)

and
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E o’logl )
OaOA

E [ X (142X ) [+na€ | X (142X ) log(1+4X ) |+

nE [ X (1+2X )| o0

Where
E | (144X )" (log(1+ X ))} el (0,,2),

E[X2(1+4X ) }

(2,-2,1),

E|X2(1+4X ) 2J:aﬂel (2,a-2,1),

E|X (142X ) |=azel (1,-11),

B X (142X )" (log (144X )) | = 223 (L -L1),

and

E|X (144X )" |=asel (La-11),

Since
! a | . b +i
I (a,b,c) (b+1)fa- 11“[ lcj
laﬂ ;[ j a
1 2 (a a1 O
J(ab,c)=——— -1 v,1
( ) c+12a+1 ;(| j( ) aUc ( )U(b+i)/a+1
the information matrix is given by:
0’logl o’ loglL
2
I (9) -E oa 0aol
0*logL 0 loglL
OaoA 822 (21)

Figure 6 indicates plots of the density function
of the Nadarajah-Haghighi exponential distribution
for some parameter values a and A. Figure 7 shows
plots of the hazard function of the Nadarajah-
Haghighi exponential distribution for some
parameter values o and A.
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3.1 Maximization of Penalized Likelihood

Estimation for N-H distribution
To calculate the penalized likelihood function, we
need to calculate the Jeffreys prior, see equation (7).
To use the Jeffreys prior for penalizing the log-
likelihood function, we need to compute the
expected values of the quantities given in equation
(18) to equation (20).

To illustrate the use of the proposed modified
penalized likelihood function, we shall return to the
two samples that gave rise to the log-likelihood
functions presented in Figure 8. This figure contains
plots of log-likelihood function versus A for two
different samples of size 50 obtained from
Nadarajah-Haghighi exponential distribution with o
=05 A=1and o = 1, A = 1. Notice that the
likelihood function is configured with a flat
monotone shape. Table 11 contains the Nadarajah-
Haghighi  exponential maximum likelihood
parameter estimates and the corresponding log-
likelihood values. One can notice that from Table 11
, the large values of "A obtained using samples 1 and
2 are approximately 9.54432 x 109 and 1.01713 x
109, respectively. Table 12 contains the
maximization of penalized likelihood estimation for
Nadarajah-Haghighi exponential distribution and
one can notice that the values of "A obtained using
samples 1 and 2 are approximately 3.67773 and
0.98556, respectively. The parameter estimates
obtained using the log-likelihood function are
presented in Table 11. These results are to be
compared to those in Table 12. Notice that the log-
likelihood functions for samples 1 and 2 contain
large estimates of A.

Table 11. MLEs of a and A of size n = 50; the
samples were drawn from the Nadarajah-Haghighi
exponential distribution.

Maximum Likelihood Estimation MLEs

Sample A A

a A
Da=05A=1 ]0.01768 9.54432 x 10"9
2)o=1Ar=1 0.01992 1.01713%x 1079

Table 12. MPLEs of a and A of size n = 50; the
samples were drawn from the Nadarajah-Haghighi
exponential distribution

Maximum Penalized Likelihood Estimation MPLEs

Sample A A

a A
Da=0.5A=1 |0.34103 3.67773
a=1Ar=1 0.71565 0.98556
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We note that there is an improvement in the
results when using maximization of penalized
likelihood estimation, see Table 11 and Table 12.
Notice that the values of "A in samples 1 and 2 are
reduced in Table 12 when using maximization of
penalized likelihood estimation.

We introduce real data for the Nadarajah-
Haghighi exponential distribution in the next
section.

(a) Sample 1

(b) Sample 2
Fig. 8: Log-likelihood function for a. For each
sample n = 50 observations were obtained from

Nadarajah-Haghighi exponential distribution
samplel (o =0.5,A=1) and sample2 (a=1,1=1)

3.2 Real Data for Nadarajah-Haghighi
Exponential Distribution

The following data from [6], was used to compare

parameter estimation in the Nadarajah-Haghighi

exponential  distribution  between  maximum

likelihood estimation and penalized likelihood

approach.

