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Abstract: - In this paper, by using Nevanlinna theory near a singular point, we study the growth and the
oscillation of solutions of homogeneous and non-homogeneous complex linear differential equations of the
form:

FO + 41 @Df %D 4+ A, (Df + 4(Df =0,
O+ 41 @f D+ + A1(f' + Ao (D)f = F(2),

where 4;(z) (j = 0,1, ...,k — 1) and F(z) are analytic or meromorphic functions in the extended complex
plane except a finite singular point with finite logarithmic order. Under some additional conditions when an
arbitrary A4(z) dominating near a singular point z, € C the others coefficients by its logarithmic order and
logarithmic type, we obtained some growth properties of solutions of the above equations. The results
established in the present paper extend and improve those from other works.
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1 Introduction and Main Results order equals zero, [23], [24], [25]. In this article, we
In this paper, we shall assume the reader is familiar also use the logarithmic order as growth indicator
with the fundamental results and standard notations for solutions of homogeneous and non-
of the Nevanlinna value distribution theory of homogeneous linear differential equations, where
meromorphic functions, [1], [2], [3], [4]. The the coefficients are analytic or meromorphic
importance of this theory has inspired many authors functions in C—{z,}. For the following
to find modifications and generalizations to different definitions, we use the same definitions as in [16]
domains. Extensions of Nevanlinna theory to annuli and [20]. Let f be a meromorphic in C— {z,},
have been made by [5], [6], [7]. Many authors have where €= CU{o}, zy € C. The -characteristic
investigated the growth and oscillation of solutions function of f(z) near z, is defined by:

of complex linear differential equations in the

different domains such as the whole complex plane T, (. f) =m, (r,f) + N, (1, f)

C, [8], [9], [10], [11], the wunit disk D= where

{ze C:|z| <1}, [12], [13] and more recently in 2m .

the extended complex plane except a finite singular My, (r, ) = . f log*[f (zo — e®)| dop
point C—{z,}, [14], [15], [16], [17], [18], [19], and 0

[20], considering the case that at least one of the "n(t, f) — n(oo, f)
coefficients has order different to zero. In recent N, (r,f)=- f " dt

years, after the works, [21], [22], there has been an
increasing interest in using the logarithmic order as
an effective tool to measure the rate of the growth of
solutions of linear differential equations and linear
difference equations when all the coefficients are of

—n(oo, f)logr,
such that n(t, ) counts the number of poles of f(z)

in{zeC:t<|z—zy|} U {0}, each pole
according to its multiplicity.
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For all R€ (0,+%) and p =1, we define
expiR = e, exp,,1R = exp(exp,R), log; R =
logR and log,,.1R = log(logp R). Let pand qbe
two integers with p = q = 1. The [p, q]-order and
the [p,q]-type near z, of a meromorphic function
f(2) in C — {z,} are defined by:

) log} T, (1, f)
Op,q)(fZ0) = lim sup%’
r—0 logq ;

log;—l Tzo (T' f)
1)”[p.q](f'zo)

Tip,q] (f,20) = limgup
r—

logg-17

if oy q1(f, 20) € (0,+0). For an analytic function

f(z)inC —{z,}, the [p,q]-order and the [p,q]-
type of f(z) near z, are given by:

logt. . M, (r,
Olp,q1(f120) = limsup Bp+1 201( f)
logy My, (7, f)

1\%p.q1/Z0)
10gg-1 ?)

)

Tpqum(f) 20) = limgup
r—

if  oppq(f,20) € (0,+), where M, (r,f)=
max{|f(z)| : |z — zy,| =r}. The [p,q] exponent of
convergence of zeros and distinct zeros near z, of a
meromorphic ~ function  f(z) in C— {z,}are
respectively defined by:

)

1 )
logq -

T,

N

logy N,,

NG

Ap.q] (f,z9) = limgup
r—

log, '
~ logy Ny,
Ap.q1(f>20) = limsup

r—0

= Ir

T,

il

where N, (7, f) is defined similarly as N, (r, f) but

for 7(t,f) which counts the number of distinct
poles of f(z) instead of n(t, f).

Remark 1. (i) o1111(f, 20) = o(f, 2p),
T[1,1] (f z0) = 1(f, 20), A1) (f,20) = A(f, 2p) and
1[1,1] (f,zo) = A(f, z,) are just the order, the type
and the exponent of convergence of zeros and
distinct zeros of f(z) respectively, [16].

