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Abstract: - The study of applications of locally compact spaces in polyhedra in relation to their dimensions as 
well as homotopy and extension problems developed in the late 1940s and early 1950s under the leadership of 
mathematician. Many mathematicians studied application locally compact in polyhedra. A polyhedron can be 
obtained by subdivision, as a simplicial metric complex; thus, re-gluings of polyhedra can also be seen as 
simple complexes. Thus, the topology of a simplicial metric complex X is the topology quotient of the 
reattachment. The objective of this work is to shed light on the applications in polyhedra of locally 

compact spaces and to highlight the limits of these applications. A continuous application f of X in P 
defines a finite open overlay of X, and a partition of the unit subordinate to this overlay, f is homotopic to an 
application f ', obtained by composing the restriction to A, of an application of X in the KR polyhedron, and a 
simplistic application of a sub-polyhedron KR' in P. The problem of extension deserves to be elucidated to 
understand how it is possible to get around certain conceptual difficulties. 
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1   Introduction 
The study of applications of locally compact spaces 
in polyhedra in relation to their dimensions as well as 
homotopy and extension problems developed in the 
late 1940s and early 1950s under the leadership of 
mathematician Henry CARDAN, [1], [2]. In a more 
general framework, when we consider a polyhedron 
P, finite or infinite, but locally finite (thus locally 
compact) and supposedly simplicial abstract (we 
decompose it if it is not), it is defined by a simplicial 

abstract complex K and is identified with a subspace 
of the "cube" IK (I designating the bounded closed 
interval [0; 1]), [3]. Thus, a point of P is a system (λK) 
of real numbers between 0 and 1, all zero except a 
finite number, and whose sum is equal to 1; the index 
k runs through the set K and the set of k such that λK ≠ 
0 is a simplex of the simplicial complex K. Our goal 

in this work is to study these applications in their 

dimension and possibly raise problems of 

homotopies and extension. 

These continuous applications transform, indeed, 
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the unit I ball into a locally compact part 
Consequently, a continuous application f of the X 
space in P is then defined by the coordinate data λK = 
fK(x) of the transform of the point x by f; the fK are 
numerical continuous functions, with values in the 
segment I, such as: 

I. In the (open) UK set of points x where fK > 0, 
the fj is zero except for a finite number; 

II.The sum Σ fK is equal to one (this sum makes 
sense, since at each point all terms are zero except for 
a finite number). 

If we have a system of continuous functions fK, 
with values in I, defined in a locally compact space X, 
then the satisfaction of the first condition leads to say 
that it is a finite type partition. This partition is finally 
a partition of the unit when, in addition to the first 
criterion, the second condition is satisfied. 

The objective of this work is to shed light on the 
applications in polyhedra of locally compact spaces 
and to highlight the limits of these applications. The 
text is structured as follows: the first section presents 
problem statements to highlight locally compact 
spaces in polyhedra, the second section deals with 
homotopy problems and the last section is devoted to 
the limits in the case of extensions. 

 
 

2   Materials and Methods 
 

2.1 Continuous Applications of a Locally 

Compact Space X in Polyhedra 
This work could have been treated without leaving 
the framework of the Banach spaces, [1], [2], [3], [4]. 
Moreover, given the results that we are trying to 
highlight with regard to polyhedra, we preferred to 
place ourselves within the framework of locally 
compact spaces. We use without reference the 
elementary results of the theory of measurement, 
placing ourselves exclusively in the wake of the 
measurements on the space of continuous 
applications with compact supports on a given 
locally compact space. 

One of the most important statements is that any 
open overlap of X is said to be finite if each set of the 
overlap meets only a finite number of them, [5]. 
Moreover, to each (fk) partition (of finite type) let us 
associate the Uk open overlay defined as above: this 
open overlay is said to be "associated with the 
partition"; it is of finite type. 

In [3], Given an open finite (Vk)k∈K overlay, a 
partition of the unit (fk)k∈K is said to be subordinate 

to the overlay if it has the same set of indices k, and if, 
for any k∈K, the set Uk of points x such that fk(x) ≠ 0 
is contained in Vk. 

