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Abstract: - In this paper, by using Nevanlinna theory near a singular point, we study the growth and the 
oscillation of solutions of homogeneous and non-homogeneous complex linear differential equations of the 
form:  

𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓
(𝑘−1) +⋯+ 𝐴1(𝑧)𝑓

′ + 𝐴0(𝑧)𝑓 = 0,  
𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓

(𝑘−1) +⋯+ 𝐴1(𝑧)𝑓
′ + 𝐴0(𝑧)𝑓 = 𝐹(𝑧)

 ,  
 
where 𝐴𝑗(𝑧) (𝑗 = 0, 1, … , 𝑘 − 1) and 𝐹(𝑧) are analytic or meromorphic functions in the extended complex 
plane except a finite singular point with finite logarithmic order. Under some additional conditions when an 
arbitrary 𝐴𝑠(𝑧) dominating near a singular point  𝑧0 ∈ ℂ the others coefficients by its  logarithmic order and 
logarithmic type, we obtained some growth properties of solutions of the above equations. The results 
established in the present paper extend and improve those from other works. 
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order, logarithmic type. 
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1   Introduction and Main Results 
In this paper, we shall assume the reader is familiar 
with the fundamental results and standard notations 
of the Nevanlinna value distribution theory of 
meromorphic functions, [1], [2], [3], [4]. The 
importance of this theory has inspired many authors 
to find modifications and generalizations to different 
domains. Extensions of Nevanlinna theory to annuli 
have been made by [5], [6], [7]. Many authors have 
investigated the growth and oscillation of solutions 
of complex linear differential equations in the 
different domains such as the whole complex plane 
ℂ, [8], [9], [10], [11], the unit disk 𝔻 =
{𝑧 ∈ ℂ ∶ |𝑧|  < 1}, [12], [13] and more recently in 
the extended complex plane except a finite singular 
point ℂ̅ − {𝑧0}, [14], [15], [16], [17], [18], [19], 
[20], considering the case that at least one of the 
coefficients has order different to zero. In recent 
years, after the works, [21], [22], there has been an 
increasing interest in using the logarithmic order as 
an effective tool to measure the rate of the growth of 
solutions of linear differential equations and linear 
difference equations when all the coefficients are of 

order equals zero, [23], [24], [25]. In this article, we 
also use the logarithmic order as growth indicator 
for solutions of homogeneous and non-
homogeneous linear differential equations, where 
the coefficients are analytic or meromorphic 
functions in   ℂ̅ − {𝑧0}. For the following 
definitions, we use the same definitions as in [16] 
and [20]. Let 𝑓 be a meromorphic in ℂ̅ − {𝑧0}, 
where ℂ̅ =  ℂ ∪ {∞},  𝑧0 ∈ ℂ. The characteristic 
function of 𝑓(𝑧) near  𝑧0 is defined by: 
 

𝑇𝑧0(𝑟, 𝑓) = 𝑚𝑧0
(𝑟, 𝑓) + 𝑁𝑧0(𝑟, 𝑓) 

where 

𝑚𝑧0
(𝑟, 𝑓) =

1

2𝜋
∫ log+|𝑓(𝑧0 − 𝑒

𝑖𝜙)| 𝑑𝜙
2𝜋

0

 

and 

𝑁𝑧0(𝑟, 𝑓) = −∫
𝑛(𝑡, 𝑓) − 𝑛(∞, 𝑓)

𝑡

𝑟

∞

𝑑𝑡 

                                   − 𝑛(∞, 𝑓) log 𝑟, 
 
such that 𝑛(𝑡, 𝑓) counts the number of poles of 𝑓(𝑧) 
in {𝑧 ∈ ℂ ∶ 𝑡 ≤ |𝑧 − 𝑧0|} ∪ {∞}, each pole 
according to its multiplicity. 
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For all 𝑅 ∈ (0,+∞) and 𝑝 ≥ 1, we define 
exp1𝑅 = 𝑒

𝑅 , exp𝑝+1𝑅 = exp(exp𝑝𝑅) , log1 𝑅 =
log𝑅 and log𝑝+1𝑅 = log(log𝑝 𝑅). Let 𝑝 and 𝑞 be 
two integers with 𝑝 ≥ 𝑞 ≥ 1. The [𝑝, 𝑞]-order and 
the  [𝑝, 𝑞]-type near 𝑧0 of a meromorphic function  
𝑓(𝑧) in ℂ̅ − {𝑧0} are defined by: 

𝜎[𝑝,𝑞](𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝
+ 𝑇𝑧0(𝑟, 𝑓)

log𝑞
1

𝑟

, 

𝜏[𝑝,𝑞](𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝−1
+ 𝑇𝑧0(𝑟, 𝑓)

(log𝑞−1
1

𝑟
)
𝜎[𝑝,𝑞](𝑓,𝑧0)

 

 
if 𝜎[𝑝,𝑞](𝑓, 𝑧0) ∈ (0,+∞). For an analytic function 
𝑓(𝑧) in ℂ̅ − {𝑧0} , the [𝑝, 𝑞]-order and the  [𝑝, 𝑞]-
type of 𝑓(𝑧)  near 𝑧0 are given by: 
 

𝜎[𝑝,𝑞](𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝+1
+ 𝑀𝑧0(𝑟, 𝑓)

log𝑞
1

𝑟

, 

𝜏[𝑝,𝑞],𝑀(𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝
+𝑀𝑧0(𝑟, 𝑓)

(log𝑞−1
1

𝑟
)
𝜎[𝑝,𝑞](𝑓,𝑧0)

 

 
if 𝜎[𝑝,𝑞](𝑓, 𝑧0) ∈ (0,+∞) , where 𝑀𝑧0(𝑟, 𝑓) =

max
 
{|𝑓(𝑧)|  ∶ |𝑧 − 𝑧0| = 𝑟}.  The [𝑝, 𝑞] exponent of 

convergence of zeros and distinct zeros  near 𝑧0 of a 
meromorphic function 𝑓(𝑧)    in  ℂ̅ − {𝑧0} are 
respectively defined by: 

𝜆[𝑝,𝑞](𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝
+𝑁𝑧0 (𝑟,

1

𝑓
)

log𝑞
1

𝑟

, 

�̅�[𝑝,𝑞](𝑓, 𝑧0) = lim sup
𝑟⟶0

log𝑝
+ �̅�𝑧0 (𝑟,

1

𝑓
)

log𝑞
1

𝑟

, 

 
where �̅�𝑧0(𝑟, 𝑓) is defined similarly as 𝑁𝑧0(𝑟, 𝑓) but 
for  �̅�(𝑡, 𝑓) which counts the number of distinct 
poles of 𝑓(𝑧) instead of 𝑛(𝑡, 𝑓). 
 