(i) 0[2,1] (f, 20) = 02(f, 2o), T[2,1] (fr20) =
72(f, 20), A2,1] (fr20) = 22(f, 20) and
Ai211(f> 20) = A2(f 2o) are just the hyper order, the
hyper type and the hyper exponent of convergence

of zeros and distinct zeros of f(z) respectively,
[16].
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Depending on the definitions of the logarithmic
order and the logarithmic type of meromorphic
functions in C, [21], [22], we define the logarithmic
order and the logarithmic type of a meromorphic
function f(z) in C — {z,} as follow:

log™ T, (r, f)
loglog %

| T,,(r. )
Tiog(f, 20) = lim gup jo Tlog(fZ0)
— log )

Olog(f>20) = 1im§up
TrT—

if 0105(f,20) € [1,+). If f(z)is an analytic
function in C — {z,}, then:

log*log* M, (7, f)
1 )
loglog -

log™ M,, (. f)
1 o'log(fvzo)
)

Olog(f> 2p) = limsup
r—0

Tlog,M (f' ZO) = lim sup
r—0

if 010g(f,2o) € [1, +0). The logarithmic exponent
of convergence of zeros and distinct zeros of a
meromorphic  function  f(z) in C— {z,}are
respectively given by:

log* N, (r, %)

Alog(f, Zy) = lim sup — -1,
r—0 loglog —
= 1
B . 10g+ NZo (T', ?)
hog(f, 20) = limsup——F——1.
r—0 loglog -

For k > 2, we consider the linear differential
equations:

f(k) + Ak—l(Z)f(k_l) + -+ A @f

+40(2)f =0, (1
fO+ A @Df*D 4+ A (2)f
+40(2)f = F(2), ()

where A;(z) (j=0,1,..,k—1) and F(z) are
analytic or meromorphic functions in C — {z,}.
Recently in [20], the authors investigated the
growth of solutions of (1) for the case that an
arbitrary coefficient Ag(z) dominates by its
[p, q]-order, and they obtained the following
theorem.

Theorem A ([20]). Let Ay(2),...,Ar-1(2) be
analytic functions in C — {z,}. Suppose there exists
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an integer s (0 <s<k—1) such that Ag(2)
satisfies max{a[plq](A]-,zo) - s} <

O[p,q](As,Z9) < +o0. Then, every analytic solution
f(2)(#£0) in C—{zy} of (1) satisfies
Olp+1,4] (f,20) < O[p,ql (A, 20) < O[p,ql (f’ 2o).

In [14], the authors also considered (1) for the
special case when the coefficients are meromorphic
functions in C — {z,} and Ay(z) is the dominant
coefficient, where they obtained the following
theorem on the hyper order.

Theorem B ([14]). Let Ay(2),...,Ax_1(2) be
meromorphic functions in C —{z,} satisfying
max{a (A]-, 20) ) # 0} < 0 (Ag, z9) with

m,, (7, f)

T f)

lim inf
r—0

Then, every meromorphic solution f(z) (% 0) in
C — {zo} of (1) satisfies 0 (4, 2y) < 05 (f, Zp).

The aim of the present paper is to investigate the
growth of solutions of the linear differential
equations (1) and (2) considering the case that an
arbitrary coefficient Ag(z) dominates the other
coefficients which are analytic or meromorphic
functions in € — {z,}, by its logarithmic order or
its logarithmic type, where we extend the above
results. It should be noted that similar results to ours
were obtained for the complex plane case, [24],
[25]. First, for the case when the coefficients of (1)
are meromorphic functions in C — {z,}, we obtain
the following results.

Theorem 1. Let Ay(2),..,Ax_1(z) be
meromorphic functions in C—{z,} of finite
logarithmic order. Suppose there exists an integer
s (0 < s <k —1) such that A;(z) satisfies

Zj¢5 Mz, (T’ Aj)

limsu <1
r—0 P mzo (T, As)
and
mZ (r’AS)
liminf —=2——>-=§ > 0.
TR0 Ty, (1, Ay)

Then, every meromorphic solution f(z) (% 0) in
C—{z} of (1) satisfies 0y0g(As5,29) —1<
O_log(f' zp) and Ulog(As' 7p) < Glog(f: zg) if
Olog(4s,29) > 1.