From this demonstration, we can say that a 
continuous application f of X in P defines a finite 
open overlay of X, and a partition of the unit 
subordinate to this overlay. 

Conversely, let R be an open finite overlay, and 
(fk) a partition subordinate to this overlay: then (fk) 
defines a continuous application f of X in the 
polyhedron KR (topological realization of the "nerve" 
of the overlay of R; this nerve is the simplicial 
abstract complex KR defined as follows: its vertices 
are the sets of the overlay R, and a set of "vertices" is 
a "simplex" if the corresponding sets of the overlay 
have a non-empty intersection). 

Note that from, [6], a polyhedron can be obtained 
by subdivision, as a simplicial metric complex; thus 
re-gluings of polyhedra can also be seen as simple 
complexes. Thus the topology of a simplicial metric 
complex X is the topology quotient of the 
reattachment. 

In order to study the applications of locally 
compact spaces, we start from two problems which 
are the following: 
 

Problem (2.1):  

Given an open overlay of finite type R, are there 
partitions subordinate to this overlay? Yes, if the 
space is normal (in other words, two disjoint closed 
neighbourhoods can be separated by two disjoint 
open neighbourhoods). Indeed, if (Uk) is a finite open 
overlay of a normal space X, there is an open overlay 
(Vk) such as Vk⊂ Uk; or gk a continuous function with 
values in the segment [0; 1], such that gk(x) = 1 for all 
x ∈ Vk, gk(x)=0 for all x ∉ Uk.Or g(x) equals 
summation of  over k, which has a meaning 
and a numerical continuous function with values 
greater than or equal to 1. Just 
ask: ( ) ( ) / g(x)k kf x g x to obtain a partition of the 
unit subordinate to the overlay (Uk). 

From two overlaps (Uk) and (Vj) (not necessarily 
having the same set of indices), we say that (Vj) is 
finer than (Uk) if any set (Vj) is contained in at least 
one set Uk. 

 
Problem (2.2):  

X locally compact given, is there a finer finite open 
overlap than an arbitrarily given open overlap? Any 
compact space is paracompact (trivial) (moreover, in 
a compact space, any finite open overlap is finite). A 
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paracompact space is normal. The immediate 
consequence is that if X is paracompact, there is 
always a partition of the unit whose associated 
overlay is finer than an arbitrarily given open overlay. 
Consequently, there are arbitrarily thin unit 
partitions. 
Note: it is easy to characterize, among the locally 
compact X, those that are paracompact. For this, it is 
necessary and sufficient that X is a meeting of 
disjoint open subspaces (each of which is therefore 
also closed), each of which is an enumerable meeting 
of compact subsets. An equivalent condition is: X has 
at least one finite overlay of relatively compact open 
subspaces, [6]. 
Any closed sub-space of a paracompact space is 
paracompact. 
 
Proposal (2.3): Let R be an open covering of 
finished type, KR the polyhedron it defines. Each 
partition of the unit whose associated overlap is finer 
than R defines (in several ways) a continuous 
application of X in KR; all these applications 
(whatever partition they correspond to) are 
homotopic. 

Let R' be the overlay associated with a partition, R' 
being finer than R. For each simple application  

KR'       KR (which associates to a set of R' a set 
of R containing it), let us compose the application X         
KR' defined by the partition, with KR'         KR. By 
definition, we thus obtain all the applications of X in 
KR defined by the partition. These applications 
(whatever the partition whose associated overlap R' 
is finer than R) each define a partition of the unit 
subordinate to R. To show that they are all homotopic, 
it is enough to use the affine structure of the space of 
the partitions subordinate to R. 