Remark 1. (i)  𝜎[1,1](𝑓, 𝑧0) = 𝜎(𝑓, 𝑧0), 
𝜏[1,1](𝑓, 𝑧0) = 𝜏(𝑓, 𝑧0), 𝜆[1,1](𝑓, 𝑧0) = 𝜆(𝑓, 𝑧0) and 
�̅�[1,1](𝑓, 𝑧0) = �̅�(𝑓, 𝑧0) are just the order, the type 
and the exponent of convergence of zeros and 
distinct zeros of 𝑓(𝑧) respectively, [16]. 
(ii)  𝜎[2,1](𝑓, 𝑧0) = 𝜎2(𝑓, 𝑧0), 𝜏[2,1](𝑓, 𝑧0) =

𝜏2(𝑓, 𝑧0), 𝜆[2,1](𝑓, 𝑧0) = 𝜆2(𝑓, 𝑧0) and 
�̅�[2,1](𝑓, 𝑧0) = �̅�2(𝑓, 𝑧0) are just the hyper order, the 
hyper type and the hyper exponent of convergence 
of zeros and distinct zeros of 𝑓(𝑧) respectively, 
[16]. 

    Depending on the definitions of the logarithmic 
order and the logarithmic type of meromorphic 
functions in ℂ, [21], [22], we define the logarithmic 
order and the logarithmic type of a meromorphic 
function  𝑓(𝑧) in ℂ̅ − {𝑧0} as follow: 
 

𝜎log(𝑓, 𝑧0) = lim sup
𝑟⟶0

log 
+ 𝑇𝑧0(𝑟, 𝑓)

loglog 
1

𝑟

, 

𝜏log(𝑓, 𝑧0) = lim sup
𝑟⟶0

 𝑇𝑧0(𝑟, 𝑓)

(log 
1

𝑟
)
𝜎log(𝑓,𝑧0)

 

 
if 𝜎log(𝑓, 𝑧0) ∈ [1, +∞). If 𝑓(𝑧) is an analytic 
function in ℂ̅ − {𝑧0}, then: 

 

𝜎log(𝑓, 𝑧0) = lim sup
𝑟⟶0

log 
+log 

+𝑀𝑧0(𝑟, 𝑓)

log log 
1

𝑟

, 

𝜏log,𝑀(𝑓, 𝑧0) = lim sup
𝑟⟶0

log 
+𝑀𝑧0(𝑟, 𝑓)

(log 
1

𝑟
)
𝜎log(𝑓,𝑧0)

 

 
if  𝜎log(𝑓, 𝑧0) ∈ [1, +∞). The logarithmic exponent 
of convergence of zeros and distinct zeros of a 
meromorphic function 𝑓(𝑧)    in  ℂ̅ − {𝑧0} are 
respectively given by: 

𝜆log(𝑓, 𝑧0) = lim sup
𝑟⟶0

log 
+𝑁𝑧0 (𝑟,

1

𝑓
)

log log 
1

𝑟

− 1, 

�̅�log(𝑓, 𝑧0) = lim sup
𝑟⟶0

log 
+ �̅�𝑧0 (𝑟,

1

𝑓
)

log log 
1

𝑟

− 1. 

 
For 𝑘 ≥ 2, we consider the linear differential 
equations:  
𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓

(𝑘−1) +⋯+ 𝐴1(𝑧)𝑓
′ 

                 +𝐴0(𝑧)𝑓 = 0,                                            (1) 
 

𝑓(𝑘) + 𝐴𝑘−1(𝑧)𝑓
(𝑘−1) +⋯+ 𝐴1(𝑧)𝑓

′ 
                      +𝐴0(𝑧)𝑓 = 𝐹(𝑧)

 ,                                (2) 
 
where 𝐴𝑗(𝑧) (𝑗 = 0, 1, … , 𝑘 − 1) and 𝐹(𝑧) are 
analytic or meromorphic functions in  ℂ̅ − {𝑧0}. 
Recently in [20], the authors investigated the 
growth of solutions of (1) for the case that an 
arbitrary coefficient 𝐴𝑠(𝑧) dominates by its 
[𝑝, 𝑞]-order, and they obtained the following 
theorem.  
 
Theorem A ([20]). Let 𝐴0(𝑧), … , 𝐴𝑘−1(𝑧) be 
analytic functions in  ℂ̅ − {𝑧0}. Suppose there exists 
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an integer 𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) such that 𝐴𝑠(𝑧) 
satisfies max

 
{𝜎[𝑝,𝑞](𝐴𝑗, 𝑧0) ∶ 𝑗 ≠ 𝑠} <

𝜎[𝑝,𝑞](𝐴𝑠, 𝑧0) < +∞. Then, every analytic solution 
𝑓(𝑧) ( ≢ 0) in  ℂ̅ − {z0} of (1) satisfies 
𝜎[𝑝+1,𝑞](𝑓, 𝑧0) ≤ 𝜎[𝑝,𝑞](𝐴𝑠, 𝑧0) ≤ 𝜎[𝑝,𝑞](𝑓, 𝑧0). 
 
    In [14], the authors also considered (1) for the 
special case when the coefficients are meromorphic 
functions in  ℂ̅ − {𝑧0} and 𝐴0(𝑧) is the dominant 
coefficient, where they obtained the following 
theorem on the hyper order. 
 
Theorem B ([14]). Let 𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be 
meromorphic functions in  ℂ̅ − {𝑧0} satisfying 
max
 
{𝜎 (𝐴𝑗, 𝑧0) ∶ 𝑗 ≠ 0} < 𝜎 (𝐴0, 𝑧0)  with 

lim inf
𝑟⟶0

 𝑚𝑧0
(𝑟, 𝑓)

 𝑇𝑧0(𝑟, 𝑓)
> 0. 

 
Then, every meromorphic solution 𝑓(𝑧) ( ≢ 0) in 
 ℂ̅ − {𝑧0} of (1) satisfies 𝜎 (𝐴0, 𝑧0) ≤ 𝜎2(𝑓, 𝑧0). 
 
    The aim of the present paper is to investigate the 
growth of solutions of the linear differential 
equations (1) and (2) considering the case that an 
arbitrary coefficient 𝐴𝑠(𝑧) dominates the other 
coefficients which are analytic or meromorphic 
functions in   ℂ̅ − {𝑧0}, by its logarithmic order or 
its logarithmic type, where we extend the above 
results. It should be noted that similar results to ours 
were obtained for the complex plane case, [24], 
[25]. First, for the case when the coefficients of (1) 
are meromorphic functions in  ℂ̅ − {𝑧0}, we obtain 
the following results. 
 
Theorem 1. Let 𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be 
meromorphic functions in  ℂ̅ − {𝑧0}  of finite 
logarithmic order. Suppose there exists an integer 
𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) such that 𝐴𝑠(𝑧) satisfies  
 

lim sup
𝑟⟶0

 ∑ 𝑚𝑧0(𝑟, 𝐴𝑗)𝑗≠𝑠

𝑚𝑧0
(𝑟, 𝐴𝑠)

< 1 

and  

lim inf
𝑟⟶0

 𝑚𝑧0
(𝑟, 𝐴𝑠)

𝑇𝑧0(𝑟, 𝐴𝑠)
= 𝛿 > 0. 

Then, every meromorphic solution 𝑓(𝑧) ( ≢ 0) in 
 ℂ̅ − {𝑧0} of (1) satisfies 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤

𝜎log(𝑓, 𝑧0) and 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 
𝜎log(𝐴𝑠, 𝑧0) > 1. 
 