Let
functions

Theorem 2.
meromorphic

AO(Zl,...,Ak_l(Z) be
in C—{zy}of (finite
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logarithmic order. Suppose there exists an integer

s(0<s<k-—1) such that As(z) satisfies
max{alog(Aj,zo) 1j#Es)< Olog(As, Zp) < +0,
m, (r, A

lim i A _ 5
r—0 Tzo (r, As)

and
Tlog(Aj' )

alog(A]-,zo)=0'10g(As,zo)21,j¢s
< OTy0g(As, 2) < +00.

Then, every meromorphic solution f(z) (# 0) in
C—{zo} of (1) satisfies 0jo(As520) —1<
Glog(f' ZO) and Ulog(Asr ZO) < alog(f' ZO) if
JlOg(AS'ZO) > 1.

Theorem 3. Let Ag(2),...,Ax_1(2) be
meromorphic functions in C—{z,} of finite
logarithmic order. Suppose there exists an integer
s (0 < s <k —1) such that A;(z) satisfies

1
Alog (A_'ZO) +1< Ulog(As: Zp),
S
max{alog(Aj,ZO) 1 # s} < O10g(As, 29) <+
and
Tlog(Aj'ZO)

0'10g(A]',Zo)=O'10g(A5,Zo)21,j¢S
< Tog(As, 2g) < +o0.

Then, every meromorphic solution f(z) (% 0) in
C — {zo} of (1) satisfies 01,5(As, z9) < 010g(f, 20) -

Next, when the coefficients of (1) and (2) are
analytic functions in C—{z,}, we obtain the
following results.

Theorem 4. Let Ay(2),...,Ax-1(2) be analytic

functions in C — {z,} of finite logarithmic order.

Suppose there exists an integer s (0 <s<k—1)

such that Ay (z) satisfies max{crlog(Aj,Zo) 1j#

s} < Olog(As, Zp) <+ and

ZJ'*S Mz, (T‘, Aj)
mZO (rr AS)

lim sup <1

r—0

Then, every analytic solution f(z) (£0) in C—
{zo} of (1) satisfies oy (f,20) — 1<
Olog(As, 20) — 1 < 010(f, 29).  Furthermore,  if
O10g(As,Z9) > 1, then f(2) satisfies oy, 21(f, ) <
Ulog(As'ZO) < Ulog(fr ZO)-
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Theorem 5. Let Ay(2),...,Ax_1(2) be analytic
functions in C — {z,} of finite logarithmic order.
Suppose there exists an integer s (0 <s<k—1)
such that Ag(z) satisfies max{alog(Aj,zo) 1 #

sh< Olog(As, Zg) < +oo. Then, every analytic
solution f(z) (£0) in C—{zy} of (1) satisfies
0(2,2] (f' ZO) -1< Ulog(As: ZO) -1< Glog(f' ZO)-
Furthermore, if 004(As,Z9) > 1, then f(2) satisfies
0[2,2] (f,20) < U]og(As' Zp) < Jlog(fv Zp).

Theorem 6. Let Ay(2),...,Ax_1(2) be analytic
functions in C — {z,} of finite logarithmic order.
Suppose there exists an integer s (0 <s <k —1)
such that Ay (z) satisfies max{olog(Aj, ZO) ] #

s} < 0O1og(4s, Zp) < +o0and

Tiog (4, 20)
alOg(Aj'zo)zalog(As'zo):jis
< T1og(4s, 2g) < +00.

Then, every analytic solution f(z) (% 0) in
C—{zo} of (1) satisfies 0pp(f,20) — 1<
Olog(4s,29) — 1 < 0105(f, 29).  Furthermore, if
Olog(As, 29) > 1, then f(z) satisfies oy 51(f,20) <
Olog(As, Z0) < 010g(f 20)-

Theorem 7. Let Ay(2),...,Ai_1(z) satisfy the
hypotheses of Theorem 5 and let F(z) (# 0) be an
analytic function in C — {z,}.