In the next part of this section according to [6], we 
will discuss The Approximation of an application f of 
a closed part A of X, in a polyhedron P 
We assume X paracompact. The application f of A in 
P defines an open, finite overlap of A. The joining of 
the sets of this overlap is complementary (in X) to a 
closed set B, therefore paracompact; if dim (X – A) ≤ 
n, then the dimension of B is less than or equal to n. 
There is an open overlap R, of the finished type of X, 
whose trace on A is a finer overlap than that defined 
by f. Let us associate with R, a partition of the unit (ϕk) 
in X space. The restrictions on A of (ϕk) thus define 
an overlap of A that is finer than that defined by f. 
The (ϕk)'s define an application ϕ of X in KR, which 
applies A in a sub-polyhedron KR' of KR. There is an 

application f ' of A in P, consisting of A in KR' 
(restriction of ϕ), and a simple application KR' in P. In 
A, the applications f and f ' are homotopic (according 
to proposal (2.3)). 
In summary: f is homotopic to an application f ', 
obtained by composing the restriction to A, of an 
application of X in the KR polyhedron, and a 
simplistic application of a sub-polyhedron KR' in P. 
Therefore, to extend f' it is sufficient to know how to 
extend the KR' application in P into an application of 
KR in P (problem studied previously). If f' is 
extendable, then f will also be extendable, by virtue 
of the following lemma: 
 

Lemma (2.4): 

Let X be a paracompact, and A a closed contained in 
X. Any continuous application of A in a polyhedron 
P, which. In A, is homotopic to an application 
extendable to X, is itself extendable to X. 
To demonstrate this assertion, it is sufficient to prove 
that any application of A in a polyhedron P is 
extendable to a neighbourhood of A (where A is a 
closed part of a paracompact space X). 
However, it is true that if A is compact then the 
image of A is contained in a finished polyhedron. If 
A is not compact, then it is sufficient to demonstrate 
when X is a countless meeting of compacts, X1 ⊂ X2 
⊂ X3 ⊂ … ⊂ Xj ⊂ …. The restriction from f to A ∩ 
X1 extends to a compact neighbourhood V1 of A ∩ X1; 
hence f1 on A ∪ (V1 ∩ X1) = A1. The restriction from 
f1 to A ∩ X2 extends to a compact neighbourhood V2 

of ... , etc. 
It can also be proved that if f and g (applications of x 
in the polyhedron P) coincide on a closed part A ⊂ X, 
they are homotopic (in X) to two applications f' and 
g' which coincide on a neighbourhood of A. 
 
 
3  Size of A Locally Compact Space 
It is important to specify that in all that follows, only 
locally compact spaces X with the following property 
are considered: 

X has arbitrarily fine open overlaps of finite 
dimensions. Recall that from, [3], [7], an overlap is 
said to be of dimension greater than or equal to n, if 
its "nerve" is of dimension greater than or equal to n, 
in other words, if each point of the space belongs at 
most to n + 1 sets of the overlap, any closed 
sub-space of such space X enjoys the same property). 
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Definition (3.1): 

It is said that dim X ≤ n if there are open overlaps of 
dimension greater than or equal to n, arbitrarily fine. 
In fact, dim X = n if dim X ≤ n and dim X ≠ n – 1. If 
dim X ≤ n and if A is a closed subspace of X, then 
dim A ≤ n: it is immediate. 
 

Theorem (3.2): 

If dim X ≤ n, any continuous application, in the 
sphere Sn, of a closed part A of X is extendable to X. 
This is a direct consequence of the extension theorem 
of an application in Sn of a sub-polyhedron of a 
polyhedron of dimension less than or equal to n.  
Notice that as a reciprocity of this theorem: 
Suppose only that any compact sub-space X’ ⊂ X 
enjoys the property Πn(X’): any continuous 
application in Sn of a closed part of X' is extendable 
into a continuous application of X' in Sn. Then dim X 
≤ n. 
Demonstration of this reciprocity: 
we first observe that the property Πn(X) leads to 
Πn+1(X). 
Indeed, suppose that X verifies Πn; that is A a closed 
part of X, and f a continuous application of A in Sn+1. 
Consider Sn as the equator of Sn+1 and either B = 
f-1(Sn) ⊂ A. There is a continuous application g of X 
in Sn, which coincides with f on B; on A, f and g 
(considered as applications in Sn+1) are homotopic, 
because f(x) and g(x) are never diametrically 
opposed; since g(x) is extendable to X, f is also 
(theorem 1). 
Let R be an overlap of X, of finite dimension, 
arbitrarily fine, and formed of relatively compact 
openings. Let us choose an application f of X in KR, 
in the class defined by R. For any integer k, let Xk be 
the reciprocal image of the k-skeleton Pk of KR, and fk 
the restriction from f to Xk. We will show that fn 
extends into a continuous application gn of x in Pn, so 
that g(x) belongs to the smallest closed simplex 
containing x; then the reciprocal image, by gn, of the 
canonical overlap of Pn will be an arbitrarily fine 
open overlap of dimension lower or equal to n. To 
prove the existence of gn, we define, by downward 
recurrence on k ≥ n, an application gk of X in Pk in the 
following way: gk = fk for k large enough (in fact: for 
k at least equal to the dimension of KR); gk coincides 
gk+1 on Xk, and is deduced from gk+1 using the 
property Πk for the compacts contained in X. 
 