Dataset:

0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52,
1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99, 3.14, 3.17,
4.72,5.09

Parameters of Nadarajah-Haghighi exponential
distribution are estimated by maximum likelihood
estimation as follows:

a=0.0160311,4 =4.96749x10"
The estimate of "\ of A seems unreasonably large.
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Now, the confidence interval (CI) for o and A
parameters of the Nadarajah-Haghighi exponential
distribution in the case of maximum likelihood
estimation is given by

ClI for
a =[-0.0527535, 0.435248]
CI for
A= [4.88508 x10'°, 4.96749><101°]

Using the same real data, see [4], parameters of the
Nadarajah-Haghighi exponential distribution are
estimated by penalized likelihood estimation as
follows

o =0.439155, 1 =1.08643

And confidence interval for parameters of the
Nadarajah-Haghighi exponential distribution in the
case of penalized likelihood estimation is given by
CI for

a =[0.397233, 0.682527
CI for
A=[-7.24384,1.20497]

3.3 Simulation Study for Nadarajah-

Haghighi Exponential Distribution
We used a simulation study to assess the
performance of the penalized likelihood estimation
of the point estimate for several cases, of which
estimates two parameters of N-H (a, A) for m=2000,
the sample size n are 25, 50, and different parameter
values. The following steps were followed to obtain
the results:

1. Select initial values for parameters a, A to
be used for generating data.

2. Specify the sample size n to be used for
generating data.

3. Generate pseudo-random samples with size
n from N-H (o, L) for selected values of o
and A.

4. Obtain the maximum likelihood estimates
and the maximization of penalized
likelihood estimates for a, and A for
different sample sizes.

5. For each sample size, obtain the mean, bias,
relative bias, variance, and mean squared
error (MSE) for each estimator for different
values of () by using maximization of
penalized likelihood, see equation (7).

6. Choose the value of () with the smallest
mean square error and obtain the mean,
bias, relative bias, variance, and mean
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squared error for each estimator for

different sample sizes.

Data generation was carried out using the
computational software Mathematica[10]. The
simulation result is shown in Table 13 (Appendix).

For each estimator considered, we computed the
following quantities: mean, bias, relative bias,
variance, and mean square error. Table 13
(Appendix) shows that the smallest MSE of a and A
correspond to 1 = 1.2. From Table 14 (Appendix),
we found mean, bias, relative bias, and variance for
the estimation of o and A using maximization of
penalized likelihood estimation with n = 1.2;
samples of size n = 25; 50 from Nadarajah-Haghighi
exponential distribution for different values of
parameters a, A. In Table 15 (Appendix), we found
the confidence interval for the estimator by the
bootstrap method. Table 16 and Table 17 in
Appendix, the results of the simulation study
showing that the bias for any estimator decreases
when the sample size increases. Also, the relative
bias decreases when the sample size increases.
Mean square error (MSE) decreases when the
sample size increases.

4 Summary and Conclusion

In this article, we have shown that the maximum
likelihood estimation of the parameters that index
the Quasi-Lindley distribution can be problematic.
The MLE estimates of parameters for the Quasi-
Lindley distribution are large, so a penalized
likelihood function is proposed. The penalization
term is a modified version of the Jeffreys invariant
prior. We used a simulation study to assess the
performance of the penalized likelihood estimation
of the point estimate for several cases, of which
estimates two parameters of Quasi Lindley
distribution QL(a, 6) for m=1000, the sample size n
are 50,75,100 and different parameter values by
using penalized likelihood estimation, see equation
(7). We choose the value of m with the smallest
mean square error. Simulation results on point
estimation are found in Table 4, Table 5, Table 6
and Table 7, Table 8, Table 9 and Table 10 in
Appendix. We used a simulation study to estimate
parameters for several cases, of which estimates two
parameters of N-H (a, A) for m=2000, the sample
size n are 25, 50, and different parameter values and
different the value of 1, see equation (7). We choose
the value of n with the smallest mean square error
(Table 13, Appemdix). A real data set from [6] was
used to compare parameter estimation in the Quasi-
Lindley distribution and N-H distribution between
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maximum likelihood estimation and maximization
of the penalized likelihood approach. The results
indicate that both the fitted distributions from
maximum likelihood and penalized likelihood
estimation reasonably well but the extreme value of
the maximum likelihood estimate seems strange and
the penalized likelihood would be preferable, see
Figure 5. The results of the simulation study show
that the bias for any estimator decreases when the
sample size increases. Also, the relative bias
decreases when the sample size increases. The mean
square error (MSE) decreases when the sample size
increases.
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0.9, 2.1; samples of size n = 50 drawn from quasi Lindley(0.15,0.35) distribution

