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1   Introduction 
In statistical inference, the maximum likelihood 
method is used to estimate the parameters of a 
probability distribution. In most cases, the 
likelihood function is peaked and this searches for 
the peak reasonably simple. A problem occurs when 
the likelihood function is configured with a flat 
monotone shape, causing difficulties in the search 
for the point of maximization. A way around this 
problem suggested in the literature (known as Firth 
correction) is an adaptation of a method created to 
reduce the bias of maximum likelihood estimates. 
The method leads to finite estimates using 
maximization of  the penalized likelihood 
procedure. In this case, the penalty might be 
interpreted as a Jeffreys type prior widely used in 
the Bayesian context, [1]. This problem appeared in 

some distributions as shown by [2]. They presented 
the maximization of penalized likelihood estimation 
MPLEs in the modified extended Weibull 
distribution.  

In this article, we study quasi-Lindley 
distribution QL(α, θ) and discuss the properties of 
this distribution in section 2. We present the 
maximization of penalized likelihood estimation for 
quasi-Lindley distribution in section 2.1. In section 
2.2, real data is introduced to compare the maximum 
likelihood estimation with the maximization of 
penalized likelihood estimation. In section 2.3, a 
simulation study is presented for quasi-Lindley 
distribution QL (α,θ) by the maximum likelihood 
estimation and maximization of penalized likelihood 
estimation. In section 3, we introduce the 
Nadarajah-Haghighi exponential distribution N-H 
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(α, λ) and the properties of this distribution. We 
present the maximization of penalized likelihood 
estimation for  the Nadarajah-Haghighi exponential 
distribution in section 3.1. In section 3.2, a real data 
set is used to compare between the maximum 
likelihood estimation and maximization of penalized 
likelihood estimation. In section 3.3, a simulation 
study is presented for Nadarajah-Haghighi 
exponential distribution N-H (α, λ)  by the 
maximum likelihood estimation and maximization 
of penalized likelihood estimation 

 

 

2   Quasi Lindley Distribution 
The quasi-Lindley distribution QL (α, θ) was 
introduced by [3]. The probability density function 
(pdf) of the quasi-Lindley distribution is defined by 
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Its cumulative distribution function (cdf) is 

obtained as: 
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They obtained the rth moment about the origin of 

quasi-Lindley distribution as: 
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Let x1, x2, …, xn be a random sample of size n from 
the quasi Lindley distribution. The log-likelihood 
function for the vector of parameters α, θ is: 
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The maximum likelihood estimator ( �̂� and 𝜃  ) 

of α and θ can be obtained by maximizing the log-
likelihood function given in equation (4) concerning 
α and θ. This can be done by setting the score 
function equal to zero and solving the resulting 
system of equations. The components of the score 
function  are given 
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Figure 1 indicates plots of the density function of 

quasi-Lindley distribution for some parameter 
values α, 𝜃. Figure 2 shows plots of the hazard 
function of quasi-Lindley distribution for some 
parameter Values α,θ 

 

 
Fig. 1: Plots of the density function for some 
parameter values α and θ. 
 

 
Fig. 2: Plots of the hazard function for some 
parameter values α and θ. 
 

2.1 Maximization of Penalized Likelihood 

Estimation  
In [4], the author proposed to modify the score 
function  to reduce the bias of the MLE. His 
proposal is an alternative to the usual approach of 
subtracting from the MLE its estimated bias. The 
underlying idea is that since the parameter estimate 
may not exist, it is safer to transform the estimating 
equations to correct for bias prior toestimation. For 
the canonical parameter of the exponential family 
model, the rth component of the modified score 
equation is given by: 

     *
r r rU U A     
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Where  𝐴𝑟(𝜈) is the rth component of (𝜈) =
𝐼(𝜈)𝐵1(𝜈)

𝑛
, 𝑟 = 1, … , 𝑑𝑖𝑚(𝜈). Here, 𝐵1(𝜈)   is the 

first-order term in the bias expansion of the MLE: 

       2
1 1/ / ...B B n B n      

 
For an exponential family in canonical form, 
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Here, the correction amounts to finding the mode 
of the posterior distribution obtained by using the 
Jeffreys invariant prior, see [2]. i.e., it amounts to 
finding the mode of 𝐿∗(𝜈) = 𝐿(𝜈) × |𝐼(𝜈)|1/2,where 
𝐿(𝜈) is the likelihood function. Equivalently, 
estimation can be carried out by maximizing  

𝑙∗(𝜈) = 𝑙(𝜈) +
1

2
log|𝐼(𝜈)| 

 
Notice that the penalization term  |𝐼(𝜈)|1/2 is 

the Jeffreys invariant prior. 
[2], introduced maximization of penalized 

likelihood estimation in the modified extended 
Weibull distribution and they used Jeffrey prior to 
find maximization of penalized likelihood 
estimation MPLEs. In particular, we consider the 
following family of penalized log likelihoods: 

𝑙∗(𝜈) = 𝑙(𝜈) +
1

2
log|𝐼(𝜈)| , 𝜂𝜖ℝ                              (7) 

 
Numerical maximization of the quasi-Lindley 

log-likelihood function can be problematic. A 
penalization scheme is used to improve maximum 
likelihood point estimation. A penalization scheme 
based on the Jeffreys invariant prior. 