Theorem 2. Let  𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be 
meromorphic functions in  ℂ̅ − {𝑧0} of finite 

logarithmic order. Suppose there exists an integer 
𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) such that 𝐴𝑠(𝑧) satisfies 
max
 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠ 𝑠} ≤ 𝜎log(𝐴𝑠, 𝑧0) < +∞, 

lim inf
𝑟⟶0

 𝑚𝑧0
(𝑟, 𝐴𝑠)

𝑇𝑧0(𝑟, 𝐴𝑠)
= 𝛿 > 0 

 
and  

∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0)≥1,𝑗≠𝑠

 

< 𝛿𝜏log(𝐴𝑠, 𝑧0) < +∞. 

 
Then, every meromorphic solution 𝑓(𝑧) ( ≢ 0) in 
 ℂ̅ − {𝑧0} of (1) satisfies 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤

𝜎log(𝑓, 𝑧0) and 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 
𝜎log(𝐴𝑠, 𝑧0) > 1. 
 
Theorem 3. Let  𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be 
meromorphic functions in  ℂ̅ − {𝑧0}  of finite 
logarithmic order. Suppose there exists an integer 
𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) such that 𝐴𝑠(𝑧) satisfies 

𝜆log (
1

𝐴𝑠
, 𝑧0)+1 < 𝜎log(𝐴𝑠, 𝑧0), 

 max
 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠ 𝑠} ≤ 𝜎log(𝐴𝑠, 𝑧0) < +∞ 

and  

∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0)≥1,𝑗≠𝑠

 

< 𝜏log(𝐴𝑠, 𝑧0) < +∞. 

 
Then, every meromorphic solution 𝑓(𝑧) ( ≢ 0) in 
 ℂ̅ − {𝑧0} of (1) satisfies 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) . 
 
Next, when the coefficients of (1) and (2) are 
analytic functions in   ℂ̅ − {𝑧0}, we obtain the 
following results. 
 
Theorem 4. Let  𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be analytic 
functions in  ℂ̅ − {𝑧0} of finite logarithmic order. 
Suppose there exists an integer 𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) 
such that 𝐴𝑠(𝑧) satisfies max

 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠

𝑠} ≤ 𝜎log(𝐴𝑠, 𝑧0) < +∞  and  

lim sup
𝑟⟶0

 ∑ 𝑚𝑧0(𝑟, 𝐴𝑗)𝑗≠𝑠

𝑚𝑧0
(𝑟, 𝐴𝑠)

< 1. 

 
Then, every analytic solution 𝑓(𝑧) ( ≢ 0) in  ℂ̅ −
{𝑧0} of (1) satisfies 𝜎[2,2](𝑓, 𝑧0) − 1 ≤

𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0). Furthermore, if 
𝜎log(𝐴𝑠, 𝑧0) > 1, then 𝑓(𝑧) satisfies 𝜎[2,2](𝑓, 𝑧0) ≤
𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0). 
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Theorem 5. Let 𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be analytic 
functions in  ℂ̅ − {𝑧0}  of finite logarithmic order. 
Suppose there exists an integer 𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) 
such that 𝐴𝑠(𝑧) satisfies max

 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠

𝑠} < 𝜎log(𝐴𝑠, 𝑧0) < +∞. Then, every analytic 
solution 𝑓(𝑧) ( ≢ 0) in  ℂ̅ − {𝑧0} of (1) satisfies 
𝜎[2,2](𝑓, 𝑧0) − 1 ≤ 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0). 
Furthermore, if 𝜎log(𝐴𝑠, 𝑧0) > 1, then 𝑓(𝑧) satisfies 
𝜎[2,2](𝑓, 𝑧0) ≤ 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0). 
 
Theorem 6. Let  𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be analytic 
functions in  ℂ̅ − {𝑧0}  of finite logarithmic order. 
Suppose there exists an integer 𝑠 (0 ≤ 𝑠 ≤ 𝑘 − 1) 
such that 𝐴𝑠(𝑧) satisfies max

 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠

𝑠} ≤ 𝜎log(𝐴𝑠, 𝑧0) < +∞ and  

 

∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0),𝑗≠𝑠

 

< 𝜏log(𝐴𝑠, 𝑧0) < +∞. 

 
Then, every analytic solution 𝑓(𝑧) ( ≢ 0) in 

 ℂ̅ − {𝑧0} of (1) satisfies 𝜎[2,2](𝑓, 𝑧0) − 1 ≤

𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0). Furthermore, if 
𝜎log(𝐴𝑠, 𝑧0) > 1, then 𝑓(𝑧) satisfies 𝜎[2,2](𝑓, 𝑧0) ≤
𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0). 

 
Theorem 7. Let 𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) satisfy the 
hypotheses of Theorem 5 and let 𝐹(𝑧) ( ≢ 0) be an 
analytic function in  ℂ̅ − {𝑧0}. 
 

i) If 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎[2,2](𝐹, 𝑧0) < +∞, then 
every analytic solution 𝑓(𝑧) ( ≢ 0) in 
 ℂ̅ − {𝑧0} of (2) satisfies 𝜎[2,2](𝑓, 𝑧0) =
𝜎[2,2](𝐹, 𝑧0). 

ii) If 𝜎log(𝐴𝑠, 𝑧0) > 𝜎[2,2](𝐹, 𝑧0), then every 
analytic solution 𝑓(𝑧) ( ≢ 0) in  ℂ̅ −
{𝑧0} of (2) satisfies 𝜎[2,2](𝑓, 𝑧0) ≤
𝜎log(𝐴𝑠, 𝑧0) and �̅�[2,2](𝑓, 𝑧0) =

𝜆[2,2](𝑓, 𝑧0) = 𝜎[2,2](𝑓, 𝑧0) holds for 
every solution that satisfies 
𝜎[2,2](𝑓, 𝑧0) = 𝜎log(𝐴𝑠, 𝑧0). 

 
Remark 2. Nevanlinna theory has a wide range of 
applications starting from number theory to 
probability and statistics and to theoretical physics, 
[26], [27], [28], [29] and the references cited 
therein. 
 

 

2   Some Lemmas 

The following lemmas are important to prove our 
results. Firstly, we denote the logarithmic measure 
of a set 𝐸 ⊂ (0,1) by 𝑚𝑙(𝐸) = ∫

𝑑𝑡

𝑡

 

𝐸
. 

 
Lemma 1 ([20]). Let 𝑓 be non-constant 
meromorphic function in  ℂ̅ − {𝑧0} and let 𝑘, 𝑗 ∈ ℕ, 
such that 𝑘 ≠ 𝑗. Then: 

𝑚𝑧0 (𝑟,
𝑓(𝑘)(𝑧)

𝑓(𝑗)(𝑧)
) = 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log

1

𝑟
), 

holds for all  𝑟 ∈ (0, 𝑟1] ∖ 𝐸1 with 𝑚𝑙(𝐸1) < ∞. 
 
Lemma 2 ([30]). Let 𝑓 be non-constant analytic 
function in  ℂ̅ − {𝑧0} with 𝜎log(𝑓, 𝑧0) = 𝜎. Then 
there exists a set 𝐸2 of (0,1) that has infinite 
logarithmic measure such that for all |𝑧 − 𝑧0| =
𝑟 ∈  𝐸2, we have:  
 

lim 
𝑟⟶0

log 
 log 

 𝑀𝑧0(𝑟, 𝑓)

log log 
1

𝑟

= lim 
𝑟⟶0

  
 log 

 𝑇𝑧0(𝑟, 𝑓)

log log 
1

𝑟

= 𝜎 

and for any given 휀 > 0 

𝑀𝑧0(𝑟, 𝑓) > exp {(log
1

𝑟
)
𝜎−𝜀

} , 

𝑇𝑧0(𝑟, 𝑓) > (log
1

𝑟
)
𝜎−𝜀

. 