Maximization of penalized likelihood estimation MPLEs

n | parameter Mean Bias Relative bias(%) | Variance MSE
0.1 o 0.18483 | -0.03482 -23.21680 0.06308 | 0.06429
0 0.36631 -0.01630 -9.95005 0.00134 | 0.00161
0.3 o 0.17809 | -0.02809 -18.73160 0.04392 | 0.04471
0 0.36648 | -0.01648 -4.71001 8 0.00131 | 0.00158
0.5 o 0.16947 | -0.01948 -12.98500 0.03483 | 0.03521
0 0.36734 | -0.01734 -4.95467 0.00138 | 0.00168
0.7 o 0.16152 - | -0.01152 -7.67770 0.02776 | 0.02789
0 0.36706 | -0.01706 -4.87368 0.00127 | 0.00155
0.9 a 0.15504 | -0.00504 -3.36441 0.01924 | 0.01927
0 0.36685 | -0.01685 - -4.81674 0.00115 | 0.00143
1 o 0.15144 | -0.00144 -0.96075 0.01732 | 0.01732
0 0.36733 | -0.01733 -4.95077 0.00130 | 0.00160
1.1 o 0.14793 0.00207 1.38346 0.01409 | 0.01410
0 0.36607 | -0.01606 -4.59021 0.00098 | 0.00124
1.3 o 0.13945 0.01055 7.03518 0.00983 | 0.00995
0 0.36611 -0.01611 -4.60323 0.00095 | 0.0012
1.5 o 0.13501 0.01498 9.98851 0.00654 | 0.00677
0 0.36478 | -0.01478 -4.22347 0.00088 | 0.00110
1.7 o 0.13563 0.01437 9.58050 0.00358 | 0.00379
0 0.36209 | -0.01209 -3.45639 0.00073 | 0.00088
1.9 o 0.13912 0.01088 7.25475 0.00191 | 0.00203
0 0.35856 | -0.00856 -2.44487 0.00052 | 0.00059
2 o 0.14250 0.00749 4.99671 0.00157 | 0.00163
0 0.35630 | -0.00631 -1.80224 0.00058 | 0.00062
2.1 o 0.14980 0.00019 0.12878 0.00001 | 0.00001
0 0.35118 | -0.00118 -0.33779 0.00001 | 0.00001

Table 5. Mean, bias, relative bias, and MSEs of o and 0 using the Jeffreys prior penalization with n=0.1,...,

0.9, 2; samples of size n = 100 drawn from quasi Lindley(0.15,0.35) distribution

Maximization of penalized likelihood estimation MPLEs
1| parameter | Mean Bias Relative bias(%) | Variance MSE

0.1 o 0.16601 | -0.01601 -10.67440 0.01355 | 0.013810
0 0.36077 | -0.01077 -4.57475 0.00055 | 0.00067

0.3 o 0.16480 | -0.01480 -9.86835 0.01290 | 0.01312
0 0.36079 | -0.01079 -3.08368 0.00055 | 0.00067

0.5 o 0.16277 | -0.01278 -8.51867 0.01219 | 0.01236
0 0.36085 | -0.01085 -3.09970 -0.00054 | 0.00066

0.7 o 0.15992 | -0.00992 -6.61390 0.01136 | 0.01146
0 0.36101 | -0.01101 -3.14560 0.00055 | 0.00067

0.9 o 0.15627 | -0.00627 -4.18472 0.00993 | 0.00997
0 0.36113 | -0.01112 -3.17966 0.00053 | 0.00065