Corollary (3.3): 

For dim X ≤ n, it is necessary and sufficient that dim 

Y ≤ n for any compact sub-space Y⊂X.  
As a remark, we can add that this could be used as a 
definition for the dimension of a locally compact 
space X, without any restrictive hypothesis on X). 
Before moving on to theorem (5.4), it is essential to 
first define the notion of R-application. It is thus a 
continuous application f of X in a space Y, such that 
the reciprocal image of each point of Y is "small of 
order R" (R designating an open overlap of X). 
 

Theorem (3.4): 

For a space X to be of dimension less than or equal to 
n, it is necessary and sufficient that for any open 
overlap R of X, there is an R-application of X in the 
polyhedron of dimension less than or equal to n. 
The condition is obviously necessary. To show that it 
is sufficient, it is sufficient to demonstrate when X is 
compact (according to the previous corollary). Then 
the reciprocal image of any "fairly small" set of the 
polyhedron P (which can be assumed to be finite) is 
still small of order R. 
Let us take a subdivision P' of P, fine enough so that 
the overlap of X defined by the application of X in P' 
is finer than R. Since this overlap is of dimension less 
than or equal to n, X has many arbitrarily fine open 
overlaps of dimension less than or equal to n. 
 

Corollary (3.5): 

The dimension of the product of two spaces is at most 
equal to the sum of the dimensions of these spaces. 
On the other hand, it can be smaller than the sum). 
We will notice that the dimension of a quotient space 
may be greater than the dimension of the space itself 
(Peano curve).   
 
 
4   CECH COHOMOLOGY 
Let R' be a finished type X overlay, thinner than a 
finished type R overlay. Then, all the simplistic 
applications of KR' in KR (which to a set of R', 
associate a set of R containing it) are homotopic 
(proposal 1), so in, [4], [5], they define the same 
homomorphism of the cohomology groups: H*(KR) 
in H*(KR') (any coefficients, fixed once and for all). 
Transitivity (obvious) of these homomorphisms. 
There is therefore an inductive limit (direct limit) of 
the H*(KR) groups, with canonical homomorphisms 
of the H*(KR) within this inductive limit. This 
inductive limit is the Cech cohomology group H(X), 
X being locally compact and paracompact. 

NB: this definition is only consistent with Cech's 
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definition if X is compact for X not compact, this is 
the correct generalisation of Cech's definition). It can 
be shown that the cohomology groups thus obtained 
are those given by the axiomatics of the beams. 
 

Proposal (4.1.1):  

If dim X ≤ n, the cohomology groups Hp(X) are zero 
for p > n, whatever the group of coefficients. 
This is obvious from the definition of these groups, 
and from the definition of the dimension. 
Or A a closed part of X. For each overlap R of X, or 
RA the overlap of A induced by R; then KRA identifies 
itself with a sub-polyhedron of KR. We can consider 
the inductive limit of H*(KR mod KRA); this is, by 
definition, the relative cohomology group H (X mod 
A). 
 

Proposal (4.1.2): 

We have an exact sequence of canonical 
homomorphisms 
…          Hn(X mod A)         Hn(X)         
Hn(A)               
         Hn+1(X mod A)        … (for any system 
of coefficients). 
Indeed, we have such an exact sequence for the 
cohomology of the KR polyhedron and its 
sub-polyhedron KRA. However, the inductive limit of 
a family of exact sequences is an exact sequence. 
Remark: if dim (X – A) ≤ n, then Hp(X mod A) = 0 
for p > n. 