 

Lemma 3. Let 𝑓1, 𝑓2 be two meromorphic 
functions in  ℂ̅ − {𝑧0} satisfying 𝜎1 = 𝜎log(𝑓1, 𝑧0) >
𝜎log(𝑓2, 𝑧0) = 𝜎2. Then there exists a set 𝐸3 ⊂ (0,1) 
of infinite logarithmic measure such that for all 
|𝑧 − 𝑧0| = 𝑟 ∈  𝐸3, we have:  
 

lim 
𝑟⟶0

𝑇𝑧0(𝑟, 𝑓2)

𝑇𝑧0(𝑟, 𝑓1)
= 0. 

 
𝑃𝑟𝑜𝑜𝑓.  By the definition of the logarithmic order, 
for any given  0 < 휀 < 𝜎1−𝜎2

2
, the exists 𝑟2 ∈ (0,1) 

such that for all |𝑧 − 𝑧0| = 𝑟 ∈  (0, 𝑟2), we obtain:  

                   𝑇𝑧0(𝑟, 𝑓2) ≤ (log
1

𝑟
)
𝜎2+𝜀

.                        (3) 
By Lemma 2, there exists a set 𝐸2 ⊂ (0,1) of 
infinite logarithmic measure such that, for the above 
휀 and for all |𝑧 − 𝑧0| = 𝑟 ∈  𝐸3, we have:  
 

                      𝑇𝑧0(𝑟, 𝑓1) ≤ (log
1

𝑟
)
𝜎1−𝜀

.                     (4) 

By (3) and (4), for the above 휀 and for all |𝑧 −
𝑧0| = 𝑟 ∈  𝐸3 = 𝐸2 ∩ (0, 𝑟2), we get:  
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0 ≤
𝑇𝑧0(𝑟, 𝑓2)

𝑇𝑧0(𝑟, 𝑓1)
≤
(log

1

𝑟
)
𝜎2+𝜀

(log
1

𝑟
)
𝜎1−𝜀

 

                          =
1

(log
1

𝑟
)
𝜎1−𝜎2−2𝜀

 ⟶ 0,    as  𝑟 ⟶ 0. 

Lemma 4. Let 𝑓 be a non-constant meromorphic 
function in  ℂ̅ − {𝑧0} with finite logarithmic order 
1 ≤ 𝜎log(𝑓, 𝑧0) = 𝜎 < +∞ and finite logarithmic 
type 0 < 𝜏log(𝑓, 𝑧0) < +∞. Then there exists a set 
𝐸4 of (0,1) that has infinite logarithmic measure 
such that for all |𝑧 − 𝑧0| = 𝑟 ∈  𝐸4, we have:  

lim 
𝑟⟶0

  
 𝑇𝑧0(𝑟, 𝑓)

(log 
1

𝑟
)
𝜎 = 𝜏log(𝑓, 𝑧0). 

 
𝑃𝑟𝑜𝑜𝑓.  By the definition of the logarithmic type, 
there exists a sequence {𝑟𝑛}𝑛=1+∞  tending to 0 
satisfying 𝑟𝑛+1 <

𝑛

𝑛+1
𝑟𝑛  and  

 

lim 
𝑛⟶+∞

 𝑇𝑧0(𝑟𝑛, 𝑓)

(log 
1

𝑟𝑛
)
𝜎 = 𝜏log(𝑓, 𝑧0). 

So, for any given 휀 > 0, there exists an integer 𝑛0 
such that for all 𝑛 ≥ 𝑛0 and for any 𝑟 ∈  [

𝑛

𝑛+1
𝑟𝑛,

𝑟𝑛],  we have:  

𝑇𝑧0(𝑟𝑛, 𝑓)

(log 
1
𝑛

𝑛+1
𝑟𝑛
)

𝜎 ≤
𝑇𝑧0(𝑟, 𝑓)

(log 
1

𝑟 
)
𝜎 ≤

𝑇𝑧0 (
𝑛

𝑛+1
𝑟𝑛, 𝑓)

(log 
1

𝑟𝑛
)
𝜎 . 

Since,  

lim 
𝑛⟶+∞

 𝑇𝑧0(𝑟𝑛, 𝑓)

(log 
1
𝑛

𝑛+1
𝑟𝑛
)

𝜎 = lim 
𝑛⟶+∞

  
   
 𝑇𝑧0 (

𝑛

𝑛+1
𝑟𝑛, 𝑓)

(log 
1

𝑟𝑛
)
𝜎  

              = 𝜏log(𝑓, 𝑧0), 
 

then for any 𝑟 ∈  [
𝑛

𝑛+1
𝑟𝑛, 𝑟𝑛], we get:  

 

lim 
𝑟⟶0

  
 𝑇𝑧0(𝑟, 𝑓)

(log 
1

𝑟
)
𝜎 = 𝜏log(𝑓, 𝑧0). 

 
Set 𝐸4 = ⋃ [

𝑛

𝑛+1
𝑟𝑛, 𝑟𝑛]

+∞
𝑛=𝑛0 , then 𝑚𝑙(𝐸4) =

∑ ∫
𝑑𝑡

𝑡

𝑟𝑛
𝑛

𝑛+1
𝑟𝑛

+∞
𝑛=𝑛0 = ∑ log (1 +

1

𝑛
) = +∞.+∞

𝑛=𝑛0  

 
Lemma 5 ([30]).  Let 𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be 
analytic functions in  ℂ̅ − {𝑧0} of finite logarithmic 
order with max

 
{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 = 0,… , 𝑘 − 1} ≤

𝛼 < +∞. Then, every analytic solution 𝑓(𝑧) ( ≢ 0) 
in  ℂ̅ − {𝑧0} of (1) satisfies 𝜎[2,2](𝑓, 𝑧0) ≤ 𝛼. 
 
Lemma 6 ([16]). Let 𝑓 be a non-constant 
meromorphic function in  ℂ̅ − {𝑧0} and set 𝑔(𝜔) =
𝑓 (𝑧0 −

1

𝜔
). Then 𝑔(𝜔) is meromorphic in ℂ and we 

have  

 𝑇 (𝑅, 𝑓) =  𝑇𝑧0 (
1

𝑅
, 𝑓) . 

 
Lemma 7 ([31]). Let 𝑓 be a non-constant 
meromorphic function in ℂ  with 𝑝 ≥ 𝑞 ≥ 1. Then  

 
𝜎[𝑝,𝑞](𝑓

′) =
 
 𝜎[𝑝,𝑞](𝑓). 

 
Lemma 8. Let 𝑓 be a non-constant meromorphic 
function in  ℂ̅ − {𝑧0}  with 𝑝 ≥ 𝑞 ≥ 1. Then  

 
𝜎[𝑝,𝑞](𝑓

 , 𝑧0) =
 
 𝜎[𝑝,𝑞](𝑓′, 𝑧0). 