To estimate the parameters of quasi-Lindley 
distribution by maximization of penalized likelihood 
estimation, we use equation (7) and let x1, x2,…, xn 
be a random sample of size n from the quasi Lindley 
distribution. The elements of Fisher's (expected) 
information matrix are obtained as follows
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Using equations (5) and (6), we get 
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The information matrix is given by: 
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The penalized likelihood function is: 

     * 1 log
2
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Notice that the penalization term |𝐼(𝜈)|1/2 is the 

Jeffreys prior.  
To use the Jeffreys prior for penalizing the log-

likelihood function, we need to compute the 
expected values of the quantities given in the 
equations from (8) to (10). 

To illustrate the use of the proposed modified 
penalized likelihood function, we return to the four 
samples that gave rise to the log-likelihood 
functions presented in  Figure 3. This figure 
contains plots of the log-likelihood function as a 
function of α for four different samples of size 50 
obtained from a quasi Lindley distribution with α = 
0.15, θ = 0.35. Notice that the likelihood function is 
configured with a flat monotone shape. Table 1 
contains the quasi-Lindley maximum likelihood 
parameter estimates and the corresponding the log-
likelihood values. One can notice that from Table 1, 
the large values of �̂�  obtained using samples 3 and 
4 are approximately 6882.21 and 49271.9, 
respectively. Table 2 contains the quasi-Lindley 
maximum penalized likelihood parameter estimates 
and one can notice that the values of �̂� obtained 
using samples 3 and 4 are approximately 0.9207 and 
0.8715, respectively. The parameter estimates 
obtained using the log-likelihood function are 
presented in Table 1. These results are to be 
compared to those in Table 2. Notice that the log-
likelihood functions for samples 3 and 4 contain 
large estimates of α. 
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We note that there is an improvement in the 
results when using maximization of penalized 
likelihood estimation (Table 1 and Table 2).  

Notice that the values of�̂� samples 3 and 4 are 
reduced in Table 2 when using maximization of 
penalized likelihood estimation. 

It is possible to compute a confidence interval 
for parameters of distribution in the case of the 
penalized likelihood estimation. That can be 
computed by using the bootstrap method. 
 The following steps were followed to obtain the 
confidence interval: 
1. Data: x1,…, x n are drawn from a distribution F(θ) 
with unknown parameter θ. 

2. Compute 


that estimates θ. 

3. Our bootstrap samples are drawn from F(


) 
4. For each bootstrap sample 
x1

*, ..., xn
* 

 We compute 
*


and the bootstrap difference     
* *  

 

  . 
5. Use the bootstrap differences to make a bootstrap 
confidence interval for θ, [5]. 
 
Now, we introduce real data for quasi-Lindley 
distribution in the next section. 

 
Table1. MLEs of α and θ for 4 Samples of size n = 

50; from quasi Lindley (0.15,0.35) distribution. 
Maximum Likelihood Estimation MLEs 
Sample 




 


 
log-
likelihood 

1 
2 
3 
4 

0.02524  
0.30688 
6882.21  
4 49271.9  

0.38891 
0.41098 
0.18832 
0.21510  
 

-127.58500 
-119.95500 
-133.48700 
-126.8330 

 
Table 2. MPLEs of α and θ for 4 Samples of size n = 

50; from quasi Lindley (0.15,0.35) distribution. 
Maximum Penalized Likelihood Estimation MPLEs 
Sample 




 


 
log-
likelihood 

1 
2 
3 
4 

0.00625 
 0.25714 
0.92077  
0.87156  

0.38856 
0.41201 
0.28230 
0.32239 

-122.46100 
-115.20600 
-130.40300 
-123.15000 

 
2.2  Application for Real Data 
The following data from [6], is used to compare 
parameter estimation in quasi-Lindley distribution 
between maximum likelihood estimation and 
penalized likelihood approach. 

Data Set: 
Complete data: All 50 items are put into use at t = 0 
and failure times are in weeks 
 

0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 
0.535, 0.684, 0.747, 0.997, 1.284,1.304,1.647,1.829, 
2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 
4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 
6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 
9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 
13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 
32.795, 48.105 
 
Parameters of quasi Lindley distribution are 
estimated by maximum likelihood estimation 

follows 


= 74897.9, 


= 0.127862, 

The estimate 


of  seems unreasonably large. 
 

Figure 4 indicates plots of empirical and fitted 
cumulative distribution function (cdf) for  quasi-
Lindley distribution QL(α, θ) at two values of 
parameters F(x,74897.9,0.127862) and 
F(x,2.16711,0.162343), it appears that the fitted 
distributions both from maximum likelihood and 
penalized likelihood estimation fit the data 
reasonably well, but the extreme value of the 
maximum likelihood estimate seems strange and the 
penalized likelihood would be preferable. 
Now, the Confidence interval (CI) for alpha and 
theta parameters of the quasi-Lindley distribution is 
given by: 

CI for α = [59074, 149791] 
CI for θ = [0.0707601, 0.155148] 

 
Using the same real data set for the same 

distribution, the penalized likelihood estimation of 
the parameter is: 




= 2.16711; 


 = 0.162343 
 
The confidence intervals for parameters of the quasi 
Lindley distribution in the case of penalized 
likelihood estimation are given by: 
          CI for α = [1.56153, 3.12993] 
            CI for θ = [0.105837, 0.197349] 
 
2.3  Simulation Study 
We used a simulation study to assess the 
performance of the penalized likelihood estimation 
of the point estimate, of which estimates two 
parameters of QL(α, θ) form=1000, the sample size 
n is 50,75,100, and different parameter values. The 
following steps were followed to obtain the results: 
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1. Select initial values for parameters α, and θ to be 
used for generating data. 
2. Specify the sample size n to be used for the study. 
3. Generate pseudo-random samples with size n 
from QL(α, θ) for selected value of α and θ 
4. Obtain the maximum likelihood estimates and 
maximization of penalized likelihood estimates for 
α and θ for different sample sizes. 
5. For each sample size, obtain the mean, bias, 
relative bias, variance and mean squared error 
(MSE) for each estimator of quasi Lindley (α, θ) for 
different values of   by using maximization of 
penalized likelihood, see equation (7). 