) If  010g(4s, 20) < 0(221(F,2) <+, then
every analytic solution f(z) (# 0) in
C — {2} of (2) satisfies o[, 1(f,20) =
0122 (F, Zo).

i) If 010g(As, 29) > 0122)(F, 7p), then every
analytic solution f(z) (£0) in C—
{zo} of (2) satisfies 0p,(f,20) <
Ulog(As: Zg) and /1[2,2] (fr20) =
1[2,2] (f, ZO) = 0'[2'2] (f, ZO) holds for
every solution that satisfies
0[2,2] (f,20) = Ulog(As: Zp).

Remark 2. Nevanlinna theory has a wide range of
applications starting from number theory to
probability and statistics and to theoretical physics,
[26], [27], [28], [29] and the references cited
therein.

2 Some Lemmas
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The following lemmas are important to prove our

results. Firstly, we denote the logarithmic measure

ofaset E c (0,1) by my(E) = E%.

Lemma 1 ([20]). Let f be non-constant
meromorphic function in C — {2y} and let k,j € N,
such that k # j. Then:

f®(2) 1
my, <r,m) =0 (TZ0 (r,f)+ log;),

holds for all r € (0,7;] \ E; with m;(E;) < co.

Lemma 2 ([30]). Let f be non-constant analytic
function in C —{zo} with 0y,4(f,2y) = 0. Then
there exists a set E, of (0,1) that has infinite
logarithmic measure such that for all |z —z,| =
r € E,, we have:

. loglog M, (r,f)
lim = lim

r—0

log T, (r. f)
=0

=0 Joglog %

loglog %
and for any given € > 0

M, (r, ) > exp {(log%)}

T, . f)> <log%)

Lemma 3. Let f;,f, be two meromorphic
functions in C — {z¢} satisfying oy = 010g(f1,20) >
Olog(f2, Zo) = 0. Then there exists a set E5 < (0,1)
of infinite logarithmic measure such that for all
|z —zy| =r € E;, we have:

T, (r,
lim zo( fz) -0
r—0 TZO (T', fl)

Proof. By the definition of the logarithmic order,
61;62, the exists r, € (0,1)
such that for all |z — z,| = r € (0,7,), we obtain:

1 f) < (log2) ®

By Lemma 2, there exists a set E, < (0,1) of
infinite logarithmic measure such that, for the above
€and for all |z — zy| =r € E;, we have:

for any given 0 < e <

g1—¢€

T o) < (log:) @
By (3) and (4), for the above & and for all |z —
zol =r € E; = E, Nn(0,1,), we get:
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oy+e

T, £ _ (log;)

g
0< < =
TZ() (Tl fl) (logl)al ¢
T

1
= —(log 1)0'1—0'2_28 — 0;
T

Lemma 4. Let f be a non-constant meromorphic
function in C — {zy} with finite logarithmic order
1 < 010g(f,29) =0 < +o0 and finite logarithmic
type 0 < Tjog(f, 29) < +oo0. Then there exists a set
E, of (0,1) that has infinite logarithmic measure
such that for all |z — zy| = r € E,4, we have:

lin}) ZO( f) Tlog(f ZO)
" (log 3)°

Proof. By the definition of the logarithmic type,
there exists a sequence {r,}+2 tending to 0

satisfying 75,41 <3

as r — 0.

— and

. zo (an f )
lim

log
11
So, for any given € > 0, there exists an integer n

Tlog(f ZO)

such that for all n > ny and for any r € [ﬁ Ty,

rn], we have:

Taln ) _ T ) _ T (g f)
1\ (lo l)a - (lo i)(7 .
<log L_rn> g7 & T
Since, "
o
nl_i)r_l;_loo Tzo (rn'f)o_ _ nl_l)Too TZO (n+11 TZ_' f)
<log i ) (log E)
n+1' ™

= Tlog(f: Zp),
n
then for any r € [m T, rn], we get:
T f)

m-———-—
" (log )’

Set E,= U;‘{""no [%rn, rn] my(E,) =

Sagn [0, = %, log(1+3) = +oo.

Tlog(f ZO)

then

Lemma 5 ([30]). Let Ay(2),..

analytic functions in C —
order with max{alog(Aj,ZO) :j=0,..k

,Ag-1(2) be
{2y} of finite logarithmic
-1} <
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a < +oo. Then, every analytic solution f(z) (% 0)
in € — {2} of (1) satisfies oy, 2 (f, 2o) < a.