𝑃𝑟𝑜𝑜𝑓.  By Lemma 6, 𝑔(𝜔) = 𝑓 (𝑧0 −
1

𝜔
) is 

meromorphic in ℂ and 𝜎[𝑝,𝑞](𝑔) = 𝜎[𝑝,𝑞](𝑓, 𝑧0). 
From Lemma 7 we have 𝜎[𝑝,𝑞](𝑔′) = 𝜎[𝑝,𝑞](𝑔), 
where 𝑓′(𝑧) = 1

𝜔2
𝑔′(𝜔) . Setting ℎ(𝜔) = 1

𝜔2
𝑔′(𝜔). 

It is clear that  𝜎[𝑝,𝑞](ℎ) = 𝜎[𝑝,𝑞](𝑔′). On the other 
hand by Lemma 6, we have 𝜎[𝑝,𝑞](ℎ) =

𝜎[𝑝,𝑞](𝑓
′, 𝑧0). Hence, 𝜎[𝑝,𝑞](𝑓  , 𝑧0) =

 
 𝜎[𝑝,𝑞](𝑓′, 𝑧0). 

 
Lemma 9 ([30]). Let 𝐹(𝑧) ≢ 0,
𝐴0(𝑧),… , 𝐴𝑘−1(𝑧) be analytic functions in  ℂ̅ −
{𝑧0} and let 𝑓 be a non-constant analytic solution 
in ℂ̅ − {𝑧0} of (2) satisfying  
max
 
{𝜎[2,2](𝐹, 𝑧0), 𝜎[2,2](𝐴𝑗, 𝑧0) ∶ (𝑗 = 0,… , 𝑘 −

1)} < 𝜎[2,2](𝑓, 𝑧0) .  Then, �̅�[2,2](𝑓, 𝑧0) =

𝜆[2,2](𝑓, 𝑧0) = 𝜎[2,2](𝑓, 𝑧0) . 
 

 

3   Proof of the Theorems  
 
3.1  Proof of Theorem 1 
𝑃𝑟𝑜𝑜𝑓.  Let 𝑓 ( ≢ 0) be a meromorphic solution of 
(1) in  ℂ̅ − {𝑧0}. If 𝜎log(𝑓, 𝑧0) = ∞, then the result is 
trivial. So, we suppose that 𝜎log(𝑓, 𝑧0) < ∞. By (1), 
we have:  

−𝐴𝑠(𝑧) =
𝑓(𝑘)(𝑧)

𝑓(𝑠)(𝑧)
+ 𝐴𝑘−1(𝑧)

𝑓(𝑘−1)(𝑧)

𝑓(𝑠)(𝑧)
 

+⋯+𝐴𝑠+1(𝑧)
𝑓(𝑠+1)(𝑧)

𝑓(𝑠)(𝑧)
  + 𝐴𝑠−1(𝑧)

𝑓(𝑠−1)(𝑧)

𝑓(𝑠)(𝑧)
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+⋯+𝐴0(𝑧)
𝑓(𝑧)

𝑓(𝑠)(𝑧)
.                                                (5) 

 
It follows that:  

𝑚𝑧0(𝑟, 𝐴𝑠(𝑧)) ≤ ∑ 𝑚𝑧0 (𝑟,
𝑓(𝑗)(𝑧)

𝑓(𝑠)(𝑧)
)

𝑘

𝑗=0,𝑗≠𝑠

+ ∑ 𝑚𝑧0 (𝑟, 𝐴𝑗(𝑧))

𝑘−1

𝑗=0,𝑗≠𝑠

+ 𝑂(1). 

(6) 
 
By Lemma 1, for a constant   𝑟1 ∈ (0, 1) , there 
exists a set   𝐸1 ⊂ (0, 𝑟1] of finite logarithmic 
measure such that for all |𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟1] ∖ 𝐸1, 
we have:  

∑ 𝑚𝑧0 (𝑟,
𝑓(𝑗)(𝑧)

𝑓(𝑠)(𝑧)
)

𝑘

𝑗=0,𝑗≠𝑠

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
). 

 (7)  
Suppose that:  
 

lim sup
𝑟→0

 ∑ 𝑚𝑧0(𝑟, 𝐴𝑗)
𝑘−1
𝑗=0,𝑗≠𝑠

𝑚𝑧0
(𝑟, 𝐴𝑠)

= 𝛼 < 𝛽 < 1.  

 
Then for  𝑟 → 0, we get:  

    ∑ 𝑚𝑧0 (𝑟, 𝐴𝑗(𝑧))

𝑘−1

𝑗=0,𝑗≠𝑠

< 𝛽𝑚𝑧0
(𝑟, 𝐴𝑠).             (8) 

 
Substituting (7) and (8) into (6), for all |𝑧 − 𝑧0| =
𝑟 ∈ (0, 𝑟1] ∖ 𝐸1 and  𝑟 ⟶ 0, we obtain:  
 (1 − 𝛽)𝑚𝑧0

(𝑟, 𝐴𝑠) ≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
).        (9) 

 

By the assumption lim inf
𝑟⟶0

 𝑚𝑧0
(𝑟,𝐴𝑠)

𝑇𝑧0(𝑟,𝐴𝑠)
= 𝛿 > 0, there 

exists 𝑟3 ∈ (0, 1) such that for all |𝑧 − 𝑧0| = 𝑟 ∈
(0, 𝑟3), we have:  

            𝑚𝑧0
(𝑟, 𝐴𝑠) ≥

𝛿

2
 𝑇𝑧0(𝑟, 𝐴𝑠).                       (10) 

 
By Lemma 2, there exists a set 𝐸2 ⊂ (0,1) of 
infinite logarithmic measure such that for any given 
휀 > 0 and for all |𝑧 − 𝑧0| = 𝑟 ∈ 𝐸2, we have:  

            𝑇𝑧0(𝑟, 𝐴𝑠) ≥ (log
1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)−𝜀

.        (11) 

 
Combining (9), (10) and (11), for any given 휀 > 0 
and for all |𝑧 − 𝑧0| = 𝑟 ∈ 𝐸2 ∩ (0, 𝑟1] ∩ (0, 𝑟3) ∖
𝐸1, we get: 

𝛿

2
(1 − 𝛽) (log

1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)−𝜀

 

                ≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
).                         (12) 

 
This implies that 𝜎log(𝐴𝑠, 𝑧0) − 1 − 휀 ≤ 𝜎log(𝑓, 𝑧0) 
and 𝜎log(𝐴𝑠, 𝑧0) − 휀 ≤ 𝜎log(𝑓, 𝑧0) if 𝜎log(𝐴𝑠, 𝑧0) >
1. Since  휀 > 0 is arbitrary, we obtain 𝜎log(𝐴𝑠, 𝑧0) −
1 ≤ 𝜎log(𝑓, 𝑧0) and 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 
𝜎log(𝐴𝑠, 𝑧0) > 1. 
 