6. Choose the value of    with the smallest mean 
square error and obtain the mean, bias and relative 
bias, variance and mean squared error for each 
estimator for different sample sizes. 
Table 3 is shown the mean, bias, relative bias, and 
MSE for α and θ; by sample size from quasi Lindley 
(0.15,0.35) distribution using the maximum 
likelihood esttimation. 
Data generation was carried out using the 
computational software Mathematica [10]. 
Simulation results are shown in Table 4, Table 5, 
Table 6 and Table 7 in Appendix. 
 

 

 
 

 

 
Fig. 3: Log-likelihood function for α. For each 
sample n = 50 from quasi Lindley distribution  
(0.15; 0.35) 

 

Fig. 4: Plots of empirical and fitted cumulative 
distribution function (cdf) for  quasi-Lindley 
distribution QL(α, θ) 
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Table 3. Mean, bias, relative bias, and MSE of 
MLEs of α and θ; by sample size from quasi Lindley 

(0.15,0.35) distribution 

 
For each estimator considered, the following 

quantities: the mean, bias, relative bias, variance, 
and Mean square error were computed.  

Table 5 (Appendix) shows the Mean, bias, 
relative bias, and MSEs of α and θ using the Jeffreys 
prior penalization with η = 0.1,..., 0.9, 2; samples of 
size n = 100 drawn from quasi Lindley(0.15,0.35) 
distribution.  

Table 8 and Table 9 in Appendix show that the 
smallest MSE of ˆα and ˆθ correspond to η = 2.4. 
Figure 5 indicates MSE of ˆα and ˆθ and the selected 
value η for QL distribution. 

From Table 10 (Appendix), We found the mean, 
bias, relative bias, and variance for ˆα and ˆθ using 
maximization of penalized likelihood estimation 
with η = 2.4 and samples of size n = 50, 75, 100 
from quasi Lindley distribution for different values 
of parameters α, θ.  

The results of the simulation study show that the 
bias for any estimator decreases when the sample 
size increases. Also, the relative bias decreases 
when the sample size increases. The mean square 
error (MSE) decreases when the sample size 
increases. 

In the next section, we introduce the 
maximization of penalized likelihood estimation in 
another distribution called the Nadarajah-Haghighi 
exponential distribution. 

 
Fig. 5: MSE of ˆα and ˆθ and selected values η for 
QL distribution 
 
 

3 Nadarajah-Haghighi Exponential 

Distribution 
Nadarajah-Haghighi exponential distribution N-H 
(α, λ) was introduced in [7]. The cumulative 
distribution function (cdf), probability density 
function (pdf), and the quantile function are follows: 
 

    1 exp 1 1 ,F x x


   
                       (12) 

 

      11 exp 1 1f x x x
 

  


   
     (13) 

and 
 

     1/1 1 log 1 1 ,0 1Q p p p



     

  (14) 
Respectively. 
 
 

 
Fig. 6: Plots of the density function for some 
parameter values α and λ 
 
 
 

aximum Likelihood Estimation MLEs 
n  para

meter  
Mean  Bias  Relative 

bias  
Variance  MSE 

25 
 
 

α 
 
 

911.274 
 

-911.124 
 

-607416  
 
 

7.9515*
E07 
 

8.034* 
E07 

θ 0.37190 -0.02195 -6.2738 0.0032 0.003 

50 
 
 

α 
 

252.221 
 

-252.071 
 

-168047 
 
 

2.12176 
E07 
 

2.121E07 
 

θ 0.36579 -0.01579 -4.51319 0.0016 0.001 

100 α 
 

17.8852
0 

-17.7352 -11823.5 
 

31361 
 

313929 
 

θ 0.36069 -0.01069 - 3.05490 0.0006 0.00071 
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Fig. 7: Plots of the hazard function for some 
parameter values α and λ 
 

Now consider estimation by the method of 
maximum likelihood. The log-likelihood function 
(LL) of the two parameters is as follows: 
 
       , log , log 1l L n n            

   
1 1
log 1 1

n n

i i

i i

x x
 

 
 

   
                    (15) 

 
It follows that the maximum-likelihood 

estimators (MLEs) are the simultaneous solutions of 
the equations: 
 

     
1 1
log 1 1 log 1 0

n n

i i i

i i

n
x x x


  

  

      

(16) 
and 
 

     
1 1

1 1
1 1 1 0

n n

i i i i

i i

n
x x x x


   



 

 

      

(17) 
 

For interval estimation of (α, λ), one requires 
the Fisher information matrix. The elements of this 
matrix in equation (15) can be worked out as 
follows: 
 

    
2

2

2 2

log 1 log 1L n
E nE X X


 

 

          
(18) 

 

   
2

22
2 2

log 1 1L n
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221 1n E X X


  
  

                         (19) 
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2 log L
E

 

 
 

    
     

1 11 1 log 1nE X X n E X X X
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                                           (20) 

 
Where 

      
2

1 log 1 0, ,2 ,E X X eJ


      
   

   
22 1 2, 2,1 ,E X X eI 
   

   
   

22 1 2, 2,1 ,E X X eI
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 the information matrix is given by: 
 

 

 

2 2

2

2 2

2

log log

log log

L L

I E
L L

  


  

  
 

   
  
 
            (21) 

 
Figure 6 indicates plots of the density function 

of the Nadarajah-Haghighi exponential distribution 
for some parameter values α and λ. Figure 7 shows 
plots of the hazard function of the Nadarajah-
Haghighi exponential distribution for some 
parameter values α and λ. 
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3.1 Maximization of Penalized Likelihood 

Estimation for N-H distribution 
To calculate the penalized likelihood function, we 
need to calculate the Jeffreys prior, see equation (7). 
To use the Jeffreys prior for penalizing the log-
likelihood function, we need to compute the 
expected values of the quantities given in equation 
(18) to equation (20). 