1 o 0.15397 | -0.00397 -2.64632 0.00926 | 0.00928

0 0.36120 | -0.01120 -3.20120 0.00926 | 0.00065

1.1 o 0.15180 | -0.00180 -1.20134 0.00820 | 0.00820
0 0.36110 | -0.01110 -3.17157 0.00051 | 0.00063

1.3 o 0.14724 | 0.00276 1.84130 0.00587 | 0.00588
0 0.36042 | -0.01041 -2.97690 0.00043 | 0.00054

1.5 o 0.14086 | 0.00914 6.09684 0.00445 | 0.00454
0 0.36010 | -0.01010 -2.88679 0.00042 | 0.00052

E-ISSN: 2224-2880 142

Volume 23, 2024



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.16

Marwa Mohamed Hamada,
Mahmoud Raid Mahmoud, Rasha Mohamed Mandouh

Maximization of penalized likelihood estimation MPLEs
1.7 o 0.13962 | 0.01038 6.91927 0.00243 | 0.00253
0 0.35867 | -0.00867 -2.47602 0.00033 | 0.00041
1.9 o 0.14055 | 0.00945 6.29844 0.00124 | 0.00134
0 0.35659 | -0.00659 -1.88260 0.00024 | 0.00028
2 o 0.14533 | 0.00467 3.11477 0.00050 | 0.00053
0 0.35356 | -0.00356 -1.01647 0.00012 | 0.00013

Table 6. Mean, bias, relative bias, and MSEs of a and 6 using the Jeffreys prior penalization withn =1, ..., 2.4;

samples of size n = 50 drawn from quasi Lindley(0.15,0.35) distribution

Maximization of penalized likelihood estimation MPLEs
1| parameter | Mean Bias Relative bias(%) | Variance | MSE

1 o 0.15950 | 0.00950 -6.31090 0.02020 | 0.02030
0 0.36500 | 0.01500 -4.29160 0.00110 | 0.00130

1.5 o 0.14090 | 0.00900 6.02230 0.00680 | 0.00680
0 0.36270 | 0.01270 2.58090 0.00070 | 0.00090

2 o 0.14490 | 0.00500 3.35890 0.00120 | 0.00120
0 0.35490 | 0.00490 -1.38710 0.00030 | 0.00040

2.1 a 0.14760 | 0.00234 1.56130 0.00059 | 0.00060
0 0.35270 | 0.00270 -0.77530 0.00016 | 0.00017

2.3 a 0.14940 | 0.00060 0.38790 0.00023 | 0.00023
0 0.35130 | 0.00130 -0.37980 0.00006 | 0.00006

2.4 a 0.14920 | 0.00084 0.56130 0.00014 | 0.00014
0 0.35160 | 0.00160 -0.45850 0.00005 | 0.00006

Table7. Mean, bias, relative bias, and MSEs of a and 0 using the Jeffreys prior penalization withn =1, ..., 2.4;

samples of size n = 100 drawn from quasi Lindley(0.15,0.35) distribution

Maximization of penalized likelihood estimation MPLEs
N | parameter Mean Bias Relative bias(%) | Variance MSE

1 a 0.154600 | -0.004560 -3.045800 0.011270 | 0.011290

0 0.360900 | -0.010870 -3.106900 0.000520 | 0.000640

1.5 o 0.140300 | 0.009700 6.464300 0.005210 | 0.005310
0 0.360100 | -0.010100 2.770400 0.000420 | 0.000520

2 o 0.143700 | 0.006300 4.198600 0.001090 | 0.001130
0 0.354600 | -0.004600 -1.302100 0.000210 | 0.000230

2.1 o 0.145800 | 0.004130 2.755360 0.000700 | 0.000720
0 0.353200 | -0.003250 -0.928070 0.000120 | 0.000130

2.3 o 0.149700 | 0.000320 0.211830 0.000020 | 0.000020
0 0.351200 | -0.001190 -0.341040 0.000009 | 0.000011

2.4 a 0.149900 | 0.000099 0.066653 0.000009 | 0.000010
0 0.351100 | -0.001049 -0.299887 0.000002 | 0.000003