3.2  Proof of Theorem 2 
𝑃𝑟𝑜𝑜𝑓. Let 𝑓(≢ 0) be a meromorphic solution of 
(1) in ℂ̅ − {𝑧0}. First, we suppose that 
max{𝜎log(𝐴𝑗, 𝑧0): 𝑗 ≠ 𝑠} < 𝜎log(𝐴𝑠, 𝑧0) = 𝜎. Then 
as in the proof of Theorem 1, by substituting (7) and 
(10) into (6), for all |𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟1] ∩
(0, 𝑟3) ∖ 𝛦1, we obtain: 
𝛿

2
𝑇𝑧0(𝑟, 𝐴𝑠) ≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log

1

𝑟
)

+ ∑ 𝑇𝑧0(𝑟, 𝐴𝑗)

𝑘−1

𝑗=0,𝑗≠𝑠

.                   (13) 

By Lemma 3, there exists a set Ε3 ⊂ (0,1) of 
infinite logarithmic measure such that for all 
|𝑧 − 𝑧0| = 𝑟 ∈ 𝛦3, we have: 

max{
𝑇𝑧0(𝑟, 𝐴𝑗)

𝑇𝑧0(𝑟, 𝐴𝑠)
, 𝑗 ≠ 𝑠} → 0,   as   𝑟 ⟶ 0.        (14) 

 
Then, by (13) and (14) for all 𝑟 ∈ 𝛦3⋂(0, 𝑟1] ∩
(0, 𝑟3) ∖ 𝛦1 and 𝑟 ⟶ 0, we get: 

                  (
𝛿

2
− 𝑜(1))𝑇𝑧0(𝑟, 𝐴𝑠) 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
).                                         (15) 

 
From (15), we deduce that 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤
𝜎log(𝑓, 𝑧0) and 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 
𝜎log(𝐴𝑠, 𝑧0) > 1. Now we suppose that 
max{𝜎log(𝐴𝑗, 𝑧0): 𝑗 ≠ 𝑠} = 𝜎log(𝐴𝑠, 𝑧0) = 𝜎 and  

𝜏1 = ∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0)≥1,𝑗≠𝑠

 

              < 𝛿𝜏log(𝐴𝑠, 𝑧0) = 𝛿𝜏. 
 
So, there exists a set 𝐽1 ⊆ {0,1,… , 𝑘 − 1} ∖ {𝑠} such 
that for j∈ 𝐽1, we have 𝜎log(𝐴𝑗, 𝑧0) = 𝜎log(𝐴𝑠, 𝑧0) =
𝜎 with: 

𝜏1 =∑ 𝜏log(𝐴𝑗, 𝑧0)
𝑗∈𝐽1

< 𝜏log(𝐴𝑠, 𝑧0) = 𝜏 

and for 𝑗 ∈ 𝐽2 = {0,1,… , 𝑠 − 1, 𝑠 + 1,… , 𝑘 − 1} ∖ 𝐽1 
we have 𝜎log(𝐴𝑗, 𝑧0) < 𝜎log(𝐴𝑠, 𝑧0) = 𝜎. Then there 
exists 𝑟4 ∈ (0,1), such that all |𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟4) 
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and for any given 휀(0 < (𝜏 + 𝑘)휀 < 𝛿𝜏 − 𝜏1), we 
obtain:  

𝑇𝑧0(𝑟, 𝐴𝑗) ≤ (𝜏log (𝐴𝑗, 𝑧0) + 휀) (log
1

𝑟
)
𝜎log(𝐴𝑗,𝑧0)

 

= (𝜏log(𝐴𝑗, 𝑧0) + 휀) (log
1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)

,   𝑗 ∈ 𝐽1  (16) 
 
and   

𝑇𝑧0(𝑟, 𝐴𝑗) ≤ (log
1

𝑟
)
𝜎log(𝐴𝑗,𝑧0)+𝜀

 

                  ≤ (log
1

𝑟
)
𝜎0

,   𝑗 ∈ 𝐽2,                             (17) 
 
where max{𝜎log(𝐴𝑗, 𝑧0): 𝑗 ∈ 𝐽2} < 𝜎0 < 𝜎. By the 

assumption lim inf
𝑟⟶0

𝑚𝑧0
(𝑟,𝐴𝑠)

𝑇𝑧0(𝑟,𝐴𝑠)
= 𝛿 > 0, there exists 

𝑟5 ∈ (0, 1) such that for any given 휀 > 0 and for all 
|𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟5), we have: 
 
           𝑚𝑧0

(𝑟, 𝐴𝑠) ≥ (𝛿 − 휀)𝑇𝑧0(𝑟, 𝐴𝑠).                 (18) 
 
By Lemma 4, there exists a set 𝛦4 ⊂ (0,1) of 
infinite logarithmic measure such that for the above 
휀 and for all |𝑧 − 𝑧0| = 𝑟 ∈ 𝛦4, we have: 

      𝑇𝑧0(𝑟, 𝐴𝑠) ≥ (𝜏 − 휀) (log
1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)

.          (19) 
 
Combining (18) and (19), for the above 휀 and for all 
|𝑧 − 𝑧0| = 𝑟 ∈ 𝛦4 ∩ (0, 𝑟5), we get: 

𝑚𝑧0
(𝑟, 𝐴𝑠) ≥ (𝛿 − 휀)(𝜏 − 휀) (log

1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)

 

                 = (𝛿𝜏 − 𝛿휀 − 𝜏휀 + 휀2) (log 1
𝑟
)
𝜎log(𝐴𝑠,𝑧0)

  

            ≥ (𝛿𝜏 − (𝜏 + 𝛿)휀) (log 1
𝑟
)
𝜎log(𝐴𝑠,𝑧0)

.      (20) 
 
Knowing the fact that 0 < 𝛿 ≤ 1, by (20) it follows: 

  𝑚𝑧0
(𝑟, 𝐴𝑠)  ≥ (𝛿𝜏 − (𝜏 + 1)휀) (log

1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)

.   
(21) 

 
By substituting (7) and (16), (17) and (21) into (6), 
for the above 휀 and for all |𝑧 − 𝑧0| = 𝑟 ∈ 𝛦4 ∩
(0, 𝑟1] ∩ (0, 𝑟4) ∩ (0, 𝑟5) ∖ 𝛦1, we obtain: 

(𝛿𝜏 − (𝜏 + 1)휀) (log
1

𝑟
)
𝜎log(𝐴𝑠,𝑧0)

 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) + ∑ 𝑇𝑧0(𝑟, 𝐴𝑗)

𝑘−1

𝑗=0,𝑗≠𝑠

 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) + ∑(𝜏log(𝐴𝑗, 𝑧0) + 휀)

𝑗∈𝐽1

 

     × (log
1

𝑟
)
𝜎

+∑ (log
1

𝑟
)
𝜎0

𝑗∈𝐽2

 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) + (𝜏1 + (𝑘 − 1)휀) 

      × (log
1

𝑟
)
𝜎

+ (𝑘 − 1) (log
1

𝑟
)
𝜎0

.                    (22) 
 
 It follows that  

(1 − 𝑜(1))(𝛿𝜏 − 𝜏1 − (𝜏 + 𝑘)휀) (log
1

𝑟
)
𝜎

 

                           ≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
),              (23) 

 
which implies that, 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0) 
and 1 < 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 𝜎log(𝐴𝑠, 𝑧0) >
1. 
 