Let us from, [6], recall without demonstration the 
well known fact: by compact X, the group H (X mod 
A) depends only on the space X - A, and is identified 
with the cohomology group (of Cech) of "second 
species", or "with compact supports" of the locally 
compact space X - A. 

 
4.1  Effect of Continuous Application 
Let f be a continuous application of X in X', which 
transforms a closed part A ⊂ X into a closed part A’ 
⊂ X’. The reciprocal image of any finite open 
overlap of X' is a finite open overlap of X. 

We deduce, after passing the inductive limit, a 
homomorphism of the cohomology groups: Hn(X’ 
mod A’) in Hn(X mod A). 
 
4.2  Transitivity of these Homeomorphisms 
Let us now have two continuous applications f and g 
of X in Y, whose restrictions to A are identical. We 
deduce a homomorphism (f, g) * of H(Y) in H (X 
mod A) (group of arbitrary coefficients). This 

homomorphism is defined by crossing the inductive 
limit. The homomorphism (f, g) * relating to Cech 
cohomology groups has properties similar to those 
indicated for singular cohomology. 
 
4.3  Some important Definitions 
Definition (4.4.1), [4], Let Y be an aspherical 
polyhedron in dimension less than n. We have 
already defined the fundamental class of Y as an 
element of Hn (Y, Hn(Y)) where for Y the 
cohomology of Cech is identified with the singular 
cohomology. 
We then deduce that the characteristic class of an 
application f of X (paracompact) in Y is an element 
γ(f) of Hn(X, Hn(Y)), image of the fundamental class 
by the homomorphism Hn(Y , Hn(Y)) defined by f. 
 

Definition (4.4.2), [5], The deviation of a pair (f, g) 
of applications of X in Y, which coincide on a closed 
part A of X: it is an element γ (f, g) of Hn (X mod A, 
Hn(Y)), image of the fundamental class by the 
homomorphism (f, g) * of Hn (Y, Hn(Y)) in Hn (X 
mod A, Hn(Y)). 
 

Definition (4.4.3):  
The obstruction of an application f of A in Y (A: 
closed part of X paracompact): it is an element β (f) 
of Hn+1(X mod A, Hn(Y)), image of the characteristic 
class of f (element of Hn (A, Hn(Y)) by the canonical 
homomorphism Hn(A , Hn(Y)) in Hn+1(X mod A , 
Hn(Y)). 
 
4.4  Extension and Homotopy Theorems 
Throughout the paragraph, X denotes a locally 
compact space satisfying the conditions of paragraph 
2; A denotes a closed part of X, and Y denotes an 
aspherical polyhedron of dimensions less than n (e.g. 
a sphere of dimension n). 

The idea is to transpose to these cases theorems 
(4.2) and (4.4), in which X is a polyhedron and A a 
sub-polyhedron (it is true that then Y is not 
necessarily a polyhedron). Thus, we define a new 
theorem which is in reality only theorem (5.2) stated 
above. 

 
Theorem (4.4.1): 

We assume dim X ≤ n+1. Then, for an application f 
of A in Y to be extendable to X, it is necessary and 
sufficient that the obstruction β (f) ∈ Hn+1(X mod A, 
Hn(Y)) is null. This is true, strictly speaking, only for 
any n ≥ 2; if n = 1, it is furthermore assumed that the 
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space Y is i-simple for any integer i ≤ n+1, and then 
the conclusion remains. 
 

Theorem (4.4.2): 

It is assumed that dim X ≤ n. Then, for two 
applications f and g of X in Y, which coincide on A, 
to be homotopic modulo A, it is necessary and 
sufficient that the deviation  
γ (f, g) ∈ Hn (X mod A, Hn(Y)) is zero. Moreover, 
given an application f of X in Y, and an arbitrary 
element γ of Hn (X mod A, Hn(Y)), there is an 
application g of X in Y, equal to f on A, and such that 
the deviation γ (f, g) is precisely γ. In particular, (A is 
assumed to be empty): the classes of applications of 
X in Y are in one-to-one correspondence with the 
elements of the (Cech) cohomology group Hn (X, 
Hn(Y)). 