To illustrate the use of the proposed modified 
penalized likelihood function, we shall return to the 
two samples that gave rise to the log-likelihood 
functions presented in Figure 8. This figure contains 
plots of log-likelihood function versus λ for two 
different samples of size 50 obtained from 
Nadarajah-Haghighi exponential distribution with α 
= 0.5, λ = 1 and α = 1, λ = 1. Notice that the 
likelihood function is configured with a flat 
monotone shape. Table 11 contains the Nadarajah-
Haghighi exponential maximum likelihood 
parameter estimates and the corresponding log-
likelihood values. One can notice that from Table 11 
, the large values of ˆλ obtained using samples 1 and 
2 are approximately 9.54432 × 109 and 1.01713 × 
109, respectively. Table 12 contains the 
maximization of penalized likelihood estimation for 
Nadarajah-Haghighi exponential distribution and 
one can notice that the values of ˆλ obtained using 
samples 1 and 2 are approximately 3.67773 and 
0.98556, respectively. The parameter estimates 
obtained using the log-likelihood function are 
presented in Table 11. These results are to be 
compared to those in Table 12. Notice that the log-
likelihood functions for samples 1 and 2 contain 
large estimates of λ. 
 

Table 11. MLEs of α and λ of size n = 50; the 
samples were drawn from the Nadarajah-Haghighi 

exponential distribution. 
Maximum Likelihood Estimation MLEs 
Sample 




  


 
1) α = 0.5,λ = 1  0.01768  9.54432 × 10^9 
2)α = 1,λ = 1  0.01992  1.01713× 10^9 
 

Table 12.  MPLEs of α and λ of size n = 50; the 
samples were drawn from the Nadarajah-Haghighi 

exponential distribution 
Maximum Penalized Likelihood Estimation MPLEs 
Sample 




  


 
1) α = 0.5,λ = 1  0.34103  3.67773 
2)α = 1,λ = 1  0.71565  0.98556 
 
 

   We note that there is an improvement in the 
results when using maximization of penalized 
likelihood estimation, see Table 11 and Table 12. 
Notice that the values of ˆλ in samples 1 and 2 are 
reduced in Table 12 when using maximization of 
penalized likelihood estimation. 

We introduce real data for the Nadarajah-
Haghighi exponential distribution in the next 
section. 

 

 
 

 
 
 

 
 
 

Fig. 8:  Log-likelihood function for α. For each 
sample n = 50 observations were obtained from 
Nadarajah-Haghighi exponential distribution 
sample1 (α = 0.5, λ = 1) and sample2 (α = 1, λ = 1) 
 
3.2 Real Data for Nadarajah-Haghighi 

Exponential Distribution 
The following data from [6], was used to compare 
parameter estimation in the Nadarajah-Haghighi 
exponential distribution between maximum 
likelihood estimation and penalized likelihood 
approach. 
 
Dataset: 
0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 
1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99, 3.14, 3.17, 
4.72, 5.09 
Parameters of Nadarajah-Haghighi exponential 
distribution are estimated by maximum likelihood 
estimation as follows: 

100.0160311, 4.96749 10 
 

    
The estimate of ˆλ of λ seems unreasonably large. 

(b) Sample 2 

(a) Sample 1 
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Now, the confidence interval (CI) for α and λ 
parameters of the Nadarajah-Haghighi exponential 
distribution in the case of maximum likelihood 
estimation is given by 
 
CI for 

 -0.0527535, 0.435248   
CI for 

10 104.88508 10 ,  4.96749 10       
Using the same real data, see [4], parameters of the 
Nadarajah-Haghighi exponential distribution are 
estimated by penalized likelihood estimation as 
follows 

0.439155, 1.08643 
 

   
And confidence interval for parameters of the 
Nadarajah-Haghighi exponential distribution in the 
case of penalized likelihood estimation is given by 
CI for  

 0.397233, 0.682527   
CI for  

 -7.24384, 1.20497   
 

3.3 Simulation Study for Nadarajah-

Haghighi Exponential Distribution 
We used a simulation study to assess the 
performance of the penalized likelihood estimation 
of the point estimate for several cases, of which 
estimates two parameters of N-H (α, λ) for m=2000, 
the sample size n are 25, 50, and different parameter 
values. The following steps were followed to obtain 
the results: 

1. Select initial values for parameters α, λ to 
be used for generating data. 

2.  Specify the sample size n to be used for 
generating data. 

3. Generate pseudo-random samples with size 
n from N-H (α, λ) for selected values of α 
and λ. 

4. Obtain the maximum likelihood estimates 
and the maximization of penalized 
likelihood estimates for α, and λ for 
different sample sizes. 

5. For each sample size, obtain the mean, bias, 
relative bias,  variance, and mean squared 
error (MSE) for each estimator for different 
values of (η) by using maximization of 
penalized likelihood, see equation (7). 