E-ISSN: 2224-2880 143

Volume 23, 2024




WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.16

Marwa Mohamed Hamada,
Mahmoud Raid Mahmoud, Rasha Mohamed Mandouh

Table 8. Mean, bias, relative bias, and MSEs of a and 0 using the Jeffreys prior penalization withn=0.5, ..., 3;

samples of size n = 50 drawn from quasi Lindley (0.2,1) distribution

Maximization of penalized likelihood estimation MPLEs
n parame Mean Bias Relative Varian MSE
ter bias(%) ce

0.5 a 0.450304 | -0.150304 -50.10140 0.108400 | 0.130991
0 2.009500 | -0.009497 -7.51521 0.055801 | 0.055892

1 a 0.38009 | -0.08009 -26.69830 0.041559 | 0.047975

0 2.02771 | -0.02771 -1.73201 0.049741 | 0.050509

1.5 a 0.326186 | -0.026185 -8.72861 0.012007 | 0.0126931
0 2.03464 | -0.034640 -1.73201 0.037606 | 0.0388056

1.8 a 0.311974 | -0.011970 -3.99145 0.003673 | 0.0038159
0 2.025710 | -0.025706 -1.28530 0.022137 | 0.0227987

1.9 a 0.308770 | -0.008778 -2.92613 0.003085 | 0.0031621
0 2.020240 | -0.020241 -1.01203 0.018151 | 0.0185607

2 a 0.309824 | -0.009824 -3.27473 0.001081 | 0.0011772
0 2.013650 | -0.013651 -0.682575 0.009564 | 0.0097504

22 a 0.19608 | 0.00392 1.96120 0.003428 | 0.003444
0 0.98696 | 0.01303 1.30359 0.004404 | 0.004574

2.3 a 0.19926 | 0.00074 0.37008 0.002220 | 0.002221
0 0.98919 | 0.01091 1.08139 0.003566 | 0.003683

24 a 0.20058 | -0.00058 -0.29079 0.002316 | 0.002317
0 0.99251 | 0.00749 0.74922 0.002258 | 0.002314

2.5 a 0.19975 | 0.00024 0.12271 0.002909 | 0.002909
0 0.99229 0.00771 0.77109 0.002054 | 0.002114

2.6 a 0.19845 | 0.001546 0.77301 0.003736 | 0.003738
0 0.99162 | 0.008382 0.83829 0.002035 | 0.002106

2.7 a 0.19587 | 0.004133 2.06671 0.011602 | 0.011619
0 0.99081 | 0.009188 0.91879 0.003187 | 0.003272

3 a 0.20026 | -0.000268 -0.13400 0.003575 | 0.003575

0 0.99119 | -0.008812 0.88120 0.002959 | 0.003036

Table 9. Mean, bias, relative bias, and MSEs of a and 0 using the Jeffreys prior penalization withn =0.5, ..., 3;

samples of size n = 50 drawn from quasi Lindley (0.8,1.5) distribution

Maximization of penalized likelihood estimation MPLEs
n parame Mean Bias Relative Varia MSE
ter bias(%) nce
0.5 o 0.90498 | -0.104976 -13.1220 0.36014 | 0.37116
0 1.51909 | -0.019092 -6.9984 0.04841 | 0.04877
1 o 0.70489 | 0.095103 11.8879 0.11717 | 0.12622
0 1.54101 | -0.041015 -2.7343 0.04637 | 0.04805
1.5 o 0.54894 | 0.251058 31.3823 0.04286 | 0.10589
0 1.54450 | -0.044498 -2.9665 0.05463 | 0.05661
1.8 o 0.44183 | 0.358173 44.77170 0.03299 | 0.16128
0 1.53350 | -0.033496 -2.23309 0.06908 | 0.07019
1.9 o 0.40854 | 0.391457 48.9321 0.03138 | 0.18462
0 1.51763 | -0.017631 -1.17541 0.07183 | 0.07214
2 o 0.38089 | 0.419102 52.38770 0.03326 | 0.18462
0 1.50055 | -0.000550 -0.03667 0.07109 | 0.07109
2.2 o 0.38767 | 0.412329 51.54110 0.03783 | 0.20784
) 1.42797 | 0.072031 4.80204 0.05028 | 0.05547
2.3 o 0.41584 | 0.384157 48.0196 0.03749 | 0.18507
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Maximization of penalized likelihood estimation MPLEs
0 1.38042 | 0.119577 7.97179 0.03891 | 0.05321
2.4 a 0.42318 | 0.376817 47.1021 0.04113 | 0.18312
0 1.33976 | 0.160236 10.6824 0.02986 | 0.05554
2.5 o 0.35983 | 0.44017 55.0215 0.04649 | 0.24025
0 1.29949 | 0.20051 13.3675 0.02914 | 0.06935
2.6 a 0.27353 | 0.52647 65.8086 0.03977 | 0.31694
0 1.23240 | 0.26759 17.8398 0.03891 | 0.11052