Lemma 6 ([16]). Let f be a non-constant
meromorphic function in € — {z,} and set g(w) =

f (ZO - —) Then g(w) is meromorphic in C and we

r(l)

Lemma 7 ([31]). Let f be a non-constant
meromorphic function in C with p = q = 1. Then

have

T(R,f) =

1) = oppq ().

Lemma 8._Let f be a non-constant meromorphic
function in C — {z,} withp > q = 1. Then

J[p,q](fvzo) = O-[p,q](flrzo)-

1Y .
9@) = f(20~7) s
meromorphic in € and o[y 41(9) = T[p,q1(f, Z0)-
From Lemma 7 we have o[, 4(g") = oppq1(9),

where f'(z) = %g’(w) . Setting h(w) = ﬁg’((u).
It is clear that o7y 41(h) = 07p41(g"). On the other

Proof. By Lemma 6,

hand by Lemma 6, we have oppq(h) =
Op,q1 (' 20)- Hence, oy q1(f 1 20) = 01, q1(f', 20).
Lemma 9 ([30]). Let F(z) #0,

Ay(2), ..., Ax_1(z) be analytic functions in C —
{zo} and let f be a non-constant analytic solution
inC — {z,} of () satisfying

max {0'[2’2](1:, Zy), 0[2,2] (Aj,zo) :(G=0,..,k—

1)} < 0-[2'2] (f, Zo) ' Then, 1[2’2] (f, Zo) =
A[z,z](f' Zp) = 0(2,2] (f> 20) -

3 Proof of the Theorems

3.1 Proof of Theorem 1

Proof. Let f (# 0) be a meromorphic solution of
(1) in € — {z0}. If 01o4(f, 29) = oo, then the result is
trivial. So, we suppose that 61,4(f, zy) < . By (1),
we have:

9@, fE 0@

_As(Z) = @ k 1( ) f((s)(l))
FGrD(7) f¥(2)
+...+AS+1(2)W +As—1(z)W
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f(2)
+"'+A0(Z)fT(Z). (5)
It follows that:
k f(j) (2)
mzo (T, AS(Z)) < '_Zi mZO (T, f—(s) (Z))
o
+ my, (r,4;(2)) + 0(1).
Jj=0,j#s

(6)

By Lemma 1, for a constant 1, € (0,1), there
exists a set E; € (0,7;] of finite logarithmic
measure such that for all |z — z,| = r € (0,17] \ E,
we have:

k .
f(])(z) 1
z mzo <T,fT(Z)> < 0 (TZO (T,f) + log;)

j=0,j#s
(7)
Suppose that:

YN0 s My (1 4))

mZO (T', AS)

lim sup
r—0

=a<f <1l

Then for r — 0, we get:
k-1

Z my, (r,Aj(z)) < pm, (1, Ag).

j=0,j#s

(8)

Substituting (7) and (8) into (6), for all |z — zy| =
r € (0,r1] \ E; and r — 0, we obtain:

(1 = Bymy, (r,45) < 0 (T,,(r, ) +1og3).  (9)

By the assumption lim infM = § > 0, there

r—0 Tz (1As)
exists 13 € (0,1) such that for all |z—z,| =71 €
(0,713), we have:

)
mzo(r: As) = E TZO (T, As)- (10)

By Lemma 2, there exists a set E, < (0,1) of
infinite logarithmic measure such that for any given
e > 0and forall |z — z,| = r € E,, we have:

1)0'log(ASrZO)_£

T,,(r, Ag) = (log; (1)
Combining (9), (10) and (11), for any given € > 0
and forall |z — zy| =r € E, N (0,74] N (0,73) \
E;, we get:

1)Ulog(As:Zo)_£

é(1—/3)(10 =
2 gr
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<0 (TZO (r,f)+ log%). (12)
This implies that 61,5(As, Z9) — 1 — € < 0104(f Z0)
and Ulog(As: Zp) —€ < Glog(f' 7o) if Ulog(As: zp) >
1. Since & > 0 is arbitrary, we obtain 0y44(As, Zg) —
1< Jlog(f' Zp) and Ulog(Asr zp) < Jlog(f' zg) if
Olog(4s, 29) > 1.