3.3  Proof of Theorem 3 

𝑃𝑟𝑜𝑜𝑓. By (6) and (7), for all 𝑟 ∈ (0, 𝑟1] ∖ 𝛦1, we 
have 

𝑇𝑧0(𝑟, 𝐴𝑠) = 𝑚𝑧0
(𝑟, 𝐴𝑠) + 𝑁𝑧0(𝑟, 𝐴𝑠) 

≤ ∑ 𝑚𝑧0 (𝑟,
𝑓(𝑗)(𝑧)

𝑓(𝑠)(𝑧)
)

𝑘

𝑗=0,𝑗≠𝑠

+ ∑ 𝑚𝑧0 (𝑟, 𝐴𝑗(𝑧))

𝑘−1

𝑗=0,𝑗≠𝑠

 

 
     +𝑁𝑧0(𝑟, 𝐴𝑠) + 𝑂(1) 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) + ∑ 𝑇𝑧0(𝑟, 𝐴𝑗)

𝑘−1

𝑗=0,𝑗≠𝑠

            

      +𝑁𝑧0(𝑟, 𝐴𝑠).                                                          (24) 
 
If 𝜎1 = max{𝜎log(𝐴𝑗, 𝑧0): 𝑗 ≠ 𝑠} < 𝜎log(𝐴𝑠, 𝑧0) =

𝜎,  then there exists 𝑟6 ∈ (0,1) such that for any 
given 휀(0 < 2휀 < 𝜎 − 𝜎1) and for all |𝑧 − 𝑧0| =
𝑟 ∈ (0, 𝑟6) , we obtain: 

𝑇𝑧0(𝑟, 𝐴𝑗) ≤ (log
1

𝑟
)
𝜎log(𝐴𝑗,𝑧0)+𝜀

 

          ≤ (log
1

𝑟
)
𝜎1+𝜀

, 𝑗 = 0,1,… , 𝑘 − 1, 𝑗 ≠ 𝑠.   (25) 
 
By Lemma 2, there exists a set 𝛦2 ⊂ (0,1) of 
infinite logarithmic measure such that for the above 
휀 and for all |𝑧 − 𝑧0| = 𝑟 ∈ 𝛦2, the assumption (11) 
holds. By the definition of  𝜆log (

1

𝐴𝑠
, 𝑧0) = 𝜆, there 

exists 𝑟7 ∈ (0,1) such that for any given 휀(0 <
2휀 < 𝜎 − 𝜆 − 1) and for all |𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟7), 
we get: 

𝑁𝑧0(𝑟, 𝐴𝑠) ≤ (log
1

𝑟
)
𝜆log(

1

𝐴𝑠
,𝑧0)+1+𝜀

.                    (26) 
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By substituting (11), (25) and (26) into (24), for 
sufficiently small 휀 satisfying 0 < 2휀 <
min{𝜎 − 𝜎1, 𝜎 − 𝜆 − 1} and for all 𝑟 ∈ 𝛦2 ∩
(0, 𝑟1] ∩ (0, 𝑟6) ∩ (0, 𝑟7) ∖ 𝛦1, we have: 

(log
1

𝑟
)
𝜎−𝜀

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) 

+(𝑘 − 1) (log
1

𝑟
)
𝜎1+𝜀

+ (log
1

𝑟
)
𝜆+1+𝜀

,             (27) 
 
then 

(1 − 𝑜(1)) (log
1

𝑟
)
𝜎−𝜀

 

                  ≤ 𝑂 (𝑇𝑧0((𝑟, 𝑓)) + log
1

𝑟
).                 (28) 

 
Thus 1 < 𝜎 − 휀 ≤ 𝜎log(𝑓, 𝑧0). Since 휀 > 0  is 
arbitrary, we obtain 1 < 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0). 
Now, if max{𝜎log(𝐴𝑗, 𝑧0): 𝑗 ≠ 𝑠} = 𝜎log(𝐴𝑠, 𝑧0) = 𝜎 
and 
𝜏1 = ∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0)≥1,𝑗≠𝑠

 

     < 𝜏log(𝐴𝑠, 𝑧0) = 𝜏, 
 
then as in the proof of Theorem 2, we assume that 
there exists a set 𝐽1 ⊆ {0,1,… , 𝑘 − 1} ∖ {𝑠} such that 
for 𝑗 ∈ 𝐽1, we have 𝜎log(𝐴𝑗 , 𝑧0) = 𝜎log(𝐴𝑠, 𝑧0) = 𝜎 
with:  
𝜏1 = ∑ 𝜏log(𝐴𝑗, 𝑧0)

𝜎log(𝐴𝑗,𝑧0)=𝜎log(𝐴𝑠,𝑧0)≥1,𝑗≠𝑠

 

     < 𝜏log(𝐴𝑠, 𝑧0) = 𝜏 
 
and for 𝑗 ∈ 𝐽2 = {0,1,… , 𝑠 − 1, 𝑠 + 1,… , 𝑘 − 1} ∖ 𝐽1 
we have 𝜎log(𝐴𝑗, 𝑧0) < 𝜎log(𝐴𝑠, 𝑧0) = 𝜎. Then, 
there exists a 𝑟4 ∈ (0,1), such that for any given 
휀 (0 < 휀 <

𝜏−𝜏1

𝑘
) and for all |𝑧 − 𝑧0| = 𝑟 ∈ (0, 𝑟4), 

the assumptions (16) and (17) hold. By Lemma 4, 
there exists a set 𝛦4 ⊂ (0,1) of infinite logarithmic 
measure such that for the above 휀 and for all 
|𝑧 − 𝑧0| = 𝑟 ∈ 𝛦4, (19) holds. By substituting (16), 
(17), (19) and (26) into (24) for sufficiently small 휀 
satisfying 0 < 휀 < min {𝜎−𝜆−1

2
,
𝜏−𝜏1

𝑘
} and for all 𝑟 ∈

𝛦4 ∩ (0, 𝑟1] ∩ (0, 𝑟4) ∩ (0. 𝑟7) ∖ 𝛦1, we get: 
 

(𝜏 − 휀) (log
1

𝑟
)
𝜎

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) 

   +∑(𝜏log(𝐴𝑗, 𝑧0) + 휀

𝑗∈𝐽1

) (log
1

𝑟
)
𝜎

 

   +∑ (log
1

𝑟
)
𝜎0

𝑗∈𝐽2

+ (log
1

𝑟
)
𝜆+1+𝜀

 

≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
) + (𝜏1 + (𝑘 − 1)휀) (log

1

𝑟
)
𝜎

 

   +(𝑘 − 1) (log
1

𝑟
)
𝜎0

+ (log
1

𝑟
)
𝜆+1+𝜀

.                (29) 
So 

(1 − 𝑜(1))(𝜏 − 𝜏1 − 𝑘휀) (log
1

𝑟
)
𝜎

 

           ≤ 𝑂 (𝑇𝑧0(𝑟, 𝑓) + log
1

𝑟
),                              (30) 

 
which implies that 1 < 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0). 
 

3.4  Proof of Theorem 4 
𝑃𝑟𝑜𝑜𝑓. We assume that 𝑓(≢ 0) is an analytic 
solution of (1) in ℂ̅ − {𝑧0}. By Theorem 1, we have 
0 ≤ 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0) and 𝜎log(𝐴𝑠, 𝑧0) 
≤ 𝜎log(𝑓, 𝑧0) if 𝜎log(𝐴𝑠, 𝑧0) > 1 . On the other 
hand, by Lemma 5, we have 𝜎[2,2](𝑓, 𝑧0) ≤
𝜎log(𝐴𝑠, 𝑧0). Hence 𝜎[2,2](𝑓, 𝑧0) − 1 ≤

𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0) and 𝜎[2,2](𝑓, 𝑧0) ≤
𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 𝜎log(𝐴𝑠, 𝑧0) > 1. 
 