Table 10. Mean, bias, relative bias, Variance, and MSEs of a and 0 using the Jeffreys prior penalization with n
= 2.4; by sample size n drawn from QL(a, 0)

Maximization of penalized likelihood estimation MPLEs
n | parameter | Mean Bias Relative bias(%) | Variance MSE
50 o =2 1.17230 | 0.82770 41.38610 0.40310 1.08830
0=2.5 2.32470 | 0.17530 7.01080 0.39680 | 0.42750
75 o=2 1.18497 | 0.81503 40.75150 0.360749 | 1.02502
0=2.5 2.35645 | 0.14355 5.74201 0.279884 | 0.30049
100 o=2 1.20750 | 0.79260 39.62770 0.23990 | 0.86810
0=2.5 2.38680 | 0.11320 4.52980 0.22120 | 0.23400
50 0=3 2.88895 | 0.11105 0.16535 3.70154 | 0.17768
0=0.5 0.50559 | -0.00559 0.00179 -1.11774 | 0.00183
75 0=3 2.90021 | 0.00979 0.15757 3.32639 | 0.16753
0=0.5 0.50697 | -0.00697 0.00128 -1.39373 | 0.00133
100 0=3 2.91664 | 0.08335 0.11667 2.77850 | 0.12362
0=0.5 0.50763 | -0.00763 0.00092 -1.52563 | 0.00098
50 a=0.3 0.30982 | -0.00982 -3.27270 0.00003 | 0.0001300
0=2 2.00085 | -0.00085 -0.04256 0.00065 | 0.0006500
75 0=0.3 0.30996 | -0.00996 -3.32054 0.000015 | 0.0001144
0=2 1.99976 | 0.00023 0.01193 0.00039 | 0.0003900
100 0=0.3 0.31002 | -0.01001 -3.33827 0.000017 | 0.0001140
0=2 1.99975 | 0.00025 0.01272 0.00017 | 0.0001700

Table 13. Mean, bias, relative bias, and MSEs of a and A using the Jeffreys prior penalization withn =0.1, ...,
2.5; samples of size n = 50 drawn from N-H (1,1) distribution

Maximization of penalized likelihood estimation MPLEs
n | parameter | Mean Bias | Relative bias(%) | Variance | MSE
0.1 o 1.3735 | -0.3735 -37.3513 0.1098 | 0.2479
A 1.4420 | -0.4420 -44.2004 0.0479 | 0.2433
0.3 o 1.3303 | -0.3303 -33.0334 0.11707 | 0.2262
A 1.4420 | -0.4473 -44.7334 0.04875 | 0.2489
0.5 o 1.2508 | -0.2508 -25.0841 0.1118 | 0.1747
A 1.4590 | -0.4590 -45.9007 0.0503 | 0.2609
0.7 o 1.1644 | -0.1644 -16.4447 0.0910 | 0.1181
A 1.4690 | -0.4690 -46.9044 0.0501 0.2701
0.9 o 1.0803 | -0.0802 -08.0255 0.0728 | 0.0792
A 1.4760 | -0.4760 -47.6049 0.0501 0.2767
1 o 1.0364 | -0.0364 -3.6436 0.0646 | 0.0659
A 1.4797 | -0.4797 -47.9681 0.0503 | 0.2804
1.1 o 0.9923 | 0.0077 0.7735 0.0584 | 0.0584
A 1.4832 | -0.4832 -48.3228 0.0518 | 0.2853
1.2 o 0.9494 | 0.0506 05.0582 0.0519 | 0.05448
A 1.4858 | -0.4858 -48.5765 0.0545 | 0.2876
1.3 o 0.9109 | 0.0891 8.9068 0.0471 0.0551
A 1.4869 | -0.4869 -48.6989 0.0541 0.2912
1.5 o 0.8009 | 0.1990 19.9022 0.0458 | 0.0854
A 1.4964 | -0.4964 -49.6403 0.0556 | 0.3020
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Maximization of penalized likelihood estimation MPLEs
2.1 a 0.5595 | 0.4405 44.0494 0.0182 | 0.2123
A 1.4502 | -0.4502 -45.0206 0.0489 | 0.2515
2.3 a 0.5291 | 0.4709 47.0890 0.0219 | 0.2453
A 1.3348 | -0.3347 -33.4756 0.0453 | 0.1574
2.5 a 0.4737 | 0.5263 52.6331 0.0365 | 0.3135
A 1.1460 | -0.1460 -14.6047 0.0361 0.0575