3.2 Proof of Theorem 2

Proof. Let f(# 0) be a meromorphic solution of
() in C-—{z}. First, we suppose that
max{alog(Aj,zo):j * s} < 010g(As,29) = 0. Then
as in the proof of Theorem 1, by substituting (7) and
(10) into (6), for all |z—zy| =r€ (0,11]N
(0,73) \ E;, we obtain:

) 1
ETZO(r,AS) <0 (TZO(r,f) + log;)

k-1
+ Z T, (1. 4;).

Jj=0,j#s
By Lemma 3, there exists a set E3 < (0,1) of
infinite logarithmic measure such that for all

|z — zy| = r € E5, we have:

TZO (T‘, Aj)
max {TZO (r, Ay)

(13)

,jis}—>0, as r— 0. (14)

Then, by (13) and (14) for all r € E3N(0, 7] N
(0,13) \ E; and r — 0, we get:

0(1)> Ty, (1, As)

2

1
<0 (Tzo(r,f) + log;). (15)
From (15), we deduce that 0jog(As,20) —1 <
Jlog(f' zp) and Ulog(As:ZO) < Ulog(f: 7o) if
Olog(As,29) > 1. Now  we suppose that
max{alog(Aj,zo):j #s}= Olog(As, Zg) = 0 and

Tiog(4), Z0)

Ulog(AerO)=alog(AS'ZO)21fj¢S
< 8710g(As, 2) = 07,

71 =

So, there exists a set J; € {0,1, ...,k — 1} \ {s} such
that for j€ J;, we have alog(Aj,zo) = 010g(As, 20) =

o with:
Tlog(Aj'ZO) < Tlog(As: ZO) =1

0=,
J€L

andforj€jJ, ={0,1,..,s—1,s+1,..,k—1}\ ];
we have alog(A]-,ZO) < 010g(As, 29) = 0. Then there
exists 1, € (0,1), such thatall |z — z5| =7 € (0,13)
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and for any given €(0 < (7 + k)e < 61— 19), we
obtain:
1y Olog(4:%0)
T, (r, Aj) < (‘L’log (Aj, ZO) + e) (log;)
1 Olog(4s.20)
= (Tiog(4),20) + €) (log;) , jJE€J; (16)
and
1 Olog(A)i20)+e
TZO(r,Aj) < (log;)
Oo

<(log-) . je a7

where max{alog(Aj,ZO):j E]Z} <0y < 0. By the

. L zo(1As
assumption lim inf Mo T4s)
r—0 TZO (T,AS)

15 € (0,1) such that for any given € > 0 and for all

|z — zy| = r € (0,75), we have:

=& > 0, there exists

mzo (T, As) = (6 - S)Tzo (T‘, As)- (18)
By Lemma 4, there exists a set E, < (0,1) of
infinite logarithmic measure such that for the above
€ and for all |z — zy| = r € E,, we have:

1\ Olog(4s:Z0)
T, (r,Ag) = (T —¢) (log;) : (19)
Combining (18) and (19), for the above ¢ and for all
|z —zy| =7 € E, N (0,7135), we get:
1 Plog(4s:20)
m, (r,As) = (6 —&)(t—¢) (log;)

Olog(45s,20)
= (6t — e —te + &2) (log%) g

)Ulog(As:ZO)

> (5t —(t+6)e) (log% (20)

Knowing the fact that 0 < § < 1, by (20) it follows:
1\ Olog(4s.20)
my (r,4s) = (61— (T + 1)e) (log;) .
(21)
By substituting (7) and (16), (17) and (21) into (6),

for the above € and for all |z —2zy| =r € E, N
(0,1 n (0,7,) N (0,75) \ E;, we obtain:

1 o'log(ASrZO)
(bt —(t+ 1e) (log—)
k-1
1
<0 (TZO (r, f) + log;) + z T, (1. 4;)
Jj=0,j#s
1
<0 (TZ0 (r,f)+ 1og;) + Z (rlog(A]-,ZO) +¢)
Jj€l1
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o [0

<(1og7) + . (os;)

JEJ2
<0 (T, )+ log%) + (2, + (k — De)

1\? 1,90
o)+ - 1 (1)
X ( ogr +( ) ogr
It follows that

1
(1 - 0(1))(6'[ -1, — (T + k)¢) <]0g;>

<0 (Tzo(r,f) + log%),

(22)

g

(23)

which implies that, 6jog(4s,20) — 1 < 015(f, 20)
and 1 < 0jog(As, 2o) < 010g(f 20) if O105(As, 20) >
1.