3.5  Proof of Theorem 5 
𝑃𝑟𝑜𝑜𝑓. We assume that 𝑓(≢ 0) is an analytic 
solution of (1) in ℂ̅ − {𝑧0}. By Theorem 2, we get 
0 ≤ 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0) and 
𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 𝜎log(𝐴𝑠, 𝑧0) > 1. Then, 
by using Lemma 5, we conclude that 𝜎[2,2](𝑓, 𝑧0) −
1 ≤ 𝜎log(𝐴𝑠, 𝑧0) − 1 ≤ 𝜎log(𝑓, 𝑧0) and  
𝜎[2,2](𝑓, 𝑧0) ≤ 𝜎log(𝐴𝑠, 𝑧0) ≤ 𝜎log(𝑓, 𝑧0) if 
𝜎log(𝐴𝑠, 𝑧0) > 1. 
 
3.6  Proof of Theorem 6 
𝑃𝑟𝑜𝑜𝑓. Again, by Theorem 2 and Lemma 5, we get 
the assertions of Theorem 6. 
 
3.7  Proof of Theorem 7 
𝑃𝑟𝑜𝑜𝑓.  We suppose 𝑓(𝑧) is an analytic solution in 
ℂ̅ − {𝑧0} of (2). Then 𝑓 can be represented in the 
form: 
𝑓(𝑧) = 𝐵1(𝑧)𝑓1(𝑧) + 𝐵2(𝑧)𝑓2(𝑧) 
             +⋯+ 𝐵𝑘(𝑧)𝑓𝑘(𝑧),                                      (31) 
 
where 𝑓1, 𝑓2, … , 𝑓𝑘 is a solution base of equation (1) 
corresponding to equation (2) and 𝐵1, 𝐵2, … , 𝐵𝑘 are 
suitable analytic functions in ℂ̅− {𝑧0} determined 
by the following system of equations: 

{
 
 

 
 𝐵1

′𝑓1 + 𝐵2
′𝑓2 +⋯+ 𝐵𝑘

′ 𝑓𝑘 = 0                    

𝐵1
′𝑓1
′ + 𝐵2

′𝑓2
′ +⋯+ 𝐵𝑘

′ 𝑓𝑘
′ = 0                    

⋮                                                                  

𝐵1
′𝑓1
𝑘−1 +𝐵2

′𝑓2
𝑘−1 +⋯+ 𝐵𝑘

′ 𝑓𝑘
𝑘−1 = 𝐹,     

     (32) 
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By (32), we get  
𝐵𝑗
′ = 𝐹. 𝐺𝑗(𝑓1, 𝑓2, … , 𝑓𝑘).𝑊(𝑓1, 𝑓2, … , 𝑓𝑘)

−1,      (33) 
 
𝑗 = 1,… , 𝑘, where 𝐺𝑗(𝑓1, 𝑓2, … , 𝑓𝑘) is differential 
polynomial of 𝑓1, 𝑓2, … , 𝑓𝑘 and their derivatives with 
constant coefficients and 𝑊(𝑓1, 𝑓2, … , 𝑓𝑘) is the 
Wronksian of 𝑓1, 𝑓2, … , 𝑓𝑘. By (33) and Lemma 8, 
for 𝑗 = 1,… , 𝑘, we have : 
     𝜎[2,2](𝐵𝑗, 𝑧0) = 𝜎[2,2](𝐵𝑗

′, 𝑧0) 
≤ max{𝜎[2,2](𝐹, 𝑧0), 𝜎[2,2](𝐺𝑗(𝑓1, 𝑓2, … , 𝑓𝑘), 𝑧0), 
     𝜎[2,2](𝑊(𝑓1, 𝑓2, … , 𝑓𝑘), 𝑧0)}.                               (34) 
 
Since 𝐺𝑗(𝑓1, 𝑓2, … , 𝑓𝑘) and 𝑊(𝑓1, 𝑓2, … , 𝑓𝑘) are both 
differential polynomial of 𝑓1, 𝑓2, … , 𝑓𝑘 and their 
derivatives with constant coefficients, then they 
satisfy:  
max{𝜎[2,2](𝐺𝑗(𝑓1, 𝑓2, … , 𝑓𝑘), 𝑧0), 
𝜎[2,2](𝑊(𝑓1, 𝑓2, … , 𝑓𝑘), 𝑧0)} ≤ 𝜎[2,2](𝑓𝑗, 𝑧0).      (35) 
 
By Theorem 5, if max{𝜎log(𝐴𝑗, 𝑧0) ∶ 𝑗 ≠ 𝑠} <
𝜎log(𝐴𝑠, 𝑧0) < +∞,  then  
𝜎[2,2](𝑓𝑗, 𝑧0) ≤ 𝜎log(𝐴𝑠, 𝑧0) ,   𝑗 = 1,… , 𝑘.          (36) 
 
By (31), (34), (35) and (36) for 𝑗 = 1,… , 𝑘, we get  
      𝜎[2,2](𝑓, 𝑧0) ≤ max{𝜎[2,2](𝑓𝑗, 𝑧0), 𝜎[2,2](𝐵𝑗, 𝑧0)} 
                  ≤ max{𝜎[2,2](𝐹, 𝑧0), 𝜎log(𝐴𝑠, 𝑧0)}.    (37) 
 

i) If 𝜎[2,2](𝐹, 𝑧0) ≥ 𝜎log(𝐴𝑠, 𝑧0), then by (2) and 
(37), we deduce that 𝜎[2,2](𝑓, 𝑧0) =
𝜎[2,2](𝐹, 𝑧0). 

ii) If 𝜎[2,2](𝐹, 𝑧0) < 𝜎log(𝐴𝑠, 𝑧0), then by (37), 
we obtain 𝜎[2,2](𝑓, 𝑧0) ≤ 𝜎log(𝐴𝑠, 𝑧0). 
Further, assume that a solution 𝑓 of (2) 
satisfies 𝜎[2,2](𝑓, 𝑧0) = 𝜎log(𝐴𝑠, 𝑧0). 
Then, there holds  
max{𝜎[2,2](𝐹, 𝑧0), 𝜎[2,2](𝐴𝑗, 𝑧0): (𝑗 =

0,…𝑘 − 1)} < 𝜎[2,2](𝑓, 𝑧0).  
By Lemma 9, we conclude that �̅�[2,2](𝑓, 𝑧0) =
𝜆[2,2](𝑓, 𝑧0) = 𝜎[2,2](𝑓, 𝑧0) = 𝜎log(𝐴𝑠, 𝑧0). 
 
 
4   Conclusion 
Throughout this article, by using the concepts of 
logarithmic order and logarithmic type, we have 
studied the growth of solutions of the linear 
differential equations (1) and (2) considering the 
case of an arbitrary coefficient 𝐴𝑠(𝑧) dominating the 
others coefficients which are analytic or 
meromorphic functions in ℂ̅ − {𝑧0}. We improve 

and extend some precedent results obtained in the 
papers, [14] and [20].  
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