6. Choose the value of (η) with the smallest 
mean square error and obtain the mean, 
bias, relative bias, variance, and mean 

squared error for each estimator for 
different sample sizes. 

 
Data generation was carried out using the 

computational software Mathematica[10]. The 
simulation result is shown in Table 13 (Appendix). 

For each estimator considered, we computed the 
following quantities: mean, bias, relative bias, 
variance, and mean square error. Table 13 
(Appendix) shows that the smallest MSE of α and λ 
correspond to η = 1.2. From Table 14 (Appendix), 
we found mean, bias, relative bias, and variance for 
the estimation of α and λ using maximization of 
penalized likelihood estimation with η = 1.2; 
samples of size n = 25; 50 from Nadarajah-Haghighi 
exponential distribution for different values of 
parameters α, λ. In Table 15 (Appendix), we found 
the confidence interval for the estimator by the 
bootstrap method. Table 16 and Table 17 in 
Appendix, the results of the simulation study 
showing that the bias for any estimator decreases 
when the sample size increases. Also, the relative 
bias decreases when the sample size increases. 
Mean square error (MSE) decreases when the 
sample size increases. 
 
 
4   Summary and Conclusion 
In this article, we have shown that the maximum 
likelihood estimation of the parameters that index 
the Quasi-Lindley distribution can be problematic. 
The MLE estimates of parameters for the  Quasi-
Lindley distribution are large, so a penalized 
likelihood function is proposed. The penalization 
term is a modified version of the Jeffreys invariant 
prior. We used a simulation study to assess the 
performance of the penalized likelihood estimation 
of the point estimate for several cases, of which 
estimates two parameters of Quasi Lindley 
distribution QL(α, θ) for m=1000, the sample size n 
are 50,75,100 and different parameter values by 
using penalized likelihood estimation, see equation 
(7). We choose the value of η with the smallest 
mean square error. Simulation results on point 
estimation are found in Table 4, Table 5, Table 6 
and Table 7, Table 8, Table 9 and Table 10 in 
Appendix. We used a simulation study to estimate 
parameters for several cases, of which estimates two 
parameters of  N-H (α, λ) for m=2000, the sample 
size n are 25, 50, and different parameter values and 
different the value of η, see equation (7). We choose 
the value of η with the smallest mean square error 
(Table 13, Appemdix). A real data set from [6] was 
used to compare parameter estimation in the Quasi-
Lindley distribution and N-H distribution between 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.16

Marwa Mohamed Hamada, 
Mahmoud Raid Mahmoud, Rasha Mohamed Mandouh

E-ISSN: 2224-2880 140 Volume 23, 2024



maximum likelihood estimation and maximization 
of the penalized likelihood approach. The results 
indicate that both the fitted distributions from 
maximum likelihood and penalized likelihood 
estimation reasonably well but the extreme value of 
the maximum likelihood estimate seems strange and 
the penalized likelihood would be preferable, see 
Figure 5. The results of the simulation study show 
that the bias for any estimator decreases when the 
sample size increases. Also, the relative bias 
decreases when the sample size increases. The mean 
square error (MSE) decreases when the sample size 
increases. 
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APPENDIX 

 
Table 4. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η =0.1, ..., 

0.9, 2.1; samples of size n = 50 drawn from quasi Lindley(0.15,0.35) distribution 
Maximization of penalized likelihood estimation MPLEs 

η parameter Mean Bias Relative bias(%) Variance MSE 
0.1 α 0.18483 -0.03482 -23.21680 0.06308 0.06429 

θ 0.36631 -0.01630 -9.95005 0.00134 0.00161 
0.3 α 0.17809 -0.02809 -18.73160 0.04392 0.04471 

θ 
 

0.36648 -0.01648 -4.71001 8 0.00131 0.00158 

0.5 α 0.16947 -0.01948 -12.98500 0.03483 0.03521 
θ 0.36734 -0.01734 -4.95467 0.00138 0.00168 

0.7 α 0.16152 - -0.01152 -7.67770 0.02776 0.02789 
θ 0.36706 -0.01706 -4.87368 0.00127 0.00155 

0.9 α 0.15504 -0.00504 -3.36441 0.01924 0.01927 

θ 0.36685 -0.01685 - -4.81674 0.00115 0.00143 
1 α 0.15144 -0.00144 -0.96075 0.01732 0.01732 

θ 0.36733 -0.01733 -4.95077 0.00130 0.00160 
1.1 α 0.14793 0.00207 1.38346 0.01409 0.01410 

θ 0.36607 -0.01606 -4.59021 0.00098 0.00124 
1.3 α 0.13945 0.01055 7.03518 0.00983 0.00995 

θ 0.36611 -0.01611 -4.60323 0.00095 0.0012 
1.5 α 0.13501 0.01498 9.98851 0.00654 0.00677 

θ 0.36478 -0.01478 -4.22347 0.00088 0.00110 
1.7 α 0.13563 0.01437 9.58050 0.00358 0.00379 

θ 0.36209 -0.01209 -3.45639 0.00073 0.00088 
1.9 α 0.13912 0.01088 7.25475 0.00191 0.00203 

θ 0.35856 -0.00856 -2.44487 0.00052 0.00059 
2 α 0.14250 0.00749 4.99671 0.00157 0.00163 

θ 0.35630 -0.00631 -1.80224 0.00058 0.00062 
2.1 α 0.14980 0.00019 0.12878 0.00001 0.00001 