3.3 Proof of Theorem 3
Proof. By (6) and (7), for all r € (0,1,] \ E;, we
have
T,,(r,Ag) = my (r,Ag) + Ny (7, Ag)
k . k-1
f(])(z)
= Z Mz <r' @) " Z iz, (. 41(2)

J=0,j#s j=0,j#s

+N,, (1, Ag) + 0(1)
k-1
1
<0 (TZO (r,f)+ log;) + Z T,, (r, Aj)
Jj=0,j#s
+N,, (7, Ag). (24)
If o= max{alog(Aj,zo):j * s} < 0O10g(4s, 29) =
o, then there exists 14 € (0,1) such that for any
given (0 < 2e < 0 —o0y) and for all |z—zy| =
r € (0,74) , we obtain:
1 alog(Aj,zo)+£
TZ0 (r, Aj) < (log;)

1 G'1+£
< (log;)

By Lemma 2, there exists a set E, c (0,1) of
infinite logarithmic measure such that for the above
€ and for all |z — zy| = r € E,, the assumption (11)

holds. By the definition of 2,0 (Ai,zo) = A, there
exists 17 € (0,1) such that for any given &(0 <

26 <g—A1—1) and for all |z —z,| =r € (0,77),
we get:

j=01,...k—1j#s. (25)

(26)

1 Alog(AiS'ZO)"'l"'g
Ny, (r,49) < (log—)
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By substituting (11), (25) and (26) into (24), for

sufficiently small ¢ satisfying 0<2e<
min{c —0;,60 —A1—1} and for all re€E,n
(0,741 n (0,75) N (0,77) \ E;, we have:
1\°7¢ 1
(log;) <0 (TZO (r,f)+ log;)
o1+€ 1 A+1+e
k=D (l0gs)  +(log) 27
+(k — 1) {log— +(log (27)
then
1 g—¢&
(1 — 0(1)) (log;)
1
< 0 (T, ((r. 1)) +log2). (28)

Thus 1< 0 —¢€<04(f,2). Since £€>0 s
arbitrary, we obtain 1 < a1o5(As, Zg) < G10g(f, Z0)-
Now, if max{alog(Aj,Zo):j * s] = 0log(4s,20) =0
and

71 = Tlog(Aj'ZO)

Ulog(Aj.Zo)=0'log(As,20)21,j¢S
< Tlog(Asr Zp) =71,

then as in the proof of Theorem 2, we assume that
there exists a set J; € {0,1, ...,k — 1} \ {s} such that
for j € J;, we have O'log(Aj,ZO) = 010g(A5,29) = 0
with:

T10g(4), 20)
O-log(AijO)=alog(ASrZO)21rj¢5
< Tlog(As' 7)) =71

T, =

andforjej, ={0,1,..,s—1,s+1,...k—1}\ ],
we have alog(Aj, zp) < Olog(As, Z9) = 0. Then,
there exists a 1, € (0,1), such that for any given

£ (0 <eg< T_krl) and for all |z — zy| =7 € (0,1,),

the assumptions (16) and (17) hold. By Lemma 4,
there exists a set E, < (0,1) of infinite logarithmic
measure such that for the above & and for all
|z — zy| = r € E4, (19) holds. By substituting (16),

(17), (19) and (26) into (24) for sufficiently small €
satisfying 0 < € < min {U_j_l, T_krl} and for all r €

E,n (0,741 N (0,1,) N (0.75) \ E;, we get:

g

(t—2¢) <1og%) <0 (TZO (r,f)+ log%)

+ Z (Tlog(AJ" ZO) ) (1og%)a

Jj€J1

DACH RS

J€J2

A+1+e
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g

<0 (TZO (r,f) +log %) + (71 + (k= 1)e) <1°g%)

+(k—-1) <log%)ao + (log;)/prﬂ‘g (29)
So
(1 — o(l))(r — 1, — ke) <10g%)0
<0 (Tzo(r,f) + log%>, (30)

which implies that 1 < 6j05(As, Zo) < T10¢(f’ Zo)-

3.4 Proof of Theorem 4

Proof. We assume that f(# 0) is an analytic
solution of (1) in C — {z,}. By Theorem 1, we have
0< Jlog(As'ZO) -1< Ulog(f: 7o) and Ulog(Asr Zg)
< 010g(f129) 1f 019g(As,29) > 1 . On the other
hand, by Lemma 5, we have o[;2(f,20) <
Glog(As,ZO). Hence 012,21(f,20) =1 <
Olog(As, 20) — 1 < 010g(f,29) and 013 51(f,20) <
Jlog(As'ZO) < Ulog(f' ZO) ifo_log(Asr ZO) > 1.