The conclusions of this theorem are only valid, in 
reality, if n ≥ 2. For n = 1, they are valid provided that 
it is also assumed that the space Y is i-simple for all i 
≤ n (respectively i< n). 

It is possible to apply the previous theorems 
especially when Y is a sphere of dimension n. But for 
n = 1, the nullity of the homotopy groups Πi(S1) for i 
≥ 2 makes it possible to give the following extensions 
of theorems 1 and 2. 

 
Theorem (4.4.3): 

Or a closed part of X. For two applications f and g of 
X in S1 to extend to X, it is necessary and sufficient 
that the obstruction β (f) ∈ H2(X mod A, Z) is zero. 
 
Theorem (4.4.4): 

Or A a closed part of X. For two applications f and g 
of X in S1, which coincide on A, to be homotopic 
modulo A, it is necessary and sufficient that the 
deviation γ (f, g) ∈ H1(X mod A, Z) is zero. The 
classes of applications of X in S1 correspond 
biunivocally to the elements of the cohomology 
group (of Cech) of the X space, with integer 
coefficients. 
 
4.5 Application of the Extension Theorem: 

Cohomological Characterisation of the 

Dimension 
Lemma (4.5.1): 

If dim(X) ≤ n+1, and if Hn+1(X mod A, Z) = 0 for any 
closed part A of X, then any application of A in Sn is 
extended into an application of X in Sn. 
This is a direct consequence of theorem (5.5.1). 
According to the reciprocal of theorem (4.2), we see 

that, in the hypotheses of the lemma, the dimension 
of X is less than or equal to n. Reciprocally, it is clear 
that if dim(X) ≤ n, then Hn+1(X mod A, Z) = 0 for any 
closed part A of X. Consequently, we can state a new 
theorem. 
 

Theorem (4.5.2): 
If X is of finite dimension, the dimension of X is the 
largest of the integers n such that there exists a closed 
part A of X satisfying Hn (X mod A, Z) ≠ 0. (The 
integer coefficients, for cohomology, play a 
privileged role for the characterisation of the 
dimension; it can be seen that this is due to the fact 
that the homology group Hn(Sn) is isomorphic to Z). 
 

Remark (4.5.3): 
If X is compact (a case to which we can return, 

since the dimension of a non-compact space is the 
upper limit of the dimensions of the contained 
compacts), the cohomology group Hn (X mod A, Z), 
which intervenes in the characterisation of the 
dimension is none other than the cohomology group 
with compact supports of the open subspace X - A. 

As an example: the space IRn is of dimension 
(topological) equal to n, because the cohomology 
with compact supports   of an open ball is not null 
for dimension n. 

A polyhedron of (simplistic) dimension n is 
of(topological) dimension n. 

For a closed part of IRn to be of dimension n, it is 
necessary and sufficient that it has at least one 
interior point. (This is sufficient according to 
theorem (5.6.2); it is necessary since if A has no 
interior point in any triangulation of IRn, each 
n-simplex contains a point which does not belong to 
A, which allows (by central projection in each 
n-simplex) to find an ε-application of A in a 
polyhedron of dimension n - 1. 
 
 
5   Conclusion 
This work has highlighted the importance of locally 
compact space applications in the case of polyhedra, 
but also their limitations. A continuous application f 
of X in P defines a finite open overlay of X, and a 
partition of the unit subordinate to this overlay, f is 
homotopic to an application f ', obtained by 
composing the restriction to A, of an application of X 
in the KR polyhedron, and a simplistic application of 
a sub-polyhedron KR' in P. Indeed, problems may 
remain and are linked to homotopic applications as 
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well as to the cohomological character of the 
dimension chosen to study. In future work we hope to 
highlight some of the problems related to homotopic 
applications and to study some applications of locally 
compact spaces in further cases other than polyhedra. 
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