θ 0.35118 -0.00118 -0.33779 0.00001 0.00001 
 

Table 5. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η = 0.1,..., 
0.9, 2; samples of size n = 100 drawn from quasi Lindley(0.15,0.35) distribution 

Maximization of penalized likelihood estimation MPLEs 
η parameter Mean Bias Relative bias(%) Variance MSE 

0.1 α 0.16601 -0.01601 -10.67440 0.01355 0.013810 
θ 0.36077 -0.01077 -4.57475 0.00055 0.00067 

0.3 α 0.16480 -0.01480 -9.86835 0.01290 0.01312 
θ 
 

0.36079 -0.01079 -3.08368 0.00055 0.00067 

0.5 α 0.16277 -0.01278 -8.51867 0.01219 0.01236 
θ 0.36085 -0.01085 -3.09970 -0.00054 0.00066 

0.7 α 0.15992 -0.00992 -6.61390 0.01136 0.01146 
θ 0.36101 -0.01101 -3.14560 0.00055 0.00067 

0.9 α 0.15627 -0.00627 -4.18472 0.00993 0.00997 
θ 0.36113 -0.01112 -3.17966 0.00053 0.00065 

1 α 0.15397 -0.00397 -2.64632 0.00926 0.00928 
θ 0.36120 -0.01120 -3.20120 0.00926 0.00065 

1.1 α 0.15180 -0.00180 -1.20134 0.00820 0.00820 
θ 0.36110 -0.01110 -3.17157 0.00051 0.00063 

1.3 α 0.14724 0.00276 1.84130 0.00587 0.00588 
θ 0.36042 -0.01041 -2.97690 0.00043 0.00054 

1.5 α 0.14086 0.00914 6.09684 0.00445 0.00454 
θ 0.36010 -0.01010 -2.88679 0.00042 0.00052 
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Maximization of penalized likelihood estimation MPLEs 
1.7 α 0.13962 0.01038 6.91927 0.00243 0.00253 

θ 0.35867 -0.00867 -2.47602 0.00033 0.00041 
1.9 α 0.14055 0.00945 6.29844 0.00124 0.00134 

θ 0.35659 -0.00659 -1.88260 0.00024 0.00028 
2 α 0.14533 0.00467 3.11477 0.00050 0.00053 

θ 0.35356 -0.00356 -1.01647 0.00012 0.00013 
 

 
Table 6. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η = 1, ..., 2.4; 

samples of size n = 50 drawn from quasi Lindley(0.15,0.35) distribution 
Maximization of penalized likelihood estimation MPLEs 

η parameter Mean Bias Relative bias(%) Variance MSE 
1 α 0.15950 0.00950 -6.31090 0.02020 0.02030 

θ 0.36500 0.01500 -4.29160 0.00110 0.00130 
1.5 α 0.14090 0.00900 6.02230 0.00680 0.00680 

θ 
 

0.36270 0.01270 2.58090 0.00070 0.00090 

2 α 0.14490 0.00500 3.35890 0.00120 0.00120 
θ 0.35490 0.00490 -1.38710 0.00030 0.00040 

2.1 α 0.14760 0.00234 1.56130 0.00059 0.00060 
θ 0.35270 0.00270 -0.77530 0.00016 0.00017 

2.3 α 0.14940 0.00060 0.38790 0.00023 0.00023 
θ 0.35130 0.00130 -0.37980 0.00006 0.00006 

2.4 α 0.14920 0.00084 0.56130 0.00014 0.00014 
θ 0.35160 0.00160 -0.45850 0.00005 0.00006 

 

 
Table7. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η = 1, ..., 2.4; 

samples of size n = 100 drawn from quasi Lindley(0.15,0.35) distribution 
Maximization of penalized likelihood estimation MPLEs 

η parameter Mean Bias Relative bias(%) Variance MSE 
1 α 0.154600 -0.004560 -3.045800 0.011270 0.011290 

θ 0.360900 -0.010870 -3.106900 0.000520 0.000640 
1.5 α 0.140300 0.009700 6.464300 0.005210 0.005310 

θ 
 

0.360100 -0.010100 2.770400 0.000420 0.000520 

2 α 0.143700 0.006300 4.198600 0.001090 0.001130 
θ 0.354600 -0.004600 -1.302100 0.000210 0.000230 

2.1 α 0.145800 0.004130 2.755360 0.000700 0.000720 
θ 0.353200 -0.003250 -0.928070 0.000120 0.000130 

2.3 α 0.149700 0.000320 0.211830 0.000020 0.000020 
θ 0.351200 -0.001190 -0.341040 0.000009 0.000011 

2.4 α 0.149900 0.000099 0.066653 0.000009 0.000010 
θ 0.351100 -0.001049 -0.299887 0.000002 0.000003 
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Table 8. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η = 0.5, ..., 3; 
samples of size n = 50 drawn from quasi Lindley (0.2,1) distribution 

Maximization of penalized likelihood estimation MPLEs 
η parame

ter 
Mean Bias Relative 

bias(%) 
Varian
ce 

MSE 

0.5 α 0.450304 -0.150304 -50.10140 0.108400 0.130991 
θ 2.009500 -0.009497 -7.51521 0.055801 0.055892 

1 α 0.38009 -0.08009 -26.69830 0.041559 0.047975 
θ 
 

2.02771 -0.02771 -1.73201 0.049741 0.050509 

1.5 α 0.326186 -0.026185 -8.72861 0.012007 0.0126931 
θ 
 

2.03464 -0.034640 -1.73201 0.037606 0.0388056 

1.8 α 0.311974 -0.011970 -3.99145 0.003673 0.0038159 
θ 2.025710 -0.025706 -1.28530 0.022137 0.0227987 