3.5 Proof of Theorem 5

Proof. We assume that f(# 0) is an analytic
solution of (1) in C — {z,}. By Theorem 2, we get
0< Jlog(As'ZO) -1< Ulog(f' Zp) and
Jlog(As'ZO) < Glog(f’ 7o) if Ulog(As; zy) > 1. Then,
by using Lemma 5, we conclude that o ) (f,zy) —
1< alog(As'ZO) -1< Ulog(f' Zp) and
012,21(f, 20) < 0G10g(As, 20) < 010g(f, 20) if
Olog(4s, 29) > 1.

3.6 Proof of Theorem 6
Proof. Again, by Theorem 2 and Lemma 5, we get
the assertions of Theorem 6.

3.7 Proof of Theorem 7
Proof. We suppose f(z) is an analytic solution in
C — {2y} of (2). Then f can be represented in the
form:
f(2) = B1(2)f1(2) + By(2)f>(2)
+ -+ B (2)fi (2), (31)
where f1, f5, ..., fx 1s a solution base of equation (1)
corresponding to equation (2) and By, By, ..., By, are
suitable analytic functions in C — {z,} determined
by the following system of equations:
(Bifi+Byf+ -+ Bify =0

| BiFi + Bify 4 et By =0 )

BLf + Bt ok B = F,
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By (32), we get
B = F.Gi(fy, far o SO W (fis for s i)Y (33)

j=1,...k, where Gj(fi,f2 -, fi) is differential
polynomial of f3, f5, ..., fi and their derivatives with
constant coefficients and W(fy, fo, ..., fi) is the
Wronksian of fi, f5, ..., fr. By (33) and Lemma 8§,
forj=1,..,k, wehave :
012.21(Bj, 20) = 012.21(B}, 20)
< maX{(7[2,2] (F,Zo),02,2] (Gj(fpfz: e fi)r 20),
0(2,2] W (f1, f20 s fi)s Zo)}- (34)

Since G;(f1, f2, -+, fi) and W(fy, f2, ..., fi) are both
differential polynomial of fi,fs, ..., fr and their

derivatives with constant coefficients, then they

satisfy:

max{o(z51(G;(f1, f2r -, fi)r Zo)»

U[z,z](W(fozl s 1) Zo)} < 0[2,2](fj; Zo)- (35)

By Theorem 5, if max{ojog(4),20):j # s} <

Olog(4s, 2) < +o, then

012.21(fj2 20) < 010g(As:20) , Jj =1, ..., k. (36)

By (31), (34), (35) and (36) forj = 1, ..., k, we get
012.21(f, 20) < max{oyz2)(f;, 20), 012,21 (By 20)}

SmaX{U[Z,z](F;Zo)'Ulog(As'Zo)}- (37)

1) If 0,2)(F, z9) = 0105(As, 7o), then by (2) and
(37), we deduce that o[, 2)(f, zo) =
0[2,2](F: Zp).

ii) If a5,2)(F, 20) < 010g(As, Zo), then by (37),
we obtain a[ 7] (f, 2g) < 010g(As, Zo).
Further, assume that a solution f of (2)
satisfies o[ 2)(f, z9) = alog(AstO)-
Then, there holds

maX{U[z,Z] (F, Zo),U[z,z] (Aj:ZO): U=

0, k - 1)} < 0-[2'2](](:, Zo_).
By Lemma 9, we conclude that Ap,1(f,2,) =
A12,21(f, 20) = 012,21(f, 20) = G10g(As, Zo)-

4 Conclusion

Throughout this article, by using the concepts of
logarithmic order and logarithmic type, we have
studied the growth of solutions of the linear
differential equations (1) and (2) considering the
case of an arbitrary coefficient A;(z) dominating the
others coefficients which are analytic or
meromorphic functions in C — {z,}. We improve
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and extend some precedent results obtained in the
papers, [14] and [20].
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