Table 14. Mean, bias, relative bias, and MSEs of a and A using the Jeffreys prior penalization withn = 1.2;
samples of size n = 25, 50 drawn from N-H (0.5,1) distribution

Maximization of penalized likelihood estimation MPLEs
n | parameter Mean Bias Relative bias(%) | Variance MSE
25 a=0.5 0.514848 | -0.014848 -2.969670 0.001464 | 0.001684
A=l 1.121760 | -0.121758 -12.175800 1.645470 | 1.660300
50| a=0.5 0.519715 | -0.019716 -3.943090 0.000097 | 0.000486
A=l 1.012780 | -0.012777 -1.277740 0.320775 | 0.320939

Table 15. Mean, Confidence Interval CI for estimation of o and A using the Jeffreys prior penalization with n =
1.2; by sample size drawn from N-H(0.5,1) distribution

n | parameter Mean Bias

25 a=0.5 0.514848 | [ 0.513834,0.515385]
A=l 1.12176 [1.10871,1.14927]

50| a=0.5 0.519715 | [0.509496,0.520078]
A=l 1.01278 [1.00012,1.02556]

Table 16. Mean, bias, relative bias, and MSEs of a and A using the Jeffreys prior penalization with n = 1.2; by
sample size drawn from N-H (0.5,0.5) distribution

Maximization of penalized likelihood estimation MPLEs
n | parameter Mean Bias Relative bias(%) | Variance MSE
25 a=0.5 0.477388 | 0.022612 4.522420 0.008701 | 0.009213
L =0.5 0.863929 | -0.363929 -72.785800 2.813260 | 2.945700
50 a=0.5 0.490334 | 0.009666 1.933210 0.005776 | 0.005869
L =0.5 0.744447 | -0.244447 -48.889300 2.620230 | 2.679980
100 | a=0.5 0.507113 | -0.007113 -1.422650 0.002242 | 0.002293
L =0.5 0.552156 | -0.052156 -10.431100 0.442650 | 0.445370
150 | a=0.5 0.513666 | -0.013666 -2.733170 0.001005 | 0.001192
L =0.5 0.514280 | -0.014280 -2.856060 0.070553 | 0.070757

Table 17. Mean, bias, relative bias, and MSEs of a and A using the Jeffreys prior penalization with n = 1.2; by

sample size drawn from N-H (1,1) distribution

Maximization of penalized likelihood estimation MPLEs
n | parameter Mean Bias Relative bias(%) | Variance MSE
25 a=1 0.591546 | 0.408454 40.845400 0.0185191 | 0.185354
A=l 2.235650 | -1.235650 -123.565000 19.977700 | 21.504600
50 a=1 0.625168 | 0.374832 37.483200 0.009941 | 0.150440
A=l 1.671450 | -0.671453 -67.145300 15.553100 | 16.003900
100 a=1 0.646386 | 0.353614 35.361400 0.005107 | 0.130150
A=l 1.444810 | -0.444815 -44.481500 11.893600 | 12.091500
150 a=1 0.658156 | 0.341844 34.184400 0.003197 | 0.120054
A=l 1.201460 | -0.201456 -20.145600 9.629080 | 9.669660
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