1.9 α 0.308770 -0.008778 -2.92613 0.003085 0.0031621 
θ 2.020240 -0.020241 -1.01203 0.018151 0.0185607 

2 α 0.309824 -0.009824 -3.27473 0.001081 0.0011772 
θ 2.013650 -0.013651 -0.682575 0.009564 0.0097504 

2.2 α 0.19608 0.00392 1.96120 0.003428 0.003444 
θ 0.98696 0.01303 1.30359 0.004404 0.004574 

2.3 α 0.19926 0.00074 0.37008 0.002220 0.002221 
θ 0.98919 0.01091 1.08139 0.003566 0.003683 

2.4 α 0.20058 -0.00058 -0.29079 0.002316 0.002317 
θ 0.99251 0.00749 0.74922 0.002258 0.002314 

2.5 α 0.19975 0.00024 0.12271 0.002909 0.002909 
θ 0.99229 0.00771 0.77109 0.002054 0.002114 

2.6 α 0.19845 0.001546 0.77301 0.003736 0.003738 
θ 0.99162 0.008382 0.83829 0.002035 0.002106 

2.7 α 0.19587 0.004133 2.06671 0.011602 0.011619 
θ 0.99081 0.009188 0.91879 0.003187 0.003272 

3 α 0.20026 -0.000268 -0.13400 0.003575 0.003575 
θ 0.99119 -0.008812 0.88120 0.002959 0.003036 

 

Table 9. Mean, bias, relative bias, and MSEs of α and θ using the Jeffreys prior penalization with η = 0.5, ..., 3; 
samples of size n = 50 drawn from quasi Lindley (0.8,1.5) distribution 

Maximization of penalized likelihood estimation MPLEs 
η parame

ter 
Mean Bias Relative 

bias(%) 
Varia
nce 

MSE 

0.5 α 0.90498 -0.104976 -13.1220 0.36014 0.37116 
θ 1.51909 -0.019092 -6.9984 0.04841 0.04877 

1 α 0.70489 0.095103 11.8879 0.11717 0.12622 
θ 
 

1.54101 -0.041015 -2.7343 0.04637 0.04805 

1.5 α 0.54894 0.251058 31.3823 0.04286 0.10589 
θ 1.54450 -0.044498 -2.9665 0.05463 0.05661 

1.8 α 0.44183 0.358173 44.77170 0.03299 0.16128 
θ 1.53350 -0.033496 -2.23309 0.06908 0.07019 

1.9 α 0.40854 0.391457 48.9321 0.03138 0.18462 
θ 1.51763 -0.017631 -1.17541 0.07183 0.07214 

2 α 0.38089 0.419102 52.38770 0.03326 0.18462 
θ 1.50055 -0.000550 -0.03667 0.07109 0.07109 

2.2 α 0.38767 0.412329 51.54110 0.03783 0.20784 
θ 1.42797 0.072031 4.80204 0.05028 0.05547 

2.3 α 0.41584 0.384157 48.0196 0.03749 0.18507 
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Maximization of penalized likelihood estimation MPLEs 
θ 1.38042 0.119577 7.97179 0.03891 0.05321 

2.4 α 0.42318 0.376817 47.1021 0.04113 0.18312 
θ 1.33976 0.160236 10.6824 0.02986 0.05554 

2.5 α 0.35983 0.44017 55.0215 0.04649 0.24025 
θ 1.29949 0.20051 13.3675 0.02914 0.06935 

2.6 α 0.27353 0.52647 65.8086 0.03977 0.31694 
θ 1.23240 0.26759 17.8398 0.03891 0.11052 

 

Table 10.  Mean, bias, relative bias, Variance, and MSEs of α and θ using the Jeffreys  prior penalization with η 
= 2.4; by sample size n drawn from QL(α, θ) 

Maximization of penalized likelihood estimation MPLEs 
n parameter Mean Bias Relative bias(%) Variance MSE 
50 α =2 1.17230 0.82770 41.38610 0.40310 1.08830 

θ =2.5 2.32470 0.17530 7.01080 0.39680 0.42750 
75 α =2 1.18497 0.81503 40.75150 0.360749 1.02502 

θ =2.5 2.35645 0.14355 5.74201 0.279884 0.30049 
100 α =2 1.20750 0.79260 39.62770 0.23990 0.86810 

θ =2.5 2.38680 0.11320 4.52980 0.22120 0.23400 
50 α=3 2.88895 0.11105 0.16535 3.70154 0.17768 

θ=0.5 0.50559 -0.00559 0.00179 -1.11774 0.00183 
75 α=3 2.90021 0.00979 0.15757 3.32639 0.16753 

θ=0.5 0.50697 -0.00697 0.00128 -1.39373 0.00133 
100 α=3 2.91664 0.08335 0.11667 2.77850 0.12362 

θ=0.5 0.50763 -0.00763 0.00092 -1.52563 0.00098 
50 α=0.3 0.30982 -0.00982 -3.27270 0.00003 0.0001300 

θ=2 2.00085 -0.00085 -0.04256 0.00065 0.0006500 

75 α=0.3 0.30996 -0.00996 -3.32054 0.000015 0.0001144 
θ=2 1.99976 0.00023 0.01193 0.00039 0.0003900 

100 α=0.3 0.31002 -0.01001 -3.33827 0.000017 0.0001140 
θ=2 1.99975 0.00025 0.01272 0.00017 0.0001700 

 
Table 13. Mean, bias, relative bias, and MSEs of α and λ using the Jeffreys prior penalization with η = 0.1, ..., 

2.5; samples of size n = 50 drawn from N-H (1,1) distribution 
Maximization of penalized likelihood estimation MPLEs 

η parameter Mean Bias Relative bias(%) Variance MSE 
0.1 α 1.3735 -0.3735 -37.3513 0.1098 0.2479 

λ 1.4420 -0.4420 -44.2004 0.0479 0.2433 
0.3 α 1.3303 -0.3303 -33.0334 0.11707 0.2262 

λ 1.4420 -0.4473 -44.7334 0.04875 0.2489 
0.5 α 1.2508 -0.2508 -25.0841 0.1118 0.1747 

λ 1.4590 -0.4590 -45.9007 0.0503 0.2609 
0.7 α 1.1644 -0.1644 -16.4447 0.0910 0.1181 

λ 1.4690 -0.4690 -46.9044 0.0501 0.2701 
0.9 α 1.0803 -0.0802 -08.0255 0.0728 0.0792 

λ 1.4760 -0.4760 -47.6049 0.0501 0.2767 
1 α 1.0364 -0.0364 -3.6436 0.0646 0.0659 

λ 1.4797 -0.4797 -47.9681 0.0503 0.2804 
1.1 α 0.9923 0.0077 0.7735 0.0584 0.0584 

λ 1.4832 -0.4832 -48.3228 0.0518 0.2853 
1.2 α 0.9494 0.0506 05.0582 0.0519 0.05448 

λ 1.4858 -0.4858 -48.5765 0.0545 0.2876 
1.3 α 0.9109 0.0891 8.9068 0.0471 0.0551 

λ 1.4869 -0.4869 -48.6989 0.0541 0.2912 
1.5 α 0.8009 0.1990 19.9022 0.0458 0.0854 

λ 1.4964 -0.4964 -49.6403 0.0556 0.3020 
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Maximization of penalized likelihood estimation MPLEs 
2.1 α 0.5595 0.4405 44.0494 0.0182 0.2123 

λ 1.4502 -0.4502 -45.0206 0.0489 0.2515 
2.3 α 0.5291 0.4709 47.0890 0.0219 0.2453 

λ 1.3348 -0.3347 -33.4756 0.0453 0.1574 
2.5 α 0.4737 0.5263 52.6331 0.0365 0.3135 

λ 1.1460 -0.1460 -14.6047 0.0361 0.0575 
 

Table 14. Mean, bias, relative bias, and MSEs of α and λ using the Jeffreys prior penalization with η = 1.2; 
samples of size n = 25, 50 drawn from N-H (0.5,1) distribution 

Maximization of penalized likelihood estimation MPLEs 
n parameter Mean Bias Relative bias(%) Variance MSE 
25 α =0.5 0.514848 -0.014848 -2.969670 0.001464 0.001684 

λ =1 1.121760 -0.121758 -12.175800 1.645470 1.660300 
50 α =0.5 0.519715 -0.019716 -3.943090 0.000097 0.000486 

λ =1 1.012780 -0.012777 -1.277740 0.320775 0.320939 
 

Table 15. Mean, Confidence Interval CI for estimation of α and λ using the Jeffreys prior penalization with η = 
1.2; by sample size drawn from N-H(0.5,1) distribution 

n parameter Mean Bias 
25 α =0.5 0.514848 [ 0.513834,0.515385] 

λ =1 1.12176 [1.10871,1.14927] 
50 α =0.5 0.519715 [0.509496,0.520078] 

λ =1 1.01278 [1.00012,1.02556] 
 

Table 16. Mean, bias, relative bias, and MSEs of α and λ using the Jeffreys prior penalization with η = 1.2; by 
sample size drawn from N-H (0.5,0.5) distribution 

Maximization of penalized likelihood estimation MPLEs 
n parameter Mean Bias Relative bias(%) Variance MSE 
25 α =0.5 0.477388 0.022612 4.522420 0.008701 0.009213 

λ =0.5 0.863929 -0.363929 -72.785800 2.813260 2.945700 
50 α =0.5 0.490334 0.009666 1.933210 0.005776 0.005869 

λ =0.5 0.744447 -0.244447 -48.889300 2.620230 2.679980 
100 α =0.5 0.507113 -0.007113 -1.422650 0.002242 0.002293 

λ =0.5 0.552156 -0.052156 -10.431100 0.442650 0.445370 
150 α =0.5 0.513666 -0.013666 -2.733170 0.001005 0.001192 

λ =0.5 0.514280 -0.014280 -2.856060 0.070553 0.070757 
 

Table 17. Mean, bias, relative bias, and MSEs of α and λ using the Jeffreys prior penalization with η = 1.2; by 
sample size drawn from N-H (1,1) distribution 

Maximization of penalized likelihood estimation MPLEs 
n parameter Mean Bias Relative bias(%) Variance MSE 
25 α =1 0.591546 0.408454 40.845400 0.0185191 0.185354 

λ =1 2.235650 -1.235650 -123.565000 19.977700 21.504600 
50 α =1 0.625168 0.374832 37.483200 0.009941 0.150440 

λ =1 1.671450 -0.671453 -67.145300 15.553100 16.003900 
100 α =1 0.646386 0.353614 35.361400 0.005107 0.130150 

λ =1 1.444810 -0.444815 -44.481500 11.893600 12.091500 
150 α =1 0.658156 0.341844 34.184400 0.003197 0.120054 

λ =1 1.201460 -0.201456 -20.145600 9.629080 9.669